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Abstract
In this study, a novel matrix method based on Lucas series and collocation points has
been used to solve nonlinear differential equations with variable delays. The application
of the method converts the nonlinear equation to a matrix equation which corresponds to
a system of nonlinear algebraic equations with unknown Lucas coefficients. The method is
tested on three problems to show that it allows both analytical and approximate solutions.
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1. Introduction
Ordinary differential equations fail to model many physical phenomena when the model

is not only determined by its present state but also by a certain past state. Consequently,
differential equations with time delays are used in modeling of real life situations such as
human body control and multibody control systems, electric circuits, dynamical behaviour
of a system in fluid mechanics, chemical engineering [21], spread of bacteriophage infection
[38], stage structured populations [37], epidemic model in biology and dynamic diseases
model in physiology [35].

Some numerical methods have been developed to solve nonlinear differential equations
(NDE) with proportional and constant delays; among them, one can mention Aboodh
transformation method [5], Adomian decomposition method [12,31], Power series method
[11], Decomposition method [39], Differential transform method [28], Hermite wavelet
based method [36], Variational iteration method [25,29,41], Power and Padé series based
method [24], Spectral method [6], Variable multistep methods [27], Quasilinearization
technique [34], Runge-Kutta-Fehlberg methods [30], Polynomial least squares method [13],
Homotopy perturbation method [35], and First Boubaker polynomial approach [16].

On the other hand, there are few studies about nonlinear differential equations with
variable delays. A study on the existence of positive ω-periodic solutions has been carried
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out by Dorociaková and Olach [19]. Chen et.al. [14] presented new criteria for asymptotic
stability. Asymptotic behaviour of solutions is studied by Dix [18]. Fixed points and
stability are studied [7, 17, 23, 44]. Only a few numerical techniques have been applied to
solve such kind of equations: A new multi-step technique [10], Legendre-Gauss collocation
method [40] and Runge-Kutta method using Hermite interpolation [22].

Numerical solutions of ODEs, fractional differential equations (FDE) and integro-
differential equations are of great interest. Recently, methods based on Lucas, Fibonacci
and Fermat polynomials have been proposed to solve FDEs [1–4,8,42,43]. In these studies,
they derived the operational matrix of fractional derivatives and observed that the numer-
ical solutions have smaller errors than those obtained by using orthogonal polynomials.

In the present study, we consider the NDE with variable delays of the form

2∑
k=0

1∑
j=0

Pkj(t) y(k)(t − τkj(t)) +
1∑

p=0

p∑
q=0

Rpq(t) y(p)(t)y(q)(t) = g(t) (1.1)

or precisely

P00(t)y(t − τ00(t)) + P10(t)y′(t − τ10(t)) + P01(t)y(t − τ01(t)) + P11(t)y′(t − τ11(t))
+ P20(t)y′′(t − τ20(t)) + P21(t)y′′(t − τ21(t)) + R00(t)y2(t) + R10(t)y′(t)y(t)
+ R11(t)(y′(t))2 = g(t)

with the initial conditions y(a) = λ1 and y′(a) = λ2.
Here, Pkj(t), Rpq(t), g(t), and the variable delays τkj(t) are given continuous functions

defined on 0 ≤ a ≤ t ≤ b, where τkj(t) ≥ 0.
We propose a new matrix technique, developed by Sezer et.al. [9, 15, 20, 32], to solve

Eq. (1.1) with the initial conditions, in the finite Lucas series of the form

y(t) ∼= yN (t) =
N∑

n=0
an Ln(t), a ≤ t ≤ b (1.2)

where an, n = 0, 1, ..., N are unknown coefficients and Ln(t), n = 0, 1, ..., N ; N ≥ m
are the Lucas polynomials [26]. These polynomials are constructed from the recurrence
relation

L0(t) = 2, L1(t) = t,
Ln+2(t) = tLn+1(t) + Ln(t), n ≥ 0

The Binet and power form representations of Lucas polynomials can be seen in [2, 3].

2. Operational matrix relations
In this section, we derive the operational matrix relations of Eq. (1.1) and (1.2). For

this purpose, we write the series in Eq. (1.2) as a matrix equation as follows

y(t) ∼= yN (t) = L(t)A = T(t)MA (2.1)

where

L(t) =
[

L0(t) L1(t) · · · LN (t)
]
, T(t) =

[
1 t · · · tN

]
,

A =
[

a0 a1 · · · aN
]T
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and M has the form

MT =



2 0 0 · · · 0

0 1
1

(
1
0

)
0 · · · 0

2
1

(
1
1

)
0 2

2

(
2
0

)
0

0 3
2

(
2
1

)
0 · · · 0

...
...

