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Abstract
The main purpose of this paper is to construct Cheney-Sharma Chlodovsky operators. We
study approximation properties of the new operators with the help of weighted Korovkin-
type theorem and universal Korovkin-type theorem. We also give the rate of convergence
by means of the modulus of continuity. Furthermore, we give A-statistical convergence
property of these operators.
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1. Introduction
Approximation theory is concerned with how functions can best be approximated with

simpler functions. Since Korovkin theorem was obtained, the studies of the linear methods
of approximation given by sequences of positive and linear operators have become an im-
portant area in approximation theory. The study of the statistical convergence in approx-
imation theory for sequences of linear positive operators was attempted by Gadjiev and
Orhan [23]. They proved a Korovkin type theorem by considering statistical convergence
instead of ordinary convergence. Later, many authors gave several approximation results
via summability methods, for example, we refer the readers to [1,2,4,16,28,29,31,32,34].

In 1932, Chlodovsky [14], introduced the classical Bernstein-Chlodovsky polynomials
as a generalization of Bernstein polynomials on unbounded set.
For every n ∈ N , f ∈ C [0, ∞) and x ∈ [0, ∞) , these polynomials Cn : C [0, ∞) → C [0, ∞)
defined by

Cn(f, x) :=


n∑

k=0
f
(

k
nbn

) (n
k

) (
x
bn

)k (
1 − x

bn

)n−k
, if 0 ≤ x ≤ bn

f (x) , if x > bn

,

where 0 ≤ x ≤ bn and {bn} is a positive sequence with the properties;
limn→∞ bn = ∞, limn→∞ bn/n = 0.
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Recently some authors have studied some Chlodovsky type polynomials which may be
found in [6, 12,24–27,30].

It is known that the Abel-Jensen equalities are given by the following formulas (see [5],
p.326)

(u + v + nβ)n−1 =
n∑

k=0

(
n

k

)
u (u + kβ)k−1 v [v + (n − k) β]n−k−1 (1.1)

and

(u + v) (u + v + mβ)m−1 =
m∑

k=0

(
m

k

)
u (u + kβ)k−1 v [v + (m − k) β]m−k−1 , (1.2)

where u, v and β ∈ R. By means of these equalities Cheney-Sharma [13] introduced the
following Bernstein type operators for f ∈ C[0, 1], x ∈ [0, 1] and n ∈ N

Qn (f ; x) = (1 + nβ)1−n
n∑

k=0
f

(
k

n

)(
n

k

)
x (x + kβ)k−1 (1.3)

× [1 − x + (n − k) β]n−k

and

Gn (f ; x) = (1 + nβ)1−n
n∑

k=0
f

(
k

n

)(
n

k

)
x (x + kβ)k−1 (1.4)

× (1 − x) [1 − x + (n − k) β]n−k−1 ,

where β is a nonnegative real parameter. It is obvious that for β = 0 these operators
reduce to the classical Bernstein operators. Cheney-Sharma proved that if nβn → ∞ as
n → ∞, then for f ∈ C[0, 1], these operators uniformly convergence to f on [0, 1] . In
[7], the authors showed that Cheney-Sharma operators preserve the Lipschitz constant
and order of a Lipschitz continuous function as well as the properties of the function of
modulus of continuity. They also gave a result of Gn (f ; x) under the convexity of f .
Kantorovich type generalization of the Cheney-Sharma operators was studied in [33]. For
these operators, we refer the readers to [3, 8, 15,35,36].

In the present paper, we construct the Chlodovsky-type generalization of the Cheney-
Sharma operators is given by (1.4) and we prove that the weighted uniform convergence
of G∗

nf to f . We also give approximation results using universal Korovkin-type theorem
and obtain rate of approximation in terms of the usual modulus of continuity. Finally, we
study A-statistical convergence behaviours of new positive linear operators expressed as
below.

