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Abstract: In this paper we investigate some properties of the Hyperharmonic function
defined by

H(w)
z =

(z)w
zΓ(w)

(Ψ(z+w)−Ψ(w)) , w, z+w ∈ C\
(
Z−∪{0}

)
.

Using this definition we introduce harmonic numbers with complex index and we give
some series of these numbers. Also formulas for the calculation of harmonic numbers
with rational index are obtained. For the simplicity of differentiation we reorganized
representation of H(w)

z . With the help of this new form we get higher order derivatives
of the Hyperharmonic function more easily. Besides these, owing to the fact that the
Hyperharmonic function is composed of some important functions, we interested in
properties and connections of it. We get connections between the Hyperharmonic function
and trigonometric functions. Infinite product representation, integral representation and
differentiation identities of this function are also obtained.

Hiperharmonik Fonksiyon Üzerine

Anahtar Kelimeler
Harmonik sayılar,
Hiperharmonik sayılar,
Gamma fonksiyonu,
Digamma fonksiyonu,
Beta fonksiyonu

Özet: Bu çalışmada

H(w)
z =

(z)w
zΓ(w)

(Ψ(z+w)−Ψ(w)) , w, z+w ∈ C\
(
Z−∪{0}

)
eşitliği ile tanımlanan Hiperharmonik fonksiyonun bazı özellikleri araştırılmıştır. Bu
tanımdan faydalanarak karmaşık indeksli harmonik sayılar tanıtılmış ve bu sayıların bazı
serileri verilmiştir. Ayrıca rasyonel indeksli harmonik sayıların hesaplanması için for-
müller elde edilmiştir. H(w)

z fonksiyonunun türevlerinin daha kolay hesaplanabilmesi
için, mevcut gösterim yeniden düzenlenmiştir. Bu yeni gösterim yardımıyla Hiperhar-
monik fonksiyonun yüksek mertebeli türevleri daha kolay hesaplanabilmektedir. Bunların
yanı sıra, Hiperharmonik fonksiyonun özel bazı fonksiyonların birleşimi biçiminde ifade
edilebildiği gerçeğinden hareketle, bazı özellikleri ve bağlantıları çalışılmıştır. Hiperhar-
monik fonksiyonun trigonometrik fonksiyonlarla ilişkileri elde edilmiş, sonsuz çarpım
gösterimi, integral gösterimi ve bazı türevsel özdeşlikleri verilmiştir.

1. Introduction

The n-th harmonic number Hn is the n-th partial sum of
the harmonic series:

Hn =
n

∑
k=1

1
k
.

J.H. Conway and R.K. Guy have defined the notion of
hyperharmonic numbers ([4]). H(0)

n := 1
n , and for all r∈Z+

let

H(r)
n =

n

∑
k=1

H(r−1)
k (1)

be the n-th hyperharmonic number of order r. These num-
bers can be expressed by the binomial coefficients and the
ordinary harmonic numbers ([4, 11]):

H(r)
n =

(
n+ r−1

r−1

)
(Hn+r−1−Hr−1). (2)

Hyperharmonic numbers have been studied in a variety of
contexts, including in Euler sums (see [5–7, 11, 14, 15, 17–
19]).
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A. Dil / Hyperharmonic Function

In [11] Mező and Dil generalized (2) as:(
k+ r−1

k

)
H(k+r)

n

=

(
n+ k

n

)
H(r)

n+k−
(

n+ k+ r−1
n

)
H(r)

k . (3)

The representation in (2) is quite interesting because the
right-hand side can be written in terms of continuous func-
tion instead of discrete variables n and r. Starting with
this point, we define Hyperharmonic function H(w)

z where
w,z + w ∈ C\(Z−∪{0}) . In this paper we investigate
properties of this function and introduce relations in which
it plays particular roles.

2. Material and Method

The polygamma function of order m is a meromorphic
function on C and defined as the (m+1)− th derivative of
the logarithm of the usual gamma function Γ(z) as:

Ψ
(m) (z) :=

dm

dzm Ψ(z) =
dm+1

dzm+1 lnΓ(z) .

