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Abstract
In this paper, using the notions of variational differential system, adjoint differential system and modified
Legendrian duality, we formulate and prove necessary optimality conditions in signomial constrained optimal
control problems.
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1. Introduction and problem formulation

Optimal control theory (see Lee and Markus [1], Pontriaguine et al. [2], Evans [3]), due to important applications in various
branches of pure and applied science, has attracted many researchers over the years. Wagner [4] established a Pontryagin-type
maximum principle associated with some Dieudonné-Rashevsky type problems governed by Lipcshitz functions. Later, Udrişte
[5], using the multi-time concept, formulated and proved, under the simplified hypothesis, a maximum principle based on
multiple/curvilinear integral cost functional and m-flow type PDE constraints. Treanţă and Vârsan [6] derived that solutions
associated with an extended affine control system can be obtained as a limit process using solutions for a parameterized affine
control system and weak small controls.

In this paper, taking into account Treanţă and Udrişte [7] and Treanţă [8], we introduce necessary conditions of optimality
for a new class of optimal control problems involving signomial type constraints. For other different but connected points of
view regarding this subject, the reader is directed to Mititelu and Treanţă [9] and Treanţă [10, 11].

In the following, for x = (x1, ...,xn) ∈ Rn we shall write x > 0 if xi > 0, i = 1,n, and x ≥ 0 if xi ≥ 0, i = 1,n. The set
Rn
+ = {x ∈ Rn : x ≥ 0} is said to be the positive orthant and, most of the times, we shall use the open positive orthant

Pn = {x ∈ Rn : x > 0}. On the set Pn, we consider the distinct monomials of the form vk = vk(x) = (x1)α1k · · ·(xn)αnk , k = 1,m,
where αik are real numbers. If ai

k are real numbers, then the functions ai
kvk, with summation upon k, are called signomials. The

controlled signomial dynamical systems are defined as follows:

ẋi(t) = ai
kvk (x(t),u(t)) , i = 1,n,

where vk (x,u) := (x1)α1k · · ·(xn)αnk(u1)γ1k · · ·(ur)γrk , αik,γβk ∈R, k = 1,m, i= 1,n, β = 1,r, t ∈ I⊆R, and Pr 3 u= (uβ ), β =

1,r, is a control.
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Further, let us consider an optimal control problem based on a simple integral cost functional, constrained by a controlled
signomial dynamical system:

max
u(·),xt0

I (u(·)) =
∫ t0

0
X (x(t),u(t))dt (1.1)

subject to

ẋi(t) = ai
kvk (x(t),u(t)) , i = 1,n, k = 1,m (1.2)

u(t) ∈ U, ∀t ∈ [0, t0]; x(0) = x0, x(t0) = xt0 . (1.3)

In the aforementioned optimal control problem we used the following terminology and notations: t ∈ [0, t0] is parameter
of evolution, or the time; [0, t0]⊂ R+ is the time interval; x : [0, t0]→ Pn, x(t) = (xi(t)), i = 1,n, is a C2-class function, called
state vector; u : [0, t0]→ Pr, u(t) = (uβ (t)), β = 1,r, is a continuous control vector; U is the set of all admissible controls; the
running cost X (x(t),u(t)) is a C1-class function, called autonomous Lagrangian.

Through this work, the summation over the repeated indices is assumed. Further, we introduce the Lagrange multiplier
p(t) = (pi(t)), also called co-state variable (vector), and a new Lagrange function

L(x(t),u(t), p(t)) = X (x(t),u(t))+ pi(t)
[
ai

kvk (x(t),u(t))− ẋi(t)
]
.

In this way, we change the initial optimal control problem into a free optimization problem

max
u(·),xt0

∫ t0

0
L(x(t),u(t), p(t))dt

subject to

u(t) ∈ U, p(t) ∈ P, ∀t ∈ [0, t0]

x(0) = x0, x(t0) = xt0 ,

where P is the set of co-state variables, which will be defined later. The control Hamiltonian

H (x(t),u(t), p(t)) = X (x(t),u(t))+ai
k pi(t)vk (x(t),u(t)) ,

or, equivalently,

H = L+ piẋi (modi f ied Legendrian duality)

permits us to rewrite the previous optimal control problem as follows

max
u(·),xt0

∫ t0

0

[
H (x(t),u(t), p(t))− pi(t)ẋi(t)

]
dt

subject to

u(t) ∈ U, p(t) ∈ P, ∀t ∈ [0, t0]

x(0) = x0, x(t0) = xt0 .
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1.1 Variational and adjoint differential systems
Let us suppose that (1.2) is satisfied. Fix the control u(t) and a corresponding solution x(t) of (1.2). Let x(t,ε) be a differentiable
variation of the state variable x(t), fulfilling

ẋi(t,ε) = ai
kvk (x(t,ε),u(t))

x(t,0) = x(t), i = 1,n.

Denote by yi(t) := xi
ε(t,0). Taking the partial derivative with respect to ε , evaluating at ε = 0, we obtain the following system

ẏi(t) = ai
kvk

x j (x(t),u(t)) · y j(t),

called variational differential system. The differential system

ṗ j(t) =−ai
k pi(t)vk

x j (x(t),u(t))

is called the adjoint differential system of the previous variational differential system since the scalar product pi(t) · yi(t) is a
first integral of the two systems. Indeed, we have

d
dt

[
pi(t) · yi(t)

]
= 0.

