

On Signomial Constrained Optimal Control Problems

Savin Treanţă^{1*}

Abstract

In this paper, using the notions of *variational differential system*, *adjoint differential system* and *modified Legendrian duality*, we formulate and prove necessary optimality conditions in signomial constrained optimal control problems.

Keywords: Optimal control, Maximum principle, Variational differential system, Adjoint differential system, Modified Legendrian duality.

2010 AMS: Primary 49J15, Secondary 34H05, 58E25

¹*University Politehnica of Bucharest, Faculty of Applied Sciences, Department of Applied Mathematics, 313 Splaiul Independentei, 060042 - Bucharest, Romania, ORCID: 0000-0001-8209-3869* ***Corresponding author**: savin treanta@yahoo.com

Received: 13 November 2018, **Accepted:** 14 January 2019, **Available online:** 22 March 2019

1. Introduction and problem formulation

Optimal control theory (see Lee and Markus [\[1\]](#page-4-0), Pontriaguine *et al.* [\[2\]](#page-4-1), Evans [\[3\]](#page-4-2)), due to important applications in various branches of pure and applied science, has attracted many researchers over the years. Wagner [\[4\]](#page-4-3) established a Pontryagin-type maximum principle associated with some Dieudonné-Rashevsky type problems governed by Lipcshitz functions. Later, Udriste [\[5\]](#page-4-4), using the *multi-time* concept, formulated and proved, under the simplified hypothesis, a maximum principle based on multiple/curvilinear integral cost functional and *m*-flow type PDE constraints. Treantă and Vârsan [[6\]](#page-4-5) derived that solutions associated with an extended affine control system can be obtained as a limit process using solutions for a parameterized affine control system and weak small controls.

In this paper, taking into account Treantă and Udriste [\[7\]](#page-4-6) and Treantă [[8\]](#page-4-7), we introduce necessary conditions of optimality for a new class of optimal control problems involving signomial type constraints. For other different but connected points of view regarding this subject, the reader is directed to Mititelu and Treantă [[9\]](#page-4-8) and Treantă [[10,](#page-4-9) [11\]](#page-4-10).

In the following, for $x = (x^1, ..., x^n) \in R^n$ we shall write $x > 0$ if $x^i > 0$, $i = \overline{1, n}$, and $x \ge 0$ if $x^i \ge 0$, $i = \overline{1, n}$. The set $R_+^n = \{x \in R^n : x \ge 0\}$ is said to be the *positive orthant* and, most of the times, we shall use the *open positive orthant* $\mathbf{P}^n = \{x \in \mathbb{R}^n : x > 0\}$. On the set \mathbf{P}^n , we consider the distinct monomials of the form $v^k = v^k(x) = (x^1)^{\alpha_{1k}} \cdots (x^n)^{\alpha_{nk}}$, $k = \overline{1,m}$, where α_{ik} are real numbers. If a_k^i are real numbers, then the functions $a_k^i v^k$, with summation upon *k*, are called *signomials*. The *controlled signomial dynamical systems* are defined as follows:

 $\dot{x}^{i}(t) = a_{k}^{i} v^{k} (x(t), u(t)), \quad i = \overline{1, n},$

where $v^k(x, u) := (x^1)^{\alpha_{1k}} \cdots (x^n)^{\alpha_{nk}} (u^1)^{\gamma_{1k}} \cdots (u^r)^{\gamma_{rk}}, \ \alpha_{ik}, \gamma_{\beta k} \in R, k = \overline{1, m}, i = \overline{1, n}, \ \beta = \overline{1, r}, t \in I \subseteq R$, and $\mathbf{P}^r \ni u = (u^{\beta}), \ \beta = \overline{1, r}, t \in I \subseteq R$ $\overline{1,r}$, is a *control*.

Further, let us consider an optimal control problem based on a simple integral cost functional, constrained by a controlled signomial dynamical system:

$$
\max_{u(\cdot),x_{t_0}} I(u(\cdot)) = \int_0^{t_0} X(x(t), u(t)) dt
$$
\n(1.1)

subject to

$$
\dot{x}^{i}(t) = a_{k}^{i} v^{k}(x(t), u(t)), \quad i = \overline{1, n}, \ k = \overline{1, m}
$$
\n(1.2)

$$
u(t) \in U, \forall t \in [0, t_0]; \quad x(0) = x_0, \, x(t_0) = x_{t_0}.\tag{1.3}
$$

In the aforementioned optimal control problem we used the following terminology and notations: $t \in [0, t_0]$ is *parameter of evolution*, or the *time*; $[0,t_0] \subset R_+$ is the *time interval*; $x : [0,t_0] \to \mathbf{P}^n$, $x(t) = (x^i(t))$, $i = \overline{1,n}$, is a C^2 -class function, called *state vector*; $u : [0, t_0] \to \mathbf{P}^r$, $u(t) = (u^{\beta}(t)), \beta = \overline{1, r}$, is a continuous *control vector*; *U* is the set of all admissible controls; the *running cost* $X(x(t), u(t))$ is a $C¹$ -class function, called *autonomous Lagrangian*.