Here

Ψ
(0) (z) = Ψ(z) =

Γ′ (z)
Γ(z)

where Ψ(z) is the digamma function. For all m ≥ 0 the
function Ψ(m) (z) is holomorphic on C\(Z−∪{0}) ([13]).
With the help of Γ(z) and Ψ(z) we can state the hyperhar-
monic number of order r as:

H(r)
n =

(n)r
nΓ(r)

(Ψ(n+ r)−Ψ(r)) (4)

where (x)n = x(x+1) · · ·(x+n−1) = Γ(x+n)
Γ(x) is the

Pochhammer symbol.
Considering (4), Mező [10] defined the Hyperharmonic
function as:

H(w)
z =

(z)w
zΓ(w)

(Ψ(z+w)−Ψ(w)) , (5)

where w,z + w ∈ C\(Z−∪{0}). Using this definition,
Mező computed the first derivatives of H(w)

z respect to
variables z and w. For the simplicity of differentiation we
reorganized representation of H(w)

z . Using this new form
we get the higher derivatives of H(w)

z more easily. We also
consider the special case of H(w)

z as H(1)
z := Hz, and we

call Hz as a harmonic numbers with complex index. Some
representations of Hz in terms of infinite series are given.
Also formulas for the calculation of harmonic numbers
with rational index are obtained. Besides these, owing to
the fact that the Hyperharmonic function is a compose of
some important functions, we interested in investigating
properties and connections of it.

3. Results

3.1. Harmonic numbers with complex index

In this section we consider two special cases of the Hyper-
harmonic function H(w)

z ; these are z = 1 and w = 1. The

case z = 1 is not interesting because we get

H(w)
1 := H(w) =

(1)w
Γ(w)

(Ψ(1+w)−Ψ(w)) .

By considering the well-known identity ([16])

Ψ(1+w) = Ψ(w)+
1
w

(6)

it turns out that

H(w) =
(1)w

wΓ(w)
= 1 (7)

for any w ∈ C\(Z−∪{0}) .
On the other hand setting w = 1 in (5) we have

H(1)
z := Hz =

(z)1
zΓ(1)

(Ψ(z+1)−Ψ(1))

from which it follows that

Hz = Ψ(z+1)+ γ, (8)

where γ is the Euler-Mascheroni constant. So we extended
the definition of harmonic numbers; more precisely we
have "complex indexed harmonic numbers".
With the help of (8) and the following fractional values of
Ψ function (see [1])

Ψ

(
1
2

)
=−γ−2ln2

and

Ψ

(
1
2
±n
)
=−γ−2ln2+2

n−1

∑
k=0

1
2k+1

we get "fractional indexed harmonic numbers":

H− 1
2
=−2ln2

and for n≥ 1

H− 1
2±n =−2ln2+2

n−1

∑
k=0

1
2k+1

.

For instance:

H 1
2
= H− 3

2
=−2ln2+2,

H 3
2
= H− 5

2
=−2ln2+

8
3
.

Actually we can give a more general result than above. Let
p and q be positive integers such that 0 < p < q, Gauss
proved the following equation,

Ψ

(
p
q

)
=−γ− π

2
cot

π p
q
− lnq

+2
b q

2c
∑
n=1

cos
2πnp

q
ln
(

2sin
πn
q

)
. (9)

Here
⌊ q

2

⌋
denotes the greatest integer in q

2 . In the light of
this equation one can calculate harmonic numbers with
negative rational index as:

H p
q−1 =−

π

2
cot

π p
q
−lnq+2

b q
2c

∑
n=1

cos
2πnp

q
ln
(

2sin
πn
q

)
,
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A. Dil / Hyperharmonic Function

where −1 < p
q −1 < 0. For instance

H− 1
3
=−π

√
3

6
− 3

2
ln3.

3.1.1. Some series expansions of Hz

Equation (8) is important because using series expansions
of the digamma function Ψ(z) we get series expansions
for Hz.
For the function Ψ(z+1) let us consider the following
well-known series expansion,

Ψ(z+1) =−γ +
∞

∑
k=1

z
k (k+ z)

, z ∈ C\Z−,

(see [1]) and Taylor series

Ψ(z+1) =−γ−
∞

∑
k=1

ζ (k+1)(−z)k , |z|< 1,

([2]) and Newton series

Ψ(s+1) =−γ−
∞

∑
k=1

(−1)k

k

(
s
k

)
.

Then immediately we have

Hz =
∞

∑
k=1

z
k (k+ z)

, z ∈ C\Z−, (10)

Hz =−
∞

∑
k=1

ζ (k+1)(−z)k , |z|< 1,

and

Hs =
∞

∑
k=1

(−1)k+1

k

(
s
k

)
respectively.