... . . . ...
(n−1)
( n−1

2 )

(
n−1

2
n−1

2

)
0 n−1

( n+1
2 )

(
n+1

2
n−3

2

)
· · · 0

0 n

( n+1
2 )

(
n+1

2
n−1

2

)
0 · · · n

n

(
n
0

)


when N is odd, and

MT =



2 0 0 · · · 0

0 1
1

(
1
0

)
0 · · · 0

2
1

(
1
1

)
0 2

2

(
2
0

)
0

0 3
2

(
2
1

)
0 · · · 0

...
...

... . . . ...

0 n−1
( n

2 )

( n
2

n−2
2

)
0 · · · 0

n

( n
2 )

( n
2
n
2

)
0 n

( n+2
2 )

(
n+2

2
n−2

2

)
· · · n

n

(
n
0

)


when N is even.

One can write the relation between T(t) and its derivatives T′(t) and T′′(t) as follows

T′(t) = T(t)B and T′′(t) = T(t)B2 (2.2)

where

B =


0 1 0 · · · 0
0 0 2 · · · 0
...

...
... . . . ...

0 0 0 · · · N
0 0 0 · · · 0

 and B0 =


1 0 0 · · · 0
0 1 0 · · · 0
...

...
... . . . ...

0 0 0 1 0
0 0 0 · · · 1

 .

In a similar way, the approximate solution and its derivatives can be expressed by using
Eq. (2.1) and (2.2) as

y(t) ∼= yN (t) = L(t)A = T(t)MA

y′(t) ∼= y′
N (t) = T′(t)MA = T(t)BMA

y′′(t) ∼= y′′
N (t) = T′′(t)MA = T(t)B2MA.

(2.3)
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Replacing t by t − τkj(t) in each equation in (2.3) yields the recurrence relation,

y(t − τkj(t)) ∼= yN (t − τkj(t)) = T(t − τkj(t))MA = T(t)S(−τkj(t))MA

y′(t − τkj(t)) ∼= y′
N (t − τkj(t)) = T(t − τkj(t))BMA = T(t)S(−τkj(t))BMA

y′′(t − τkj(t)) ∼= y′′
N (t − τkj(t)) = T(t − τkj(t))B2MA = T(t)S(−τkj(t))B2MA.

(2.4)

Note that, T(t − τkj(t)) = T(t)S(−τkj(t)) and

S(−τkj(t)) =



(
0
0

)
(−τkj(t))0

(
1
0

)
(−τkj(t))1 · · ·

(
N
0

)
(−τkj(t))N

0
(

1
1

)
(−τkj(t))0 · · ·

(
N
1

)
(−τkj(t))N−1

0 0 · · ·
(

N
2

)
(−τkj(t))N−2

...
...

...
. . .

...

0 0 · · ·
(

N
N

)
(−τkj(t))0


.

In addition, we can obtain the matrix forms of (y(0)(t))2, y(1)(t)y(0)(t) and (y(1)(t))2

which appears in the nonlinear part of Eq. (1.1), by using Eq. (2.3) as

(
y(0)(t)

)2
= T(t)MT(t) M A

y(1)(t) y(0)(t) = T(t) BMT(t) M A

(
y(1)(t)

)2
= T(t)BMT(t) B M A

(2.5)

where

T(t) = diag [T(t)](N+1)×(N+1)2 , M = diag [M](N+1)2×(N+1)2 ,

B = diag [B](N+1)2×(N+1)2 , A =
[

a0A a1A · · · aN A
]T

Substituting the collocation points ( ti = a+(b−a)i/N, i = 0, 1, · · · , N) into Eq. (1.1),
gives the system of equations

2∑
k=0

1∑
j=0

Pkj(ti) y(k)(ti − τkj(ti)) +
1∑

p=0

p∑
q=0

Rpq(ti) y(p)(ti)y(q)(ti) = g(ti),

which can be expressed with the aid of Eqs. (2.4) and (2.5) as

2∑
k=0

1∑
j=0

PkjT SkjBkMA +
1∑

p=0

p∑
q=0

RpqTpqA = G (2.6)
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where
Pkj = diag

[
Pkj(t0) Pkj(t1) · · · Pkj(tN )

]
,

T =


T (t0)
T (t1)

...
T (tN )

 =


1 t0 · · · tN

0
1 t1 · · · tN

1
...

... . . . ...
1 tN · · · tN

N

 ,

Skj =


S(−τkj(t0))
S(−τkj(t1))

...
S(−τkj(tN ))

 , G =


g(t0)
g(t1)

...
g(tN )

 ,

Rpq = diag
[

Rpq(t0) Rpq(t1) · · · Rpq(tN )
]
,

Tpq =


T (t0)BpM T (t0) Bq M
T (t1)BpM T (t1) Bq M

...
T (tN )BpM T (tN ) Bq M

 ; p, q = 0, 1.

