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Abstract

In this paper, we consider a class of fourth order elliptic equations of Kirchhoff type with variable exponent{
∆2
p(x)u−M

(∫
Ω

1
p(x) |∇u|

p(x) dx
)

∆p(x)u = λf(x, u) in Ω,

u = ∆u = 0 on ∂Ω,

where Ω ⊂ RN , N ≥ 3, is a smooth bounded domain, M(t) = a + btκ, a, κ > 0, b ≥ 0, λ is a positive
parameter, ∆2

p(x)u = ∆(|∆u|p(x)−2∆u) is the operator of fourth order called the p(x)-biharmonic operator,
∆p(x)u = div

(
|∇u|p(x)−2∇u

)
is the p(x)-Laplacian, p : Ω → R is a log-Hölder continuous function and

f : Ω × R → R is a continuous function satisfying some certain conditions. Using Ekeland’s variational
principle combined with variational techniques, an existence result is established in an appropriate function
space.

Keywords: Fourth order elliptic equations; Kirchhoff type problems; Variable exponents; Ekeland’s
variational principle.
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1. Introduction

In this paper, we consider a class of fourth order elliptic equations of Kirchhoff type with variable exponent{
∆2
p(x)u−M

(∫
Ω

1
p(x) |∇u|

p(x) dx
)

∆p(x)u = λf(x, u) in Ω,

u = ∆u = 0 on ∂Ω,
(1)
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where Ω ⊂ RN , N ≥ 3, is a smooth bounded domain, M(t) = a + btκ, a, κ > 0, b ≥ 0, λ is a positive
parameter, ∆2

p(x)u = ∆
(
|∆u|p(x)−2∆u

)
is the operator of fourth order called the p(x)-biharmonic operator,

∆p(x)u = div
(
|∇u|p(x)−2∇u

)
is the p(x)-Laplacian, the exponent p : Ω → R is log-Hölder continuous, that

is, there exists c > 0 such that |p(x) − p(y)| ≤ − c
log |x−y| for all x, y ∈ Ω with 0 < |x − y| ≤ 1

2 and
1 < p− := infx∈Ω p(x) ≤ p+ := supx∈Ω p(x) < N

2 , f : Ω× R→ R is a continuous function.
We point out that if p(.) is a constant then problem (1) has been studied by many authors in recent

years, we refer to some interesting papers [3, 8, 15, 19, 23, 27, 28, 29]. In [29], Wang and An considered the
following fourth-order elliptic equation{

∆2u−M
(∫

Ω |∇u|
2 dx

)
∆u = f(x, u) in Ω,

u = ∆u = 0 on ∂Ω,
(2)

where Ω ⊂ RN , N ≥ 1, is a smooth bounded domain, f : Ω× R→ R and M : [0,+∞)→ R are continuous
functions. This problem is related to the stationary analog of the evolution equation of Kirchhoff type

utt + ∆2u−M
(∫

Ω
|∇u|2 dx

)
∆u = f(x, t), (3)

where ∆2 is the biharmonic operator, ∇u denotes the spatial gradient of u, see [5] for the meaning of the
problem from the point of view of physics and engineering. By assuming that M is bounded on [0,+∞)
and the nonlinear term f satisfies the Ambrosetti-Rabinowitz type condition, Wang et al. obtained in [29]
at least one nontrivial solution for problem (2) using the mountain pass theorem. Moreover, the authors
also showed the existence at least two solutions in the case when f is asymptotically linear at infinity. After
that, Wang et al. [28] studied problem (2) in the case when M is unbounded function, i.e. M(t) = a + bt,
where a > 0, b ≥ 0 by using the mountain pass techniques and the truncation method. Some extensions
regarding these results can be found in [3, 8, 15, 27] in which the authors considered problem (2) in RN or
the nonlinearities involved critical exponents. In [19, 23], problem (1) has been studied in the general case
when p(.) = p ∈ (1,+∞) is a constant.