We introduce the Cheney-Sharma Chlodovsky operators as

G∗
n (f ; x) = (1 + nβ)1−n

n∑
k=0

f

(
k

n
bn

)(
n

k

)
x

bn

(
x

bn
+ kβ

)k−1
(1.5)

×
(

1 − x

bn

)[
1 − x

bn
+ (n − k) β

]n−k−1

for 0 ≤ x ≤ bn and f(x) for x > bn. Here {bn} is a positive sequence with the properties;
limn→∞ bn = ∞, limn→∞ bn/n = 0. If we take bn = 1, then we obtain the Cheney-Sharma
operators (1.4) .

Now, let us recall the concept of A-statistical convergence. Let A = (ank) be a summa-
bility matrix and let x = (xk) be a sequence.

If the series
(Ax)n :=

∑
k

ankxk
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is convergent for each n then, we say that Ax := {(Ax)n} is the A-transformation of x.
If the sequence Ax converges to a number L then, we say that x is A-summable to L. A
summability matrix A is said to be regular if limn(Ax)n = L whenever limk xk = L [9].

Let A = (ank) be a nonnegative regular summability matrix and let K be a subset of
positive integer. Then K is said to have A-density δA(K) if the limit

δA(K) := lim
n

∑
k∈K

ank

exists [10, 11, 19]. The sequence x = (xk) is said to be A-statistically convergent to real
number α if for any ε > 0

lim
k

∑
k:|xk−α|≥ε

ank = 0.

In this case, we write stA − lim x = α [18,20]. Note that x is A-statistically convergent to
α if and only if for any ε > 0, δA(Kε) = 0, where Kε := {k ∈ N : |xk − α| ≥ ε}. If A is the
identity matrix I, then I-statistical convergence reduces to ordinary convergence, and, if
A = C1, the Cesáro matrix of order one, then it coincides with statistical convergence.

Throughout the paper, we will consider the following class of functions. Let ρ (x) =
1 + x2,

Bρ

(
R+
)

=
{

f : R+ → R, |f (x)| ≤ Mf ρ (x) , x ≥ 0
}

,

where Mf is a constant depending on f .

Cρ

(
R+
)

=
{

f ∈ Bρ

(
R+
)

; f is continuous on R+
}

,

Ck
ρ

(
R+
)

=
{

f ∈ Cρ

(
R+
)

; limx→∞
f (x)
ρ (x)

= kf

}
,

where kf is a constant depending on f .
It is obvious that Ck

ρ

(
R+) ⊂ Cρ

(
R+) ⊂ Bρ

(
R+) . The space Bρ

(
R+) is a normed linear

space with the norm ∥f∥ρ = supx∈R+
|f(x)|
ρ(x) .

2. Approximation by (G∗
n)

Korovkin theorem was extended to unbounded intervals and a weighted Korovkin type
theorem in a subspace of continuous functions on the real axis R was proved in [21, 22].
Let us recall the weighted form of the Korovkin Theorem ([21,22]).

Lemma 2.1. The positive linear operators Ln, n ≥ 1, act from Cρ
(
R+) to Bρ

(
R+) if and

only if the inequality
|Ln (ρ; x)| ≤ Knρ (x) , x ≥ 0

holds, where Kn is a positive constant.

Theorem 2.2. Let the sequence of linear positive operators (Ln)n≥1 acting from Cρ
(
R+)

to Bρ
(
R+) satisfy the three conditions

lim
n→∞

∥Ln (tv; x) − xv∥ρ = 0, v = 0, 1, 2. (2.1)

Then for any function f ∈ Ck
ρ

(
R+)

lim
n→∞

∥Lnf − f∥ρ = 0.

Lemma 2.3. Let ei (t) = ti, i = 0, 1, 2. For the operators (1.5) , we have
G∗

n (e0; x) = 1, (2.2)

G∗
n (e1; x) = x (2.3)
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and

G∗
n (e2; x) ≤ x (x + 2bnβ) (1 + nβ)

+ x
bn

n
(nβ)2 (1 + nβ) + x (x + 2bnβ) nβ (2.4)

+ x
bn

n
(nβ)3 + x

bn

n
.

Proof. Firstly, we show that G∗
n (ei; x) for i = 0,

G∗
n (e0; x) = (1 + nβ)1−n

n∑
k=0

(
n

k

)
x

bn

(
x

bn
+ kβ

)k−1 (
1 − x

bn

)[
1 − x

bn
+ (n − k) β

]n−k−1
.