The fundamental matrix equation (2.6) can be briefly expressed in the form

WA + ZA = G (2.7)

where

W =
2∑

k=0

1∑
j=0

Pkj TSkjBkM = [wij ] ; i, j = 0, 1, · · · , N

Z =
1∑

p=0

p∑
q=0

RpqTpq = [zmn] ; m = 0, 1, · · · , N, n = 0, 1, · · · , (N + 1)2

G =
[

g(t0) g(t1) · · · g(tN )
]T

.

Also we can write the matrix equation (2.7) in the augmented form as

[W; Z; G] =


w00 w01 · · · w0N ; z00 z01 · · · z0(N+1)2 ; g(t0)
w10 w11 · · · w1N ; z10 z11 · · · z1(N+1)2 ; g(t1)

...
...

. . .
... ;

...
...

. . .
...

. . .
...

wN0 wN1 · · · wNN ; zN0 zN1 · · · zN(N+1)2 ; g(tN )

. (2.8)

Now, let us write the initial conditions y(a) = λ1 and y′(a) = λ2 in the matrix form by
using the relations in Eq. (2.3)

T(a)MA = λ1 and T(a)BMA = λ2

or briefly
U1A + O∗A = λ1 and U2A + O∗A = λ2, (2.9)

where
U1 =

[
u00 u01 · · · u0N

]
= T(a)M,

U2 =
[

u10 u11 · · · u1N
]

= T(a)BM,

O∗ =
[

0 0 · · · 0
]
.
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In order to find the unknown Lucas coefficients an, (n = 0, 1, · · · , N), related to the
approximate solution Eq. (1.2), we replace the row matrices in Eq. (2.9) by any rows of
the augmented matrix in Eq. (2.8). Consequently, we obtain a new augmented matrix[

W̃ ; Z̃ ; G̃
]

related to the matrix equation W̃A + Z̃ A = G̃.

We solve this nonlinear algebraic system using NSolve routine in Mathematica, and
obtain the unknown coefficients. Then, substitute them in Eq. (2.1) to obtain the approx-
imate solution. A detailed theoretical convergence and error analysis of Lucas expansion
of a function is given in [2,3]. Thus, rate of convergence is investigated numerically in this
study.

3. Examples and discussion
In this section, we apply the method to three problems to demonstrate the validity and

accuracy of the method. In the first problem, the application of the method yields the
exact solution. In order to show the efficiency of the method for the next two problems,
we compute the absolute errors for each collocation point ti as follows

EN (ti) = |y(ti) − yN (ti)|.

3.1. Example 1:
Consider the first order nonlinear differential equation with variable delay t2:

{
y′(t) + ty(t − t2) + ty2(t) = 1 + t2, 0 ≤ t ≤ 1
y(0) = 0

The exact solution of the above problem is y(t) = t. We aim to show that the exact
solution could be found using the present method.

First, we approximate the solution y(t) by the Lucas polynomial yN (t) =
∑N

k=0 ak Lk(t),
and formulate the problem in the form of Eq. (1.1). Here,



P10(t) = 1, P11(t) = 0, P00(t) = t, P01(t) = 0,

τ10(t) = 0, τ11(t) = 0, τ00(t) = t2, τ01(t) = 0,

R00(t) = t, R10(t) = 0, R11(t) = 0,

g(t) = 1 − t2

The collocation points are computed as
{

t0 = 0, t1 = 1
2 , t2 = 1

}
by taking N = 2.

Then, we write the fundamental matrix equation of the given problem as[
P10T S10B1M + P00T S00B0M

]
︸ ︷︷ ︸

W

A + R00T00︸ ︷︷ ︸
Z

A = G.

where
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P10 =

 1 0 2
0 1 0
0 0 1

 , T =

 1 0 0 0 0 0 0 0 0
0 0 0 1 1

2
1
4 0 0 0

0 0 0 0 0 0 1 1 1

 ,

S10 =



1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1


, B1 =

 0 1 0
0 0 2
0 0 0

 , M =

 2 0 2
0 1 0
0 0 1

 ,

P00 =

 0 0 0
0 1

2 0
0 0 1

 , S00 =



1 0 0
0 1 0
0 0 1
0 − 1

21
1
16

0 1 −1
2

0 0 1
1 −1 1
0 1 −1
0 0 1


, R00 =

 0 0 0
0 1

2 0
0 0 1

 ,

T00 =

 4 0 4 0 0 0 4 2 6
4 0 4 1 1

4
9
8

9
2

9
4

27
4

4 0 4 2 1
2

9
4 6 3 9

 , G =

 1
5
4
2

 .