In recent years, the study of differential equations and variational problems with nonstandard p(x)-
growth conditions has received more and more interest. The reason of such interest starts from the study of
the role played by their applications in mathematical modelling of non-Newtonian fluids, in particular, the
electrorheological fluids and of other phenomena related to image processing, elasticity and the flow in porous
media, we refer the readers to [26, 31] for more details. Some results on problems involving p(x)-Laplace
operator or p(x)-biharmonic operator can be found in [4, 6, 7, 9, 21, 22, 24]. These types of operators where
p(.) is a continuous function possess more complicated properties than the constant cases, mainly due to
the fact that they are not homogeneous. We also find that Kirchhoff type problems with variable exponents
has received a lot of attention in recent years, see for example [1, 2, 10, 13, 14, 20]. In [11, 12], we first
studied the existence and multiplicity of solutions for elliptic problems of Kirchhoff type involving both
p(x)-Laplace operator and p(x)-biharmonic operator in Sobolev spaces with variable exponents. Motivated
by the contributions cited above, we shall study the existence of solutions for fourth order elliptic equations
with variable exponents of the form (1). Our main tools come from Ekeland’s variational principle combined
with variational techniques in critical point theory. Actually, the results of this paper are natural extensions
from those presented in [11, 12] and [20]. Moreover, we believe that our results introduced here are new
even in the case when p(.) = p is a positive constant, see [28, 29], since the nonlinear term f is sublinear at
infinity and it is allowed to change sign.

In order to study problem (1), let recall some definitions and basic properties of the generalized Lebesgue-
Sobolev spaces Lp(x) (Ω) and W k,p(x) (Ω) where Ω is an open subset of RN . In that context, we refer to the
books of Diening et al. [16] and Musielak [25], the papers of Ayoujil et al. [4], Boureanu et al. [7] and Zang
et al [30]. Set

C+(Ω) :=
{
h; h ∈ C(Ω), h(x) > 1 for all x ∈ Ω

}
.
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For any h ∈ C+(Ω) we define
h+ = sup

x∈Ω

h(x) and h− = inf
x∈Ω

h(x).

For any p(x) ∈ C+(Ω), we define the variable exponent Lebesgue space

Lp(x)(Ω) =

{
u : a measurable real-valued function such that

∫
Ω
|u(x)|p(x)dx <∞

}
.

We recall the following so-called Luxemburg norm on this space defined by the formula

|u|p(x) = inf

{
µ > 0 :

∫
Ω

∣∣∣∣u(x)

µ

∣∣∣∣p(x)

dx ≤ 1

}
.

Variable exponent Lebesgue spaces resemble classical Lebesgue spaces in many respects: they are Banach
spaces, the Hölder inequality holds, they are reflexive if and only if 1 < p− ≤ p+ < ∞ and continuous
functions are dense if p+ < ∞. The inclusion between Lebesgue spaces also generalizes naturally: if 0 <
|Ω| <∞ and p1, p2 are variable exponents so that p1(x) ≤ p2(x) a.e. x ∈ Ω then there exists the continuous
embedding Lp2(x)(Ω) ↪→ Lp1(x)(Ω). We denote by Lp′(x)(Ω) the conjugate space of Lp(x)(Ω), where 1

p(x) +
1

p′(x) = 1. For any u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω) the Hölder inequality∣∣∣∣∫
Ω
uv dx

∣∣∣∣ ≤ ( 1

p−
+

1

(p′)−

)
|u|p(x)|v|p′(x) (4)

holds true.
An important role in manipulating the generalized Lebesgue-Sobolev spaces is played by the modular of

the Lp(x)(Ω) space, which is the mapping ρp(x) : Lp(x)(Ω)→ R defined by

ρp(x)(u) =

∫
Ω
|u|p(x) dx.

If u ∈ Lp(x)(Ω) and p+ <∞ then the following relations hold

|u|p
−

p(x) ≤ ρp(x)(u) ≤ |u|p
+

p(x) (5)

provided |u|p(x) > 1 while
|u|p

+

p(x) ≤ ρp(x)(u) ≤ |u|p
−

p(x) (6)

provided |u|p(x) < 1 and
|un − u|p(x) → 0 ⇔ ρp(x)(un − u)→ 0. (7)

As in the constant case, for any positive integer k, the Sobolev space with variable exponent W k,p(x)(Ω)
is defined by