If we take u = x
bn

, v = 1 − x
bn

in (1.2) , we get

G∗
n (e0; x) = 1. (2.5)

Morever, taking G∗
n (ei; x) for i = 1, one can have

G∗
n (e1; x) = (1 + nβ)1−n

n∑
k=1

(
n − 1
k − 1

)
bn

x

bn

(
x

bn
+ kβ

)k−1

×
(

1 − x

bn

)[
1 − x

bn
+ (n − k) β

]n−k−1
. (2.6)

If we take k → k + 1 and considering the equality
x
bn

+ β + kβ = 1 + nβ −
[
1 − x

bn
+ (n − k − 1) β

]
, we reach to

G∗
n (e1; x) = (1 + nβ)1−n bn

n−1∑
k=0

(
n − 1

k

)
x

bn

(
x

bn
+ β + kβ

)k−1
(1 + nβ)

×
(

1 − x

bn

)[
1 − x

bn
+ (n − k − 1) β

]n−k−2

− (1 + nβ)1−n bn

n−1∑
k=0

(
n − 1

k

)
x

bn

(
x

bn
+ β + kβ

)k−1

×
(

1 − x

bn

)[
1 − x

bn
+ (n − k − 1) β

]n−k−1
. (2.7)

In order to find the first sum, we replace in the identity (1.2), u = x
bn

+ β, v = 1 − x
bn

, n
by n − 1, we get

(1 + β) (1 + nβ)n−2 =
(

x

bn
+ β

) n−1∑
k=0

(
n − 1

k

)(
x

bn
+ β + kβ

)k−1

×
(

1 − x

bn

)[
1 − x

bn
+ (n − k − 1) β

]n−k−2
. (2.8)

If we use (2.8) in (2.7) , we have

G∗
n (e1; x) = (1 + β) xbn

x + bnβ
− (1 + nβ)1−n bn

n−1∑
k=0

(
n − 1

k

)
x

bn

(
x

bn
+ β + kβ

)k−1

×
(

1 − x

bn

)[
1 − x

bn
+ (n − k − 1) β

]n−k−1
. (2.9)
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On the other hand, if we take u, v and n by x
bn

+ β, 1 − x
bn

and n − 1, respectively in (1.1),
we get

(1 + nβ)n−1 =
n−1∑
k=0

(
n − 1

k

)(
x

bn
+ β

)(
x

bn
+ β + kβ

)k−1

×
[
1 − x

bn
+ (n − k − 1) β

]n−k−1
. (2.10)

By considering (2.10) in (2.9) , so we have

G∗
n (e1; x) = x. (2.11)

Finally, we estimate G∗
n (ei; x) for i = 2,

G∗
n (e2; x) = (1 + nβ)1−n n − 1

n
(bn)2

n−2∑
k=0

(
n − 2

k

)
x

bn

(
x

bn
+ kβ + 2β

)k+1

×
(

1 − x

bn

)[
1 − x

bn
+ (n − k − 2) β

]n−k−3

+ (1 + nβ)1−n bn

n

n∑
k=1

k

n
bn

(
n

k

)
x

bn

(
x

bn
+ kβ

)k−1

×
(

1 − x

bn

)[
1 − x

bn
+ (n − k) β

]n−k−1

= (1 + nβ)1−n n − 1
n

(bn)2 x

bn

n−2∑
k=0

(
n − 2

k

)(
x

bn
+ kβ + 2β

)k+1

×
[
1 − x

bn
+ (n − k − 2) β

]n−k−2

− (1 + nβ)1−n n − 1
n

(bn)2 x

bn

n−2∑
k=0

(
n − 2

k

)
x

bn

(
x

bn
+ kβ + 2β

)k+1

× (n − k − 2) β

[
1 − x

bn
+ (n − k − 2) β

]n−k−3

+ bn

n
G∗

n (e1; x) .

In order to find an upper estimate for the G∗
n (e2; x) , we need to give the following equality,

as in [13]

L

(
j, n,

x

bn
, 1 − x

bn

)
:=

n∑
k=0

(
n

k

)(
x

bn
+ kβ

)k+j−1 (
1 − x

bn
+ (n − k) β

)n−k

, (2.12)

where n ∈ N, 0 ≤ x ≤ bn and bn is a sequence of positive numbers such that limn→∞ bn =
∞, limn→∞

bn
n = 0.