Through this work, the summation over the repeated indices is assumed. Further, we introduce the *Lagrange multiplier* $p(t) = (p_i(t))$, also called *co-state variable (vector)*, and a new Lagrange function

$$
L(x(t), u(t), p(t)) = X(x(t), u(t)) + p_i(t) \left[a_k^i v^k(x(t), u(t)) - \dot{x}^i(t) \right].
$$

In this way, we change the initial optimal control problem into a free optimization problem

$$
\max_{u(\cdot),x_{l_0}} \int_0^{t_0} L(x(t),u(t),p(t)) dt
$$

subject to

$$
u(t) \in U, p(t) \in P, \forall t \in [0, t_0]
$$

$$
x(0) = x_0, \, x(t_0) = x_{t_0},
$$

where *P* is the set of co-state variables, which will be defined later. The *control Hamiltonian*

$$
H(x(t),u(t),p(t)) = X(x(t),u(t)) + a_k^i p_i(t) v^k (x(t),u(t)),
$$

or, equivalently,

 $H = L + p_i \dot{x}^i$ (*modified Legendrian duality*)

permits us to rewrite the previous optimal control problem as follows

$$
\max_{u(\cdot),x_{t_0}} \int_0^{t_0} \left[H(x(t), u(t), p(t)) - p_i(t) \dot{x}^i(t) \right] dt
$$

subject to

$$
u(t) \in U, p(t) \in P, \forall t \in [0, t_0]
$$

$$
x(0) = x_0, \, x(t_0) = x_{t_0}.
$$

1.1 Variational and adjoint differential systems

Let us suppose that [\(1.2\)](#page-1-0) is satisfied. Fix the control $u(t)$ and a corresponding solution $x(t)$ of (1.2). Let $x(t, \varepsilon)$ be a differentiable variation of the state variable $x(t)$, fulfilling

$$
\dot{x}^{i}(t,\varepsilon) = a_{k}^{i} v^{k} (x(t,\varepsilon), u(t))
$$

$$
x(t,0) = x(t), \quad i = \overline{1,n}.
$$

Denote by $y^i(t) := x^i_{\varepsilon}(t,0)$. Taking the partial derivative with respect to ε , evaluating at $\varepsilon = 0$, we obtain the following system

$$
\dot{y}^i(t) = a^i_k v^k_{x^j}(x(t), u(t)) \cdot y^j(t),
$$

called *variational differential system*. The differential system

$$
\dot{p}_j(t) = -a_k^i p_i(t) v_{x^j}^k (x(t), u(t))
$$

is called the *adjoint differential system* of the previous variational differential system since the scalar product $p_i(t) \cdot y^i(t)$ is a first integral of the two systems. Indeed, we have

$$
\frac{d}{dt}\left[p_i(t)\cdot y^i(t)\right] = 0.
$$

2. Main result

Let $\hat{u}(t) = (\hat{u}^{\beta}(t))$, $\beta = \overline{1,r}$, be a continuous control vector defined on the closed interval $[0, t_0]$, with $\hat{u}(t) \in Int U$, which is an optimal point for the aforementioned control problem. Consider $u(t, \varepsilon) = \hat{u}(t) + \varepsilon h(t)$ a variation of the optimal control vector $\hat{u}(t)$, where *h* is an arbitrary continuous vector function. We have $\hat{u}(t) \in Int U$ and, since a continuous function on a compact interval $[0, t_0]$ is bounded, there exists $\varepsilon_h > 0$ such that $u(t, \varepsilon) = \hat{u}(t) + \varepsilon h(t) \in Int U$, $\forall |\varepsilon| < \varepsilon_h$. This ε is a "small" parameter used in our variational arguments.