W k,p(x)(Ω) = {u ∈ Lp(x)(Ω) : Dαu ∈ Lp(x)(Ω), |α| ≤ k},

where Dαu = ∂|α|

∂x
α1
1 ∂x

α2
2 ...∂x

αN
N

u, with α = (α1, . . . , αN ) is a multi-index and |α| =
∑N

i=1 αi. The space

W k,p(x)(Ω) equipped with the norm
||u||k,p(x) =

∑
|α|≤k

|Dαu|p(x),

also becomes a separable and reflexive Banach space. Due to the log-Hölder continuity of the exponent p,
the space C∞(Ω) is dense in W k,p(x)(Ω). Moreover, we have the following embedding results.
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Proposition 1.1 (see [4]). For p, r ∈ C+(Ω) such that r(x) ≤ p∗k(x) for all x ∈ Ω, there is a continuous
embedding

W k,p(x)(Ω) ↪→ Lr(x)(Ω),

where p∗k(x) = Np(x)
N−kp(x) if kp(x) < N and p∗k(x) = +∞ if kp(x) > N . If we replace ≤ with <, the embedding

is compact.

We denote by W k,p(x)
0 (Ω) the closure of C∞0 (Ω) in W k,p(x)(Ω). Note that the weak solutions of problem

(1) are considered in the generalized Sobolev space

X = W
1,p(x)
0 (Ω) ∩W 2,p(x)(Ω)

equipped with the norm ‖u‖X = ‖u‖1,p(x) + ‖u‖2,p(x) or ‖u‖X = |u|p(x) + |∇u|p(x) +
∑

α=2 |Dαu|p(x).
According to [30], the norm ‖.‖X is equivalent to the norm |∆.|p(x) in the space X. Consequently, the

norms ||.||2,p(x), ‖.‖X and |∆.|p(x) are equivalent. For this reason, we can consider in the spaceX the following
equivalent norms

‖u‖ = |∆u|p(x) + |∇u|p(x)

and

‖u‖ = inf

{
µ > 0 :

∫
Ω

(∣∣∣∣∆u(x)

µ

∣∣∣∣p(x)

+

∣∣∣∣∇u(x)

µ

∣∣∣∣p(x)
)
dx ≤ 1

}
.

Let us define the functional Λ : X → R by

Λ(u) =

∫
Ω

(
|∆u|p(x) + |∇u|p(x)

)
dx, u ∈ X, (8)

then using similar arguments as in [7, Proposition 1] we obtain the following modular-type inequalities.

Proposition 1.2. For u, un ∈ X and the functional Λ : X → R define as in (12), we have the following
assertions:

(1) ‖u‖ < 1 (respectively = 1;> 1)⇐⇒ Λ(u) < 1 (respectively = 1;> 1);

(2) ‖u‖ ≤ 1⇒ ‖u‖p+ ≤ Λ(u) ≤ ‖u‖p− ;

(3) ‖u‖ ≥ 1⇒ ‖u‖p− ≤ Λ(u) ≤ ‖u‖p+ ;

(4) ‖un‖ → 0 (respectively →∞)⇐⇒ Λ(un)→ 0 (respectively →∞) as n→∞.

2. Main results

In this section, we discuss the existence of nontrivial weak solutions of problem (1). Let us denote by
ci, i = 1, 2, ... general positive constants whose value may change from line to line. We shall look for weak
solutions of problem (1) in the space X := W

1,p(x)
0 (Ω) ∩W 2,p(x)(Ω) with the norm mentioned as in Section

1.
For the function f : Ω × R → R mentioned above, let us set F (x, t) =

∫ t
0 f(x, s) ds. Throughout this

section, we assume that

(H1) F : Ω× R→ R is a C1 function such that

F (x, τt) = τ q(x)F (x, t), for all τ > 0, x ∈ Ω, t ∈ R

where q ∈ C+(Ω);

(H2) There exists Ω0 ⊂⊂ Ω with meas(Ω0) > 0 such that F (x, t) > 0 for all x ∈ Ω0 and all t ∈ R;
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(H3) 1 < q+ < p− ≤ p+ < p∗2(x) = Np(x)
N−2p(x) for all x ∈ Ω.

Remark 2.1. From assumption (H1), for all x ∈ Ω and t ∈ R, we have the so-called Euler indentity

f(x, t)t = q(x)F (x, t)

and
|F (x, t)| ≤ C|t|q(x) and |f(x, t)| ≤ C|t|q(x)−1, ∀x ∈ Ω, t ∈ R

for some positive constant C.