It is clear that the function L
(
j, n, x

bn
, 1 − x

bn

)
satisfies the following reduction formula

L

(
j, n,

x

bn
, 1 − x

bn

)
= x

bn
L

(
j − 1, n,

x

bn
, 1 − x

bn

)
+ nβL

(
j, n − 1,

x

bn
+ β, 1 − x

bn

)
.
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Therefore from (2.12), we get

G∗
n (e2; x) = x

bn
(1 + nβ)1−n n − 1

n
(bn)2 L

(
2, n − 2,

x

bn
+ 2β, 1 − x

bn

)
− x

bn
(1 + nβ)1−n n − 1

n
(bn)2 (n − 2) βL

(
2, n − 3,

x

bn
+ 2β, 1 − x

bn
+ β

)
+ bn

n
G∗

n (e1; x)

= K1 (n, x) + K2 (n, x) + bn

n
x.

From Lemma 1 in [13], we know that

L (2, n, x, y) =
∞∫

0

e−sds

∞∫
0

e−u [x (x + y + nβ + sβ + uβ)n (2.13)

+nβ2u (x + y + nβ + sβ + uβ)n−1
]

du

and so we have,

L

(
2, n − 2,

x

bn
+ 2β, 1 − x

bn

)

= (1 + nβ)n−2
∞∫

0

e−sds

∞∫
0

e−u

[(
x

bn
+ 2β

)(
1 + sβ + uβ

1 + nβ

)n−2
]

du

+ (1 + nβ)n−3
∞∫

0

e−sds

∞∫
0

e−u (n − 2) β2u

(
1 + sβ + uβ

1 + nβ

)n−3
du

= α (n, x) + β (n, x) . (2.14)

Taking into account this inequality (1 + v)n−2 ≤ exp (nv) , we have

α (n, x) ≤ (1 + nβ)n−2
∞∫

0

e−sds

∞∫
0

e−u
[(

x

bn
+ 2β

)
exp

(
n

(
sβ + uβ

1 + nβ

))]
du

=
(

x

bn
+ 2β

)
(1 + nβ)n−2

∞∫
0

e
−s
(

1
1+nβ

)
ds

∞∫
0

e
−u
(

1
1+nβ

)
du

=
(

x

bn
+ 2β

)
(1 + nβ)n−2 (1 + nβ)2 (2.15)

and

β (n, x) ≤ (1 + nβ)n−3
∞∫

0

e−sds

∞∫
0

e−uu (n − 2) β2 exp
(

n

(
sβ + uβ

1 + nβ

))
du

= (n − 2) β2 (1 + nβ)n−3
∞∫

0

e
−s
(

1
1+nβ

)
ds

∞∫
0

ue
−u
(

1
1+nβ

)
du

= (1 + nβ)n (n − 2) β2. (2.16)
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Taking (2.15) and (2.16) in (2.14), we get

K1 (n, x) ≤
(

x

bn
+ 2β

)
x

bn
(1 + nβ)1−n n − 1

n
(bn)2 (1 + nβ)n

+ x

bn
(1 + nβ)1−n n − 1

n
(bn)2 (1 + nβ)n (n − 2) β2

≤ x (x + 2bnβ) (1 + nβ) + x
bn

n
(nβ)2 (1 + nβ) . (2.17)

On the other hand

K2 (n, x) ≤ x

bn
(1 + nβ)1−n n − 1

n
(bn)2 (n − 2) β

× L

(
2, n − 3,

x

bn
+ 2β, 1 − x

bn
+ β

)
(2.18)

and

L

(
2, n − 3,

x

bn
+ 2β, 1 − x

bn
+ β

)