3.2. Differentiation identities of the Hyperharmonic
function

In [10] Mező gave the first derivative of H(w)
z with respect

to the variables w and z. In this section we consider the
higher order derivatives of H(w)

z .

Derivatives with respect to the variable w To obtain
higher order derivatives we write another representation of
H(w)

z . Since

(z)w =
Γ(z+w)

Γ(z)
(11)

equation (5) yields

H(w)
z =

Γ(z+w)
zΓ(z)Γ(w)

(Ψ(z+w)−Ψ(w)) (12)

which can equally well be written

H(w)
z =

(w)z

Γ(z+1)
(Ψ(z+w)−Ψ(w)) . (13)

Equation (13) is more suitable form of H(w)
z to obtain

derivatives with respect to w.

Let us note that

d
dw

(w)z = (w)z (Ψ(z+w)−Ψ(w)) . (14)

In the light of (14) we have

dn+1

dwn+1 (w)z = Γ(z+1)
dn

dwn H(w)
z (15)

Therefore to obtain the higher order derivatives of H(w)
z we

can consider the higher order derivatives of (w)z. For the
sake of simplicity let us denote

Φ(z,w) = Ψ(z+w)−Ψ(w) .

As an example here we give the first few higher order
derivatives of (w)z using the abbreviations Φ(z,w) = Φw;

d
dw

(w)z = (w)z Φw

d2

dw2 (w)z = (w)z

{
Φ

2
w +Φ

(′)
w

}
d3

dw3 (w)z = (w)z

{
Φ

3
w +3Φ

(′)
w Φw +Φ

(′′)
w

}
d4

dw4 (w)z = (w)z

{
Φ

4
w +6Φ

2
wΦ

(′)
w +4ΦwΦ

(′′)
w

+Φ
(′′′)
w +3

(
Φ

(′)
w

)2
}

d5

dw5 (w)z = (w)z

{
Φ

5
w +10Φ

3
wΦ

(′)
w +10Φ

2
wΦ

(′′)
w

+5ΦwΦ
(′′′)
w +Φ

(ıv)
w +10Φ

′
wΦ
′′
w +15Φw

(
Φ
′
w
)2
}

d6

dw6 (w)z = (w)z

{
Φ

6
w +15Φ

4
wΦ

(′)
w +20Φ

3
wΦ

(′′)
w

+15Φ
2
wΦ

(′′′)
w +6ΦwΦ

(ıv)
w +Φ

(v)
w

+45Φ
2
w

(
Φ

(′)
w

)2
+60ΦwΦ

(′)
w Φ

(′′)
w +15Φ

(′)
w Φ

(′′′)
w

+15
(
Φ
′
w
)3

+10
(

Φ
(′′)
w

)2
}

...

Using these information, for instance we have

d
dw

H(w)
z = H(w)

z (Ψ(z+w)−Ψ(w))

+
(z)w

zΓ(w)

(
Ψ
′ (z+w)−Ψ

′ (w)
)
. (16)

Remark 3.1. d
dz H(w)

z is also given in [10] but there is a
misprint.

Derivatives with respect to the variable z Let us make
a preparation to get the higher order derivatives of H(w)

z
with respect to variable z.
Since

(z)w
z

= (z+1)w−1

we have

H(w)
z =

(z+1)w−1

Γ(w)
(Ψ(z+w)−Ψ(w)) . (17)
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A. Dil / Hyperharmonic Function

Now we are ready to obtain the derivatives of H(w)
z with

respect to z. For instance we have

d
dz

H(w)
z =

1
Γ(w)

d
dz

[
(z+1)w−1 (Ψ(z+w)−Ψ(w))

]
.

(18)
Also we know that

d
dw

(w)z = (w)z Φw

so we get

d
dz

H(w)
z = H(w)

z (Ψ(z+w)−Ψ(z+1))

+
(z)w

zΓ(w)
Ψ
′ (z+w) . (19)

Remark 3.2. Equation (19) also given in [10]. Considering
(17) together with the derivatives of (w)z given before we

obtain the higher order derivatives of H(w)
z more easily.