Definition 2.2. We say that u ∈ X is a weak solution of problem (1) if∫
Ω
|∆u|p(x)−2∆u∆v dx+

[
a+ b

(∫
Ω

1

p(x)
|∇u|p(x) dx

)κ] ∫
Ω
|∇u|p(x)−2∇u · ∇v dx

−λ
∫

Ω
f(x, u)v dx = 0

for all v ∈ X.

For each λ ∈ R, let us define the functional Jλ : X → R by

Jλ(u) =

∫
Ω

1

p(x)
|∆u|p(x) dx+ a

∫
Ω

1

p(x)
|∇u|p(x) dx+

b

κ+ 1

(∫
Ω

1

p(x)
|∇u|p(x) dx

)κ+1

−λ
∫

Ω
F (x, u) dx, u ∈ X,

we then deduce that Jλ ∈ C1(X,R) and its derivative is given by the formula

J ′λ(u)(v) =

∫
Ω
|∆u|p(x)−2∆u∆v dx+

[
a+ b

(∫
Ω

1

p(x)
|∇u|p(x) dx

)κ] ∫
Ω
|∇u|p(x)−2∇u · ∇v dx

−λ
∫

Ω
f(x, u)v dx = 0

for all u, v ∈ X. Thus, we will seek weak solutions of problem (1) as the critical points of the functional Jλ.
We first have the following lemma.

Lemma 2.3. Assume that conditions (H1)-(H3) hold. Then, there exist constants α > 0, ρ ∈ (0, 1) and
λ∗ > 0 such that, for any λ ∈ (0, λ∗), we have Jλ(u) ≥ α > 0 for all u ∈ X with ‖u‖ = ρ.

Proof. Let ρ ∈ (0, 1) and u ∈ X be such that ‖u‖ = ρ. Then we deduce from Remark 2.1 and the continuous
embeddings X ↪→ Lq

±
(Ω) that∫

Ω
F (x, u) dx ≤

∫
Ω
C|u|q(x) dx ≤ c1

(
‖u‖q− + ‖u‖q+

)
. (9)

Hence,

Jλ(u) =

∫
Ω

1

p(x)
|∆u|p(x) dx+ a

∫
Ω

1

p(x)
|∇u|p(x) dx+

b

κ+ 1

(∫
Ω

1

p(x)
|∇u|p(x) dx

)κ+1

− λ
∫

Ω
F (x, u) dx

≥ min{1, a}
p+

‖u‖p+ − λc1

(
‖u‖q− + ‖u‖q+

)
=

(
min{1, a}

p+
‖u‖p+−q− − λc1

)
‖u‖q− . (10)



Nguyen Thanh Chung, Adv. Theory Nonlinear Anal. Appl. 3 (2019), 35–45. 40

Set
λ∗ =

min{1, a}
2c1p+

ρp
+−q− , α = λ∗ρq

−
, (11)

which yields for any λ ∈ (0, λ∗) we have Jλ(u) ≥ α > 0 for all u ∈ X with ‖u‖ = ρ. The proof of Lemma 2.3
is complete.

Lemma 2.4. Assume that conditions (H1)-(H3) hold. Then, there exists a function u0 ∈ X\{0} and u0 ≥ 0
such that, Jλ(tu0) < 0 for all t > 0 small enough.

Proof. Set q−0 := infx∈Ω0
q(x) and p−0 := infx∈Ω0

p(x). From condition (H3) we have q−0 < p−0 , let ε0 > 0 be
such that q−0 + ε0 < p−0 . Since q ∈ C(Ω0), there exists an open set Ω1 ⊂⊂ Ω0 such that |q(x)− p−0 | < ε0 for
all x ∈ Ω1. Thus,

q(x) ≤ q−0 + ε0 < p−0 , ∀x ∈ Ω1. (12)

Let u0 ∈ C∞0 be such that supp(u0) ⊂ Ω1 ⊂⊂ Ω0, u0 = 1 in a subset Ω′1 ⊂ supp(u0), 0 ≤ u0 ≤ 1 in Ω1.
Without loss of generality, we may assume that ‖u0‖ = 1, that is,∫

Ω0

|∆u0|p(x) dx+

∫
Ω0

|∇u0|p(x) dx = 1. (13)