=
∞∫

0

e−sds

∞∫
0

e−u
(

x

bn
+ 2β

)
(1 + nβ + sβ + uβ)n−3 du

+
∞∫

0

e−sds

∞∫
0

e−u (n − 2) β2 (1 + nβ + sβ + uβ)n−4 du

= γ (n, x) + ξ (n, x) . (2.19)
Here

γ (n, x) ≤ (1 + nβ)n−3
(

x

bn
+ 2β

) ∞∫
0

e−sds

∞∫
0

e−u exp
(

n

(
sβ + uβ

1 + nβ

))
du

= (1 + nβ)n−3
(

x

bn
+ 2β

) ∞∫
0

e
−s
(

1
1+nβ

)
ds

∞∫
0

e
−u
(

1
1+nβ

)
du

= (1 + nβ)n−3
(

x

bn
+ 2β

)
(1 + nβ)2 (2.20)

and

ξ (n, x) =
∞∫

0

e−sds

∞∫
0

ue−u (n − 2) β2 (1 + nβ + sβ + uβ)n−4 du

≤ (1 + nβ)n−4 (n − 2) β2 (1 + nβ) (1 + nβ)2 . (2.21)

So, taking (2.19) , (2.20) and (2.21) in (2.18) , we have

K2 (n, x) ≤ x (x + 2bnβ) nβ + x
bn

n
(nβ)3 .

Hence, we can write
G∗

n (e2; x) ≤ x (x + 2bnβ) (1 + nβ)

+ x
bn

n
(nβ)2 (1 + nβ) + x (x + 2bnβ) nβ

+ x
bn

n
(nβ)3 + x

bn

n
. (2.22)

So, we obtain the desired results of Lemma 2.1.
�
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Now, in order to get an approximation result, we consider β as a sequence of positive
real numbers such that β = βn and limn→∞nβn = 0.

We show here that the operators G∗
n (f) satisfy the required conditions for the weighted

Korovkin type theorem.

Theorem 2.4. Suppose that n ∈ N, (bn) and (βn) are sequence of positive numbers such
that limn→∞ bn = ∞, limn→∞ bn/n = 0 and limn→∞nβn = 0. Then for each f ∈ Ck

ρ

(
R+) ,

we have
lim

n→∞
∥G∗

nf − f∥ρ = 0.

Proof. By Lemma 2.2, (G∗
n) are linear operators acting from Cρ

(
R+) to Bρ

(
R+). Indeed,

from (2.5) and (2.22) , we easily obtain that

|G∗
n (ρ; x)| ≤

(
1 + x2

)
Kn.

On the other hand, using (2.5) , (2.11) and (2.22) , one can write

∥G∗
n (e0) − 1∥ρ = 0,

∥G∗
n (e1) − x∥ρ = 0,

and ∥∥∥G∗
n (e2) − x2

∥∥∥
ρ

≤ sup
{∣∣∣∣∣ x2

1 + x2 (2nβn)
∣∣∣∣∣

+
∣∣∣∣ 2x

1 + x2 bnβn (1 + nβn)
∣∣∣∣

+ x

1 + x2
bn

n
(nβn)2 (1 + 2nβn) + x

1 + x2
bn

n

}
,

by the hypothesis, we have
lim

n→∞

∥∥∥G∗
n (e2) − x2

∥∥∥
ρ

= 0.

So the proof is completed. �

In the following theorem, we give approximation results of the operators (G∗
n) with the

help of universal Korovkin-type theorem.

Theorem 2.5. Let (G∗
n) be the operators given by (1.5) . Then, for any

f ∈ C [0, ∞) ∩ E, the following relation holds

lim
n→∞

G∗
n (f ; x) = f (x)

uniformly on each compact subset of [0, ∞) , where

E :=
{

f : x ∈ [0, ∞) ,
f (x)

1 + x2 is convergent as x → ∞
}

.

Proof. Using universal Korovkin-type theorem [5], it is sufficient to prove that the oper-
ators (G∗

n) verify the conditions

lim
n→∞

G∗
n (ei; x) = xi, i = 0, 1, 2,

uniformly on each compact subset of [0, ∞). From (2.2) − (2.4) , we obtain that the
mentioned conditions are supplied. So the proof is completed. �
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3. Rate of convergence
In this section, we compute rate of convergence of the operators (G∗

n) by means of the
modulus of continuity.