Define $x(t, \varepsilon)$ as the state variable corresponding to the control variable $u(t, \varepsilon)$, i.e.,

$$
\dot{x}^i(t,\varepsilon) = a^i_k v^k(x(t,\varepsilon),u(t,\varepsilon)), \quad i = \overline{1,n}, \,\forall t \in [0,t_0]
$$

and $x(0, \varepsilon) = x_0$. As well, consider (for $|\varepsilon| < \varepsilon_h$) the function (integral with parameter)

$$
I(\varepsilon) := \int_0^{t_0} X(x(t, \varepsilon), u(t, \varepsilon)) dt.
$$

Since $\hat{u}(t)$ is an optimal control variable we get $I(0) \geq I(\varepsilon)$, $\forall |\varepsilon| < \varepsilon_h$. Also, for any continuous vector function $p(t) = (p_i)(t) : [0, t_0] \to R^n$, we have

$$
\int_0^{t_0} p_i(t) \left[a_k^i v^k(x(t,\varepsilon), u(t,\varepsilon)) - \dot{x}^i(t,\varepsilon) \right] dt = 0.
$$

The variations involve

$$
L(x(t, \varepsilon), u(t, \varepsilon), p(t)) = X(x(t, \varepsilon), u(t, \varepsilon))
$$

$$
+p_i(t)\left[a_k^i v^k(x(t,\varepsilon),u(t,\varepsilon))-x^i(t,\varepsilon)\right]
$$

and the associated function (integral with parameter)

$$
I(\varepsilon) = \int_0^{t_0} L(x(t, \varepsilon), u(t, \varepsilon), p(t)) dt.
$$

Now, assume that the co-state variable $p(t) = (p_i(t))$ is of C^1 -class. The control Hamiltonian with variations

$$
H(x(t, \varepsilon), u(t, \varepsilon), p(t)) = X(x(t, \varepsilon), u(t, \varepsilon)) + a_k^i p_i(t) v^k (x(t, \varepsilon), u(t, \varepsilon))
$$

changes the above integral with parameter as follows

$$
I(\varepsilon) = \int_0^{t_0} \left[H(x(t,\varepsilon),u(t,\varepsilon),p(t)) - p_i(t)\dot{x}^i(t,\varepsilon) \right] dt.
$$

Differentiating with respect to ε , evaluating at $\varepsilon = 0$, and using the formula of integration by parts, it follows

$$
I'(0) = \int_0^{t_0} [H_{x^j}(x(t), \hat{u}(t), p(t)) + \dot{p}_j(t)] \cdot x_{\varepsilon}^j(t, 0) dt
$$

$$
+ \int_0^{t_0} H_{u^\beta}\left(x(t), \hat{u}(t), p(t)\right) \cdot h^\beta(t) dt - \left(p_i(t) \cdot x^i_\varepsilon(t,0)\right) \big|_0^{t_0},
$$

where $x(t)$ is the state variable corresponding to the optimal control variable $\hat{u}(t)$. We must have $I'(0) = 0$, for any continuous vector function $h(t) = \left(h^{\beta}(t)\right), \beta = \overline{1,r}$. Also, the functions $x_{\varepsilon}^{i}(t,0)$ solve the following Cauchy problem

$$
\nabla_t x_{\varepsilon}^i(t,0) = a_k^i v_x^k(x(t,0), u(t)) \cdot x_{\varepsilon}(t,0) + a_k^i v_u^k(x(t,0), u(t)) \cdot h(t)
$$

$$
t \in [0,t_0], \quad x_{\varepsilon}(0,0) = 0.
$$

Consequently, we obtain

$$
\frac{\partial H}{\partial u^{\beta}}(x(t),\hat{u}(t),p(t))=0, \quad \forall t \in [0,t_0].
$$
\n(2.1)

Using the adjoint differential system introduced in *Sect.* 1.1, we define *P* as the set of solutions for the following problem

$$
\dot{p}_j(t) = -\frac{\partial H}{\partial x_j}(x(t), \hat{u}(t), p(t)), \quad p_j(t_0) = 0, \forall t \in [0, t_0].
$$
\n(2.2)

Moreover, we get

$$
\dot{x}^{j}(t) = \frac{\partial H}{\partial p_{j}}(x(t), \hat{u}(t), p(t)), \quad x(0) = x_{0}, \forall t \in [0, t_{0}].
$$
\n(2.3)

Remark 2.1. *The algebraic system [\(2.1\)](#page-3-0) describes the critical points of the control Hamiltonian H with respect to the control vector* $u = (u^{\beta})$.

Now, taking into account the previous computations, we are able to formulate the main result of this paper.