Hence, by condition (H1), for any t ∈ (0, 1) we obtain

Jλ(tu0) =

∫
Ω

1

p(x)
|∆(tu0)|p(x) dx+ a

∫
Ω

1

p(x)
|∇(tu0)|p(x) dx+

b

κ+ 1

(∫
Ω

1

p(x)
|∇(tu0)|p(x) dx

)κ+1

− λ
∫

Ω
F (x, tu0) dx

≤ tp
−
0

p−0

∫
Ω0

|∆u0|p(x) dx+
atp
−
0

p−0

∫
Ω0

|∇u0|p(x) dx+
btp
−
0 (κ+1)

(p−0 )κ+1(κ+ 1)

(∫
Ω0

|∇u0|p(x) dx

)κ+1

− λ
∫

Ω1

tq(x)F (x, u0) dx

≤ tp
−
0

[∫
Ω0

|∆u0|p(x) dx+ a

∫
Ω0

|∇u0|p(x) dx+
b

κ+ 1

(∫
Ω0

|∇u0|p(x) dx

)κ+1
]

− λtq
−
0 +ε0

∫
Ω1

F (x, u0) dx.

By condition (H2), we have
∫

Ω1
F (x, u0) dx > 0 and thus, Jλ(tu0) < 0 for all 0 < t < δ

1

p−0 −q
−
0 −ε0 with

0 < δ < min{1, δ0} and

δ0 :=
λ
∫

Ω1
F (x, u0) dx∫

Ω0
|∆u0|p(x) dx+ a

∫
Ω0
|∇u0|p(x) dx+ b

κ+1

(∫
Ω0
|∇u0|p(x) dx

)κ+1 .

Note that by (13),∫
Ω0

|∆u0|p(x) dx+ a

∫
Ω0

|∇u0|p(x) dx+
b

κ+ 1

(∫
Ω0

|∇u0|p(x) dx

)κ+1

> 0

and the proof of Lemma 2.4 is complete.

The main result of this paper can be stated as follows.
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Theorem 2.5. Assume that the conditions (H1)-(H3) hold. Then there exists a constant λ∗ > 0 such that
for any λ ∈ (0, λ∗), problem (1) has a nontrivial weak solution.

Proof of Theorem 2.5. Let λ∗ > 0 be defined as in (11) and λ ∈ (0, λ∗). By Lemma 2.3 it follows that on
the boundary of the ball centered at the origin and of radius ρ in X, denoted by Bρ(0), we have

inf
∂Bρ(0)

Jλ > 0. (14)

On the other hand, by Lemma 2.4, there exists u0 ∈ X such that Jλ(tu0) < 0 for all t > 0 small enough.
Moreover, by the proof of Lemma 2.3 we deduce that for any u ∈ Bρ(0),

Jλ(u) ≥ min{1, a}
p+

‖u‖p+ − λc1‖u‖q
−
.

It follows that
−∞ < c := inf

Bρ(0)
Jλ < 0.

Let 0 < ε < inf∂Bρ(0) Jλ − infBρ(0) Jλ. Using the above information, the functional Jλ : Bρ(0) −→ R, is
lower bounded on Bρ(0) and Jλ ∈ C1

(
Bρ(0),R

)
. Then by Ekeland’s variational principle [18], there exists

uε ∈ Bρ(0) such that {
c ≤ Jλ(uε) ≤ c+ ε
0 < Jλ(u)− Jλ(uε) + ε‖u− uε‖, u 6= uε.

Since
Jλ(uε) ≤ inf

Bρ(0)
Jλ + ε ≤ inf

Bρ(0)
Jλ + ε < inf

∂Bρ(0)
Jλ,

we deduce that uε ∈ Bρ(0). Now, we define Jλ : Bρ(0) −→ R by Jλ(u) = Jλ(u) + ε‖u− uε‖. It is clear that
uε is a minimum point of Jλ and thus

Jλ(uε + t · v)− Jλ(uε)

t
≥ 0,

for small t > 0 and any v ∈ B1(0). The above relation yields

Jλ(uε + t · v)− Jλ(uε)

t
+ ε‖v‖ ≥ 0.