Let f ∈ C̃ [0, ∞) such that f is uniformly continuous for any δ > 0. The usual modulus
of continuity for f is defined as

ω (f, δ) = sup
|x−y|≤δ

x,y∈[0,∞)

|f (x) − f (y)| .

For f ∈ C̃ [0, ∞) and any x, y ∈ [0, ∞) , we have

|f (x) − f (y)| ≤ ω (f ; |y − x|) ,

and for any δ > 0

|f (x) − f (y)| ≤ ω (f, δ)
( |x − y|

δ
+ 1

)
. (3.1)

Now, we give the following result.

Theorem 3.1. Suppose that n ∈ N, (bn) and (βn) are sequences of positive numbers
such that limn→∞ bn = ∞, limn→∞ bn/n = 0 and limn→∞nβn = 0. Then for each f ∈
C [0, ∞) ∩ E, we have

|G∗
n (f ; x) − f (x)| ≤ 2ω (f ; δn (x)) ,

where δn (x) = x2 (2nβn) + 2xbnβn (1 + nβn) + x bn
n (nβn)2 (1 + 2nβn) + x bn

n .

Proof. Using the linearity and positivity of G∗
n (f ; x) and then applying (3.1) , we have

|G∗
n (f ; x) − f (x)| ≤ G∗

n (|f (t) − f (x)| ; x)

≤ (1 + nβ)1−n
n∑

k=0
ω (f, δ)

(
1 + |t − x|

δ

)(
n

k

)
x

bn

(
x

bn
+ kβ

)k−1

×
(

1 − x

bn

)[
1 − x

bn
+ (n − k) β

]n−k−1

= ω (f, δ) (1 + nβ)1−n
n∑

k=0

(
1 + |t − x|

δ

)(
n

k

)
x

bn

(
x

bn
+ kβ

)k−1

×
(

1 − x

bn

)[
1 − x

bn
+ (n − k) β

]n−k−1
,

from (2.2) , one has

|G∗
n (f ; x) − f (x)| ≤ ω (f, δ)

{
1 + 1

δ
(1 + nβn)1−n

n∑
k=0

|t − x|
(

n

k

)
x

bn

(
x

bn
+ kβ

)k−1

×
(

1 − x

bn

)[
1 − x

bn
+ (n − k) β

]n−k−1
}

.

By the Cauchy-Schwarz inequality, we reach to

|G∗
n (f ; x) − f (x)| ≤ ω (f, δ)

{
1 + 1

δ

{
G∗

n

(
(t − x)2 ; x

)} 1
2
}

.

On the other hand, using (2.2) , (2.3) and (2.4), we get

G∗
n (φ; x) = G∗

n (e2; x) − 2xG∗
n (e1; x) + x2G∗

n (e0; x)

≤ x2 (2nβn) + 2xbnβn (1 + nβn) + x
bn

n
(nβn)2 (1 + 2nβn) + x

bn

n
.
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Let choose δ = δn (x) := x2 (2nβn)+2xbnβn (1 + nβn)+x bn
n (nβn)2 (1 + 2nβn)+x bn

n , then
we have

|G∗
n (f ; x) − f (x)| ≤ 2ω

(
f,
√

δn (x)
)

.

This concludes the proof. �

4. A-Statistical approximation by (G∗
n)

In this section, we obtain A-statistical convergence of the Cheney-Sharma-Chlodovsky
operators to identity operator on the weighted spaces. Let us recall the weighted Korovkin
type approximation theorem for the A-statistical convergence was given by Duman and
Orhan in [17].

Theorem 4.1. Let A = (ank) be a nonnegative regular summability matrix and let ρ̄1,ρ̄2
weight functions such that ρ1

lim
|x|→∞

ρ1 (x)
ρ2 (x)

= 0. (4.1)

Assume that (Tn)n≥1 is a sequence of positive linear operators from Cρ1 (R) into Bρ2 (R) .
One has

stA − lim
n

∥Tnf − f∥ρ2
= 0,

for all f ∈ Cρ1 (R) if and only if

stA − lim
n

∥TnFv − Fv∥ρ1
= 0, k = 0, 1, 2,

where
Fv (x) = xvρ1 (x)

1 + x2 , v = 0, 1, 2.