Theorem 2.2. *(Simplified maximum principle) Let assume that the problem of maximizing the functional [\(1.1\)](#page-1-1), subject to the* signomial constraints [\(1.2\)](#page-1-0) and to the conditions [\(1.3\)](#page-1-2), with X, v^k of C^1 -class, has an interior solution $\hat{u}(t) \in$ IntU determining the optimal state variable $x(t)=(x^i(t)).$ Then there exists the C^1 -class co-state variable $p=(p_i)$, defined on the closed interval [0,*t*0]*, such that the relations [\(1.2\)](#page-1-0), [\(2.1\)](#page-3-0), [\(2.2\)](#page-3-1) and [\(2.3\)](#page-3-2) hold.*

Further, by using the new Lagrange function *L* and the above mentioned theorem, the following result is obvious.

Corollary 2.3. *Consider the problem of maximizing the functional [\(1.1\)](#page-1-1), subject to the signomial constraints [\(1.2\)](#page-1-0) and to the conditions* [\(1.3\)](#page-1-2), with X, v^k of C^1 -class, has an interior solution $\hat{u}(t) \in IntU$ determining the optimal state variable $x(t) = (x^i(t))$. Then there exists the C¹-class co-state variable $p = (p_i)$, defined on the closed interval $[0,t_0]$, such that

$$
\dot{x}^{i}(t) = a_{k}^{i} v^{k}(x(t), u(t)), \quad i = \overline{1, n}, k = \overline{1, m}
$$

and the following Euler-Lagrange ODEs associated with the Lagrangian L

$$
\frac{\partial L}{\partial u^{\beta}} - \frac{d}{dt} \frac{\partial L}{\partial \dot{u}^{\beta}} = 0, \quad \beta = \overline{1, r}
$$

$$
\frac{\partial L}{\partial x^{i}} - \frac{d}{dt} \frac{\partial L}{\partial \dot{x}^{i}} = 0, \quad \frac{\partial L}{\partial p_{i}} - \frac{d}{dt} \frac{\partial L}{\partial \dot{p}_{i}} = 0, \quad i = \overline{1, n}
$$

are satisfied.

3. Conclusion and further development

In this paper, using the concepts of *variational differential system*, *adjoint differential system* and *modified Legendrian duality*, we have formulated and proved a simplified maximum principle associated with a signomial constrained optimal control problem. An immediate perspective of the present paper is to obtain the Euler-Lagrange and Hamilton ODEs, with many applications in Optimization Theory and Mechanics.

References

- [1] E.B. Lee, L. Markus, *Foundations of Optimal Control Theory*, Wiley, (1967).
- ^[2] L. Pontriaguine, V. Boltianski, R. Gamkrélidzé, E. Michtchenko, *Théorie Mathématique des Processus Optimaux*, Edition Mir Moscou, (1974).
- [3] L.C. Evans, *An Introduction to Mathematical Optimal Control Theory*, Lecture Notes, University of California, Department of Mathematics, Berkeley, (2008).
- [4] M. Wagner, *Pontryagin's maximum principle for Dieudonne-Rashevsky type problems Involving Lipcshitz functions*, Optimization, 46(2) (1999), 165-184.
- [5] C. Udriste, *Simplified multitime maximum principle*, Balkan J. Geom. Appl., **14**(1) (2009), 102-119.
- [6] S. Treantă, C. Vârsan, Weak small controls and approximations associated with controllable affine control systems, J. Differential Equations, 255(7) (2013), 1867-1882.
- $^{[7]}$ S. Treantă, C. Udriste, *Optimal control problems with higher order ODEs constraints*, Balkan J. Geom. Appl., $18(1)$ (2013), 71-86.
- [8] S. Treantă, *Optimal control problems on higher order jet bundles*, BSG Proceedings 21. The International Conference "Differential Geometry - Dynamical Systems" DGDS-2013, October 10-13, 2013, Bucharest-Romania. Balkan Society of Geometers, Geometry Balkan Press 2014, 181-192.
- [9] Şt. Mititelu, S. Treanță, *Efficiency conditions in vector control problems governed by multiple integrals*, J. Appl. Math. Comput., 57(1-2) (2018), 647-665.
- [10] S. Treantă, *Local uncontrollability for affine control systems with jumps*, Internat. J. Control, **90**(9) (2017), 1893-1902.
- [11] S. Treantă, M. Arana-Jiménez, KT-pseudoinvex multidimensional control problem, Optim. Control Appl. Meth., 39(4) (2018), 1291-1300.