3.3. Relationship with some important special func-
tions

Having regard to importance of the trigonometric functions
we firstly investigate connections between the trigonomet-
ric functions and the Hyperharmonic function. To this
aim we need to remind some well-known facts about the
Gamma and the Digamma functions. One of facts is the
Legendre’s duplication formula for the gamma function
([16])

Γ(2z) = π
− 1

2 22z−1
Γ(z)Γ

(
z+

1
2

)
. (20)

Also the Digamma function satisfies the following reflec-
tion formula ([2]),

Ψ(z)−Ψ(1− z) =−π cotπz. (21)

The following lemma shows a connection with the trigono-
metric functions.

Proposition 3.3. For the non-integer values of z we have,

H(1−z)
2z−1 =

−π
3
2 cotπz

22z−1Γ
(
z+ 1

2

)
Γ(1− z)

. (22)

Proof. Replacing in equation (12) w by 1− z and z by
2z−1, we obtain

H(1−z)
2z−1 =

Γ(z)
Γ(2z)Γ(1− z)

(Ψ(z)−Ψ(1− z))

which combines with the functional relation (21) to give

H(1−z)
2z−1 =

Γ(z)
Γ(2z)Γ(1− z)

(−π cotπz) .

Using the Legendre’s duplication formula (20) for Γ(2z)
we obtain desired equation.

Remark 3.4. As a result of Proposition 3.3, it can be seen

easily that H
( 1

2−n)
2n = 0 for all positive integer n.

We have one more relation with the trigonometric func-
tions. For this we remind the following reflection formula
for the gamma function ([2]):

Γ(z)Γ(1− z) =
π

sinπz
. (23)

Proposition 3.5. For the non-integer values of z we have,

H(1−z)
z =− sinπz

πz
(Ψ(z)+π cotπz+ γ) .

Proof. In (12) replacing w with 1− z we have

H(1−z)
z =

1
zΓ(z)Γ(1− z)

(−γ−Ψ(1− z)) . (24)

Here using equation (21) and (23) we complete proof.
Now as a result we give an infinite product representation
of the Hyperharmonic function, for this recall that :

1
Γ(z)Γ(1− z)

= z
∞

∏
n=1

(
1− z2

n2

)
(25)

(see [3]).

Corollary 3.6. We have the infinite product

H(1−z)
z =−(Ψ(z)+π cotπz+ γ)

∞

∏
n=1

(
1− z2

n2

)
. (26)

As an application of this formula let us consider the case
when z approaches to an m ∈ Z+. Then we write

H(1−m)
m =

∞

∏
n=1
n 6=m

(
1− m2

n2

)

× lim
z→m
−(Ψ(z)+π cotπz+ γ)

(
1− z2

m2

)
.

=
2
m

∞

∏
n=1
n 6=m

(
1− m2

n2

)
.

For example we have

H(0)
1 = 1 = 2

∞

∏
n=2

(
1− 1

n2

)
and

H(−1)
2 =−3

∞

∏
n=3

(
1− 4

n2

)
.

Proposition 3.7. The following relation holds:

H
( p−1

q )

1
q

=
q2Γ

(
p
q

)
Γ

(
1
q

)
Γ

(
p−1

q

) ∞

∑
n=2

∞

∑
k=0

1
(p+ kq)n−1

where p,q /∈ Z and p
q /∈ Z−.

Proof. Replacing in equation (12) z by 1
q and w by p−1

q ,
we obtain

H
( p−1

q )

1
q

=
Γ

(
p
q

)
1
q Γ

(
1
q

)
Γ

(
p−1

q

) (Ψ

(
p
q

)
−Ψ

(
p−1

q

))
.
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Also we remind the following known equation for the
Digamma function ([8])

Ψ

(
p
q

)
−Ψ

(
p−1

q

)
= q

∞

∑
n=2

∞

∑
k=0

1
(p+ kq)n−1

In view of these two equations we get the desired result.

We continue this section to obtaining relations of H(w)
z with

two other important functions; B(z,w) and β (z). The func-
tion B(z,w) is usual Beta function which has the following
connections with the Gamma function:

B(z,w) =
Γ(z)Γ(w)
Γ(z+w)

. (27)

And the function β (z) is defined as ([8]):

β (z) = Ψ

(
z+1

2

)
−Ψ

( z
2

)
. (28)

It is time to present the Hypeharmonic function in terms
of β and Γ functions.

Proposition 3.8. We have

H(z)
1
2

= 22−2z Γ(2z)
Γ2 (z)

β (2z) .