Corollary 4.2. [17]. Let A = (ank) be a nonnegative regular summability matrix and let
(Ln) be a sequence of positive linear operators acting from Cρ0

(
R+) into Bρλ

(
R+) , λ > 0

one has
stA − lim

n
∥Lnf − f∥ρλ

= 0, f ∈ Cρ0

(
R+
)

,

if and only if
stA − lim

n
∥Lnei − ei∥ρ0

= 0, i = 0, 1, 2, (4.2)

where ρ0 (x) = 1 + x2 and ρλ (x) = 1 + x2+λ, λ > 0.

Using this theorem the following Korovkin type statistical theorem can be proved for
(G∗

n) :

Theorem 4.3. Let A = (ank) be a nonnegative regular summability matrix and let (bn) and
(βn) be sequences of positive numbers such that stA − lim

n→∞
bn/n = 0 , stA − lim

n→∞
nβn = 0.

Then for each f ∈ Ck
ρ

(
R+) , we have

stA − lim
n→∞

∥G∗
nf − f∥ρλ

= 0,

where ρ0 (x) = 1 + x2 and ρλ (x) = 1 + x2+λ, λ > 0.

Proof. Using Corollary 4.2, it is sufficient to prove that the operators (G∗
n) verify the

conditions given in (4.1) . Indeed, from (2.2) and (2.3) , it is clear that

stA − lim
n

∥G∗
n (e0; .) − e0∥ρ0

= 0

and
stA − lim

n
∥G∗

n (e1; .) − e1∥ρ0
= 0.
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Now using (2.4) , one can have∥∥∥G∗
n (e2) − x2

∥∥∥
ρ0

≤ sup
{∣∣∣∣∣ x2

1 + x2 (2nβn)
∣∣∣∣∣

+
∣∣∣∣ 2x

1 + x2 bnβn (1 + nβn)
∣∣∣∣

+ x

1 + x2
bn

n
(nβn)2 (1 + 2nβn) + x

1 + x2
bn

n

}
,

which implies∥∥∥G∗
n (e2) − x2

∥∥∥
ρ0

≤ 2nβn + 2bnβn (1 + nβn) + bn

n
(nβn)2 (1 + 2nβn) + bn

n
= Kn.

Now, for a given ϵ > 0, let us define the following sets:

M :=
{

k : ∥G∗
n (e2; .) − e2∥ρ0

≥ ϵ
}

,

M1 :=
{

k : 2nβn ≥ ϵ

5

}
,

M2 :=
{

k : 2bnβn (1 + nβn) ≥ ϵ

5

}
,

M3 :=
{ 1

n
(nβ)2 (1 + 2nβ) ≥ ϵ

5

}
,

M4 :=
{

bn

n
(nβn)2 (1 + 2nβn) ≥ ϵ

5

}
,

M5 :=
{

bn

n
≥ ϵ

5

}
.

Then, we see that M ⊆ M1 ∪ M2 ∪ M3 ∪ M4 ∪ M5. Therefore, we get∑
n:∥G∗

n(e2;.)−e2∥ρ0
≥ϵ

ak,n ≤
∑

n∈M1

ak,n +
∑

n∈M2

ak,n +
∑

n∈M3

ak,n +
∑

n∈M4

ak,n +
∑

n∈M5

ak,n (4.3)

and, taking the limit k → ∞ in (4.3) , we have
stA − lim

n
∥G∗

n (e2; .) − e2∥ρ0
= 0.

This proves the theorem. �

Remark 4.4. In Theorem 4.3, we have stronger results than approximation theorems
given in section 2. Indeed, Theorem 4.3 may be useful when nβn and bn/n does not
convergent to zero as n → ∞.

The following example shows that there exist some sequences (βn) and (bn) such that
A-satistical convergence holds but ordinary convergence does not hold for nβn and bn/n.

Example 4.5. Let (bn) and (βn) be the sequences defined by

bn =
{

en2
, if n is a perfect square√

n, otherwise.

and
βn =

{
n, if n is a perfect square
1

n2 , otherwise.
It is easy to see that bn/n and nβn are not convergent but statistically convergent, i.e.,
C1-statistically convergent.
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