Letting t→ 0 it follows that J ′λ(uε)(v) + ε‖v‖ ≥ 0 and we infer that ‖J ′λ(uε)‖ ≤ ε. Hence, there exists a
sequence {un} ⊂ Bρ(0) satisfying

Jλ(un)→ c < 0 and J ′λ(un)→ 0X∗ . (15)

It is clear that {un} is bounded in X. Thus, there exists u in X such that, up to a subsequence, {un}
converges weakly to u in X. Since q(x) < p∗2(x) for all x ∈ Ω, we deduce that there exists a compact
embedding X ↪→ Lq(x)(Ω), hence the sequence {un} converges strongly to u in Lq(x)(Ω). Moreover, by (15)
we deduce that J ′λ(un)(un − u) → 0 as n → ∞. We also have J ′λ(u)(un − u) → 0 as n → ∞ because {un}
converges weakly to u in X, and thus,

lim
n→∞

(
J ′λ(un)− J ′λ(u)

)
(un − u) = 0. (16)
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Using Hölder’s inequality (4), Remark 2.1 and the compact embedding X ↪→ Lq(x)(Ω) we have∫
Ω

(f(x, un)− f(x, u)) (un − u) dx ≤
∫

Ω

(
|un|q(x)−1 + |u|q(x)−1

)
|un − u| dx

≤ 2

(∣∣∣|un|q(x)−1
∣∣∣
q(x)
q(x)−1

+
∣∣∣|u|q(x)−1

∣∣∣
q(x)
q(x)−1

)
|un − u|q(x)

→ 0, n→∞,

which implies that

lim
n→∞

∫
Ω

(f(x, un)− f(x, u)) (un − u) dx = 0. (17)

Since the sequence {un} converges weakly to u in X = W
1,p(x)
0 (Ω) ∩ W 2,p(x)(Ω), it is bounded and

converges weakly to u in W 1,p(x)
0 (Ω), so we get

lim
n→∞

(∫
Ω

1

p(x)
|∇un|p(x) dx

)κ ∫
Ω
|∇u|p(x)−2∇u · (∇un −∇u) dx = 0. (18)

and
lim
n→∞

(∫
Ω

1

p(x)
|∇u|p(x) dx

)κ ∫
Ω
|∇u|p(x)−2∇u · (∇un −∇u) dx = 0. (19)

Let us recall the following elementary inequalities (see [4])(
|ξ|s−2ξ − |ζ|s−2ζ

)
(ξ − ζ) ≥ 1

2s
|ξ − ζ|s, s ≥ 2, (20)

(
|ξ|s−2ξ − |ζ|s−2ζ

)
(ξ − ζ) (|ξ|+ |ζ|)2−s ≥ (s− 1)|ξ − ζ|2, 1 < s < 2 (21)

for all ξ, ζ ∈ RN . Put

Up(x) := {x ∈ Ω : p(x) ≥ 2} , Vp(x) := {x ∈ Ω : 1 < p(x) < 2} , (22)

then, it follows from (20) and (22) that∫
Up(x)

|∆un −∆u|p(x) dx ≤ c2

∫
Ω
A(1)(∆un,∆u) dx, (23)

∫
Up(x)

|∇un −∇u|p(x) dx ≤ c2

∫
Ω
A(N)(∇un,∇u) dx, (24)

∫
Vp(x)

|∆un −∆u|p(x) dx ≤ c3

∫
Ω

(
A(1)(∆un,∆u)

) p(x)
2
(
C(1)(∆un,∆u)

)(2−p(x))
p(x)
2
dx, (25)

∫
Vp(x)

|∇un −∇u|p(x) dx ≤ c3

∫
Ω

(
A(N)(∇un,∇u)

) p(x)
2
(
C(N)(∇un,∇u)

)(2−p(x))
p(x)
2
dx, (26)

where A(i), C(i) : Ri × Ri → R, i = 1, N are defined by the following formulas

A(i)(ξ, ζ) :=
(
|ξ|p(x)−2ξ − |ζ|p(x)−2ζ

)
(ξ − ζ), C(i)(ξ, ζ) := |ξ|+ |ζ|

for all ξ, ζ ∈ Ri, i = 1, N .
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Now, from relations (16)-(19), we get

0 ≤
∫

Ω

(
|∆un|p(x)−2∆un − |∆un|p(x)−2∆un

)
(∆un −∆u) dx

+ a

∫
Ω

(
|∇un|p(x)−2∇un − |∇un|p(x)−2∇un

)
· (∇un −∇u) dx

+ b

(∫
Ω

1

p(x)
|∇un|p(x) dx

)κ ∫
Ω

(
|∇un|p(x)−2∇un − |∇un|p(x)−2∇un

)
· (∇un −∇u) dx

=
(
J ′λ(un)− J ′λ(u)

)
(un − u) + λ

∫
Ω

(f(x, un)− f(x, u)) (un − u) dx

+ b

(∫
Ω

1

p(x)
|∇u|p(x) dx

)κ ∫
Ω
|∇u|p(x)−2∇u · (∇un −∇u) dx

− b
(∫

Ω

1

p(x)
|∇un|p(x) dx

)κ ∫
Ω
|∇un|p(x)−2∇u · (∇un −∇u) dx

→ 0, n→∞.