Now, we can calculate W and Z

W = P10T S10B1M + P00T S00B0M =

 0 1 0
1 1.125 2.03125
2 1 4

 ,

Z = R00T00 =

 0 0 0 0 0 0 0 0 0
2 0 2 1

2
1
8

9
16

9
4

9
8

27
8

4 0 4 2 1
2

9
4 6 3 9

 .

Hence the augmented matrix [W; Z; G] can be written as


0 1 0 ; 0 0 0 0 0 0 0 0 0 ; 1

1 1.125 2.03125 ; 2 0 2 1
2

1
8

9
16

9
4

9
8

27
8 ; 5

4

2 1 4 ; 4 0 4 2 1
2

9
4 6 3 9 ; 2

 .

The initial condition matrix is calculated as

U =
[

2 0 2 ; 0 0 0 0 0 0 0 0 0 ; 0
]
.

Replacing this row by the third row of the augmented matrix gives
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
0 1 0 ; 0 0 0 0 0 0 0 0 0 ; 1

1 1.125 2.03125 ; 2 0 2 1
2

1
8

9
16

9
4

9
8

27
8 ; 5

4

2 0 2 ; 0 0 0 0 0 0 0 0 0 ; 0

 .

Once we solve this system, we get the unknown coefficients as A =
[

0 1 0
]T ,

and hence we obtain the analytical solution

y(t) = L(t)A =
[

2 t t2 + 2
]  0

1
0

 = t.

The present method is said to be accurate and efficient.

3.2. Example 2:
The next example is a second order NDE with variable delays {t2, − t

2}{
y′′(t) + y′(t − t2) − t2 y(t + t

2) + (y′(t))2 − y′(t)y(t) = et + et−t2 − t2e3t/2

y(0) = y′(0) = 1, t ∈ [0, 1]

The analytical solution of this problem is y(t) = et. We solve the problem for several
values of N . Table 1 shows the absolute errors for N = 4, 5, 7 and 9. One can see that
even N = 4 yields an accuracy up to four decimal places. Increasing N decreases the
absolute error for each collocation point.

Table 1. Absolute errors for several values of N

ti E4(ti) E5(ti) E7(ti) E9(ti)
0.2 5.12e − 06 2.05e − 06 2.79e − 09 1.86e − 12
0.4 2.44e − 05 6.22e − 06 5.53e − 09 3.56e − 12
0.6 1.77e − 04 1.37e − 05 8.75e − 09 4.95e − 12
0.8 2.08e − 04 1.85e − 05 4.84e − 09 8.55e − 11
1.0 9.90e − 04 9.09e − 05 5.35e − 07 4.78e − 09

Table 2 presents the convergence rate calculated by, [33]

RN = log
[ ||y(t) − yN (t)||

||y(t) − yN+1(t)||

] 1
log 2

, t ∈ [a, b].

We observe a cubic convergence for several values of N at the point t = 1.

Table 2. Convergence rate of the present method at t = 1.

N 4 5 6 7 8
RN 3.4446 3.5060 3.9020 3.7218 3.0843

Figure 1 presents the analytical and approximate solution when N = 4. One can see
that the approximate solution agrees very well with the exact solution.
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Exact solution ◆ y4(t)

Figure 1. Exact solution and approximate solution for N = 4.

3.3. Example 3:
For the third example, we consider a second order NDE with variable delay t − t3/8,

[10] {
y′′(t) + 2y(t) − y2(t) + y( t3

8 ) = sin t − sin2 t + sin (t3/8), 0 ≤ t ≤ 1
y(0) = 0, y′(0) = 1

The analytical solution of this problem is y(t) = sin t. Figure 2 presents the the exact
and approximate solutions for N = 9, 10 and 11. One can see that the numerical solution
with N = 11 agrees well with the exact solution.
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● Exact solution ▲ y11(t) y10(t) ◆ y9(t)

Figure 2. Comparison of analytical and numerical solutions for several values of N .

4. Conclusion
In this paper, nonlinear differential equations with variable delays are solved by Lucas

polynomial approach. The main advantage of the method is to convert the nonlinear
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equations to a system of nonlinear algebraic equations. The efficiency of the proposed
method is tested on three problems. The results are presented in terms of absolute errors
calculated at each collocation point. It is observed that the method enables high accuracy
numerical solutions or even analytical solution. Thus, we can say that this is an effective
and convenient approach to solve the indicated type of problems.
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