2. Main result

Let û(t) =
(

ûβ (t)
)
, β = 1,r, be a continuous control vector defined on the closed interval [0, t0], with û(t) ∈ IntU, which is an

optimal point for the aforementioned control problem. Consider u(t,ε) = û(t)+ εh(t) a variation of the optimal control vector
û(t), where h is an arbitrary continuous vector function. We have û(t) ∈ IntU and, since a continuous function on a compact
interval [0, t0] is bounded, there exists εh > 0 such that u(t,ε) = û(t)+ εh(t) ∈ IntU, ∀ |ε|< εh. This ε is a ”small” parameter
used in our variational arguments.

Define x(t,ε) as the state variable corresponding to the control variable u(t,ε), i.e.,

ẋi(t,ε) = ai
kvk (x(t,ε),u(t,ε)) , i = 1,n, ∀t ∈ [0, t0]

and x(0,ε) = x0. As well, consider (for |ε|< εh) the function (integral with parameter)

I(ε) :=
∫ t0

0
X (x(t,ε),u(t,ε))dt.

Since û(t) is an optimal control variable we get I(0) ≥ I(ε), ∀ |ε| < εh. Also, for any continuous vector function
p(t) = (pi)(t) : [0, t0]→ Rn, we have∫ t0

0
pi(t)

[
ai

kvk (x(t,ε),u(t,ε))− ẋi(t,ε)
]

dt = 0.

The variations involve

L(x(t,ε),u(t,ε), p(t)) = X (x(t,ε),u(t,ε))

+pi(t)
[
ai

kvk (x(t,ε),u(t,ε))− ẋi(t,ε)
]

and the associated function (integral with parameter)

I(ε) =
∫ t0

0
L(x(t,ε),u(t,ε), p(t))dt.

Now, assume that the co-state variable p(t) = (pi(t)) is of C1-class. The control Hamiltonian with variations

H (x(t,ε),u(t,ε), p(t)) = X (x(t,ε),u(t,ε))+ai
k pi(t)vk (x(t,ε),u(t,ε))

changes the above integral with parameter as follows

I(ε) =
∫ t0

0

[
H (x(t,ε),u(t,ε), p(t))− pi(t)ẋi(t,ε)

]
dt.
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Differentiating with respect to ε , evaluating at ε = 0, and using the formula of integration by parts, it follows

I′(0) =
∫ t0

0
[Hx j (x(t), û(t), p(t))+ ṗ j(t)] · x j

ε(t,0)dt

+
∫ t0

0
Huβ (x(t), û(t), p(t)) ·hβ (t)dt−

(
pi(t) · xi

ε(t,0)
)
|t00 ,

where x(t) is the state variable corresponding to the optimal control variable û(t). We must have I′(0) = 0, for any continuous
vector function h(t) =

(
hβ (t)

)
, β = 1,r. Also, the functions xi

ε(t,0) solve the following Cauchy problem

∇txi
ε(t,0) = ai

kvk
x (x(t,0),u(t)) · xε(t,0)+ai

kvk
u (x(t,0),u(t)) ·h(t)

t ∈ [0, t0], xε(0,0) = 0.

Consequently, we obtain

∂H
∂uβ

(x(t), û(t), p(t)) = 0, ∀t ∈ [0, t0]. (2.1)

Using the adjoint differential system introduced in Sect. 1.1, we define P as the set of solutions for the following problem

ṗ j(t) =−
∂H
∂x j

(x(t), û(t), p(t)) , p j(t0) = 0, ∀t ∈ [0, t0]. (2.2)

Moreover, we get

ẋ j(t) =
∂H
∂ p j

(x(t), û(t), p(t)) , x(0) = x0, ∀t ∈ [0, t0]. (2.3)

Remark 2.1. The algebraic system (2.1) describes the critical points of the control Hamiltonian H with respect to the control
vector u = (uβ ).

Now, taking into account the previous computations, we are able to formulate the main result of this paper.

Theorem 2.2. (Simplified maximum principle) Let assume that the problem of maximizing the functional (1.1), subject to the
signomial constraints (1.2) and to the conditions (1.3), with X , vk of C1-class, has an interior solution û(t) ∈ IntU determining
the optimal state variable x(t) =

(
xi(t)

)
. Then there exists the C1-class co-state variable p = (pi), defined on the closed interval

[0, t0], such that the relations (1.2), (2.1), (2.2) and (2.3) hold.

Further, by using the new Lagrange function L and the above mentioned theorem, the following result is obvious.

Corollary 2.3. Consider the problem of maximizing the functional (1.1), subject to the signomial constraints (1.2) and to
the conditions (1.3), with X , vk of C1-class, has an interior solution û(t) ∈ IntU determining the optimal state variable
x(t) =

(
xi(t)

)
. Then there exists the C1-class co-state variable p = (pi), defined on the closed interval [0, t0], such that

ẋi(t) = ai
kvk (x(t),u(t)) , i = 1,n, k = 1,m

and the following Euler-Lagrange ODEs associated with the Lagrangian L

∂L
∂uβ
− d

dt
∂L
∂ u̇β

= 0, β = 1,r

∂L
∂xi −

d
dt

∂L
∂ ẋi = 0,

∂L
∂ pi
− d

dt
∂L
∂ ṗi

= 0, i = 1,n

are satisfied.
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3. Conclusion and further development
In this paper, using the concepts of variational differential system, adjoint differential system and modified Legendrian duality,
we have formulated and proved a simplified maximum principle associated with a signomial constrained optimal control
problem. An immediate perspective of the present paper is to obtain the Euler-Lagrange and Hamilton ODEs, with many
applications in Optimization Theory and Mechanics.

References
[1] E.B. Lee, L. Markus, Foundations of Optimal Control Theory, Wiley, (1967).
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