Therefore, we have

lim
n→∞

∫
Ω
A(1)(∆un,∆u) dx = lim

n→∞

∫
Ω
A(N)(∇un,∇u) dx = 0. (27)

For this reason, we can assume that 0 ≤
∫

ΩA
(1)(∆un,∆u) dx < 1. If

∫
ΩA

(1)(∆un,∆u) dx = 0 then
A(1)(∆un,∆u) = 0 since A(1)(∆un,∆u) ≥ 0 in Ω. If 0 <

∫
ΩA

(1)(∆un,∆u) dx < 1, then thanks to the
Young inequality

ab ≤ ar

r
+
br
′

r′
, ∀a, b > 0,

1

r
+

1

r′
= 1, r, r′ ∈ (1,+∞),

with

a =
(
A(1)(∆un,∆u)

) p(x)
2

(∫
Vp(x)

A(1)(∆un,∆u) dx

)−p(x)
2

, b =
(
C(1)(∆un,∆u)

)(2−p(x))
p(x)
2
,

r =
2

p(x)
, r′ =

2

2− p(x)
, x ∈ Vp(x),

we conclude that(∫
Vp(x)

A(1)(∆un,∆u) dx

)− 1
2 ∫

Vp(x)

(
A(1)(∆un,∆u)

) p(x)
2
(
C(1)(∆un,∆u)

)(2−p(x))
p(x)
2
dx

≤
∫
Vp(x)

(
A(1)(∆un,∆u)

) p(x)
2

(∫
Vp(x)

A(1)(∆un,∆u) dx

)− p(x)
2 (

C(1)(∆un,∆u)
)(2−p(x))

p(x)
2
dx

≤
∫
Vp(x)

A(1)(∆un,∆u)

(∫
Vp(x)

A(1)(∆un,∆u) dx

)− 1
2

+
(
C(1)(∆un,∆u)

)p(x)

 dx
≤ 1 +

∫
Ω

(
C(1)(∆un,∆u)

)p(x)
dx.

Hence, by relation (25),

1

c4

∫
Vp(x)

|∆un −∆u|p(x) dx ≤

(∫
Vp(x)

A(1)(∆un,∆u) dx

) 1
2 [

1 +

∫
Ω

(
C(1)(∆un,∆u)

)p(x)
dx

]
. (28)
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We also have

1

c4

∫
Vp(x)

|∇un −∇u|p(x) dx ≤

(∫
Vp(x)

A(N)(∇un,∇u) dx

) 1
2 [

1 +

∫
Ω

(
C(N)(∇un,∇u)

)p(x)
dx

]
. (29)

By (23), (25), (27) and (28), we have∫
Ω
|∆un −∆u|p(x) dx =

∫
Up(x)

|∆un −∆u|p(x) dx+

∫
Vp(x)

|∆un −∆u|p(x) dx→ 0 (30)

when n→∞. Similarly, from (24), (26), (27) and (29) we have∫
Ω
|∇un −∇u|p(x) dx =

∫
Up(x)

|∇un −∇u|p(x) dx+

∫
Vp(x)

|∇un −∇u|p(x) dx→ 0. (31)

Therefore,

‖un − u‖p
+ ≤

∫
Ω

(
|∆un −∆u|p(x) + |∇un −∇u|p(x)

)
dx→ 0

when n→∞, we deduce that {un} converges strongly to u in X. Since Jλ ∈ C1(X,R), we conclude that

J ′λ(un)→ J ′λ(u), as n→∞. (32)

Relations (15) and (32) show that J ′λ(u) = 0 and thus u is a weak solution for problem (1). Moreover,
by relation (32), it follows that Jλ(u) < 0 and thus, u is a nontrivial weak solution for (1). The proof of
Theorem 2.5 is complete.
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