Proof. Replacing in equation (12) z by 1
2 and w by z

2 , and
considering (28) we obtain

H
( z

2 )
1
2

=
Γ
( z+1

2

)
Γ
( 1

2

)
Γ
( z

2

)2β (z) . (29)

Besides, from the Legendre’s duplication formula (20) we
have

Γ

(
z+1

2

)
= 21−z√

π
Γ(z)
Γ
( z

2

)
which combines with (29) to give desired result.
The following proposition shows the relation between the
Hyperharmonic function with the digamma and the Beta
function.

Proposition 3.9. We have

H(w)
z =

(Ψ(z+w)−Ψ(w))
zB(z,w)

. (30)

Proof. Combining (27) and (12) we have (30).
Equation (30) connects the Hyperharmonic function with
the well-known the Beta function. This equation enables
us to investigate some properties of the Hyperharmonic
function considering properties of the Digamma and the
Beta function. Also equation (30) is convenient to obtain
special values of the Hyperharmonic function using infor-
mation about Ψ(z) and B(z,w) functions. For example,

H
( 1

2 )
1
2

=
4ln2

π
,

H
( 1

3 )
2
3

=
27ln3
8π
√

3
+

3
8
,

and
H

( 1
4 )

3
4

=
4ln2
π
√

2
+

2
3
√

2
.

Using equation (30) we obtain more general relation than
these special values:

Corollary 3.10. We have

H(z)
1−z =

sinπz
π (z−1)

Hz−1.

Proof. Replacing z by 1− z and w by z in (30) , we obtain

H(z)
1−z =

Ψ(z)+ γ

(z−1)B(z,1− z)
.

Remembering, B(z,1− z) = π

sinπz ([1]) and also with the
help of equation (8) we get desired result.
Yet another benefits of the Proposition 3.9 is obtaining
some relations about the Hyperharmonic function consid-
ering properties of B(z,w) function. The following propo-
sition shows a symmetry between H(w)

z and H(z)
w .

Corollary 3.11. The Hyperharmonic function has the fol-
lowing symmetric relation:

H(w)
z

H(z)
w

=
w
z

(
Ψ(z+w)−Ψ(w)
Ψ(z+w)−Ψ(z)

)
. (31)

Proof. (30) can be written as

B(z,w) =
(Ψ(z+w)−Ψ(w))

zH(w)
z

. (32)

Also we know from (27) that B(z,w) is a symmetric func-
tion i.e.

B(z,w) = B(w,z). (33)

In view of equation (32), equation (33) shows validity of
(31).
In the paper [11] authors gave a recurrence relation for the
Hyperharmonic function. Here we obtain more general
recurrence than (3).

Corollary 3.12. The following recurrence holds for H(w)
z

H(w+1)
z = H(w)

z
(z+w)(Ψ(z+w+1)−Ψ(w+1))

w(Ψ(z+w)−Ψ(w))
.

(34)

Proof. Under the condition Re(z)> 0 and Re(w)> 0 the
Beta function has the following recurrence:

B(z,w+1) =
w

z+w
B(z,w)

which combines with (32) to give the desired result.
At the end of this section we give a relation between H(w)

z
and the higher order Bernoulli polynomials given by the
identity:

tnext

(et −1)n =
∞

∑
v=0

B(n)
v (x)

tv

v!
.

Note that higher order Bernoulli polynomials satisfy the
following relation (see [12]):

B(m+1)
v (x) =

v!
m!

dm−v

dxm−v [(x−1)(x−2) . . .(x−m)] . (35)

Proposition 3.13. Let m and v be positive integers such
that m > v+1, then we have

B(m+1)
v (1− x) = (−1)m+1 v!

dm−v−1

dxm−v−1 H(x)
m .
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Proof. Considering (35) we see

B(m+1)
v (1− x) = (−1)m+1 v!

m!
dm−v

dxm−v (x)m .

In the light of (15) we get the result.

3.4. Integral representations of the Hyperharmonic
function

For the real variable x, considering the series representation
(10), we can state γ by a definite integral of Hx as∫ 1

0
Hxdx = γ

and also more generally∫ n

0
Hxdx = nγ + ln(n!) .

Besides, in the light of (8) and the following well-known
equation (see [8])∫ 1

0

1− xa

1− x
xb−1dx = Ψ(a+b)−Ψ(b) where a,b ∈ R

we get the following integral representation of H(b)
a as

H(b)
a =

(a)b
aΓ(b)

∫ 1

0

1− xa

1− x
xb−1dx.

As a result of this we have

Ha =
∫ 1

0

1− xa

1− x
dx.

In [9] authors proved that∫ 1

0
xb−1 (1− x)a−1 lnxdx=

Γ(a)Γ(b)
Γ(a+b)

(Ψ(b)−Ψ(a+b))

where a,b ∈ R+. Using this equation with (12) we have

H(b)
a =−1

a

(
Γ(a+b)

Γ(a)Γ(b)

)2 ∫ 1

0
xb−1 (1− x)a−1 lnxdx.

Setting b = 1 we get

Ha =−a
∫ 1

0
(1− x)a−1 lnxdx.

Now we give another integral relation for H(y)
n :

Proposition 3.14. Let n ∈ Z+ and y ∈ R\(Z−∪{0}) .
Then ∫

H(y)
n dy =

(y)n
n!

Proof. Considering (6) we write

Ψ(y+n)−Ψ(y) =
n−1

∑
k=0

1
y+ k

which combines with (13) to give

H(y)
n =

(y)n
n!

n−1

∑
k=0

1
y+ k

.

The above equation can be written as

H(y)
n =

d
dy

(y)n
n!

Hence the formula has been established.
The Digamma function has the following integral represen-
tation ([1]):

Ψ(z) =−γ +
∫

∞

0

e−t − e−zt

1− e−t dt (36)

Owing to this representation of the Ψ we have the follow-
ing result.

Proposition 3.15. We have

H(w)
z =

(w)z

Γ(z+1)

∫
∞

0

e−wt (1− e−zt)

1− e−t dt. (37)

Proof. Let us write the integral representations of Ψ(z+w)
and Ψ(w) via equation (36). Hence we get

Ψ(z+w)−Ψ(w) =
∫

∞

0

e−wt (1− e−zt)

1− e−t dt

which implies (37) after multiplying both sides of this
equation by (w)z

Γ(z+1) .

4. Discussion and Conclusion

So far we present some formulas to calculate special values
of H(w)

z . Actually more general results can be obtained
with the help of (9). In the light of (9) and (13) one can cal-
culate all rational upper and lower indexed hyperharmonic
numbers as:

H
(

p2
q2

)
p1
q1

=

(
p2
q2

)
z

Γ

(
p1
q1

+1
) (Ψ

(
p1

q1
+

p2

q2

)
−Ψ

(
p2

q2

))
.

In our work we present a way to obtain higher derivatives
of the Hyperharmonic function with respect to the variables
z and w. Closed formulas for these derivatives are open
problems; they might be quite complicated.
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[11] Mező, I., Dil, A. 2010. Hyperharmonic Series Involv-

ing Hurwitz Zeta Function. J. Number Theory, 130,
2 : 360-369.

[12] Milne-Thomson, L. M. 1965. The Calculus of Finite
Differences. MacMillan & Co., 558s.

[13] Rainville, E. D. 1960. Special Functions. MacMillan,
New York, 365s.

[14] Sofo, A., Srivastava, H. M. 2015. A Family of Shifted
Harmonic Sums. Ramanujan J. 37, 89-108.

[15] Sofo, A. 2014. Shifted Harmonic Sums of Order Two.
Commun. Korean Math. Soc. 29 (2), 239-255.

[16] Wang, Z. X., Guo, D. R. 1989. Special Functions,
World Scientific, 720s.

[17] Xu, C. 2018. Euler Sums of Generalized Hyperhar-
monic Numbers. J. Korean Math. Soc. 55, No. 5,
1207-1220.

[18] Xu, C. 2018. Computation and Theory of Euler Sums
of Generalized Hyperharmonic Numbers. C. R. Acad.
Sci. Paris, Ser. I 356, 243-252.

[19] Xu, C. 2017. Identities for the Shifted Harmonic
Numbers and Binomial Coeffcients. Filomat 31:19,
6071-6086.

193


	Introduction
	Material and Method
	Results
	Harmonic numbers with complex index
	Some series expansions of Hz

	Differentiation identities of the Hyperharmonic function
	Relationship with some important special functions
	Integral representations of the Hyperharmonic function

	Discussion and Conclusion

