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On Some Bivariate Gauss-Weierstrass Operators

GRAŻYNA KRECH AND IRENEUSZ KRECH

ABSTRACT. The aim of the paper is to investigate the approximation properties of bivariate generalization of Gauss-
Weierstrass operators associated with the Riemann-Liouville operator. In particular, the approximation error will be
estimated by these operators in the space of functions defined and continuous in the half-plane (0,∞) × R, and
bounded by certain exponential functions.
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1. INTRODUCTION

Numerous issues related to positive linear integral operators were and still are the subject of re-
search. The reason lays with their numerous applications in different domains of mathematics
and physics. The classical Gauss-Weierstrass singular integral

W (f ;x, t) =
1

2
√
πt

∫
R

exp

(
− (x− y)2

4t

)
f(y)dy,(1.1)

has been studied systematically in the past. The integral W is a solution of the heat equation.
The details can be found, for example, in [13]. Approximation properties of the operator W
were given in many papers and monographs (see, for example, [13, 14, 18]). In [4], Anastas-
siou and Mezei investigated the smooth Gauss-Weierstrass singular integral operators (not in
general positive) over the real line regarding their simultaneous global smoothness preserva-
tion property with respect to the Lp norm, by involving higher order moduli of smoothness.
Some Lipschitz type results for the smooth Gauss-Weierstrass type singular integral operators
were established in [17]. Approximation properties of the classical Gauss-Weierstrass integrals
for functions of two variables in exponential weighted space were presented in [11] and a cer-
tain modification of these integrals which has a better order of approximation than the classical
integrals was investigated in [19]. Khan and Umar (see [16]) gave a generalization of the Gauss-
Weierstrass integrals and obtained the rate of convergence of the integral operator. In [5], Aral
proposed a definition of the λ-Gauss Weierstrass singular integral with the kernel depend-
ing on a nonisotropic distance, its generalization, and gave some approximation properties of
these integrals in certain function spaces. In [3], Anastassiou and Duman studied statistical Lp-
approximation properties of the double Gauss-Weierstrass singular integral operators which
do not need to be positive. Similar issues were also examined in the complex case in note [2].
Recently, various q-generalizations of Gauss-Weierstrass singular integral operators based on
q-calculus (see [15]) and their approximation properties were investigated intensively (see, for
example, [1, 6, 7, 8]).
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The aim of this paper is to study approximation properties of the family of bivariate Gauss-
Weierstrass operators associated with the Riemann-Liouville operator (see [10]). This family is
of the form

V tα(f)(r, x) = Vα(f ; r, x, t) =

∫
R

∫ ∞
0

Kt
α(r, x, s, y)f(s, y)dsdy,

where the kernel is defined by

Kt
α(r, x, s, y) =

(2t)−(α+3/2)

√
2π

e−
r2+s2+(x−y)2

4t

(rs
2t

)−α
Iα

(rs
2t

)
s2α+1,

for α ≥ − 1
2 , r > 0, x ∈ R, t > 0, and Iα is a modified Bessel function

Iα(z) =

∞∑
k=0

zα+2k

2α+2kk!Γ(α+ k + 1)
.

In paper [9], the operator Vα is considered for functions belonging to Lp, 1 ≤ p ≤ ∞ and S,
which is a space of infinitely differentiable functions, rapidly decreasing together with all their
derivatives, even with respect to the first variable.
It is known (see [9, Proposition 3.4]) that the operator Vα is a positive linear operator from Lp

into itself and for every f ∈ Lp, 1 ≤ p ≤ ∞, we have

||V tα(f)||Lp ≤ ||f ||Lp .

Moreover, for every 1 ≤ p <∞, the family (V tα)t>0 is strongly continuous semigroup of opera-
tors on Lp and it is called Gauss semigroup associated with the Riemann-Liouville operator.
Armi and Rachdi proved that if f ∈ S, then Vα is a function of the classC∞ on (0,∞)×R×(0,∞)
and satisfies the following equations (see [9]):

∂u(r, x, t)

∂t
=
∂2u(r, x, t)

∂x2
+

2α+ 1

r

∂u(r, x, t)

∂r
+
∂2u(r, x, t)

∂r2
,(1.2)

lim
t→0+

Vα(f ; r, x, t) = f(r, x) uniformly on (0,∞)× R.

An interesting fact related to the study of the operator Vα is the following remark. If f(r, x) =
f1(r)f2(x), then

Vα(f ; r, x, t) = Wα(f1; r, t)W (f2;x, t),(1.3)

where

Wα(f1; r, t) =
1

2t

∫ ∞
0

r−αsα+1 exp

(
−r

2 + s2

4t

)
Iα

(rs
2t

)
f1(s) ds

and W is defined by (1.1). Note that W− 1
2

is the classical Gauss-Weierstrass integral (1.1) and

W− 1
2
(f1; r, t) =

1

2
√
πt

∫
R

exp

(
− (r − s)2

4t

)
f̃1(s)ds,

where

f̃1(s) =

 f1(s) if s ≥ 0,

f1(−s) if s < 0.

It is worth mentioning that for f(s) = s2k, k ∈ N, the function Wα(f) is a polynomial called
radial heat polynomial [12].
Some properties of the operator Wα, in particular, an estimation of the rate of convergence,
were studied in [20].
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In this work, we will investigate approximation properties of Vα in the space EK , K ≥ 0,
consisting of all continuous functions f defined on the half-plane (0,∞)× R, and such that

|f(r, x)| ≤MeK(r2+x2)

for some M > 0. The norm in EK is given by

||f ||EK
= sup

(r,x)∈D
e−K(r2+x2)|f(r, x)|,

where D = {(r, x) : r > 0, x ∈ R}. Observe that if 0 ≤ K1 ≤ K2, then EK1 ⊂ EK2 and
‖f‖K2 ≤ ‖f‖K1 .
We shall prove that the operator Vα is bounded and maps EK into EK+δ , where δ > 0. More-
over, we shall estimate an order of approximation by this operator.

2. APPROXIMATION PROPERTIES

Applying the method used in [20], we can prove the following theorem.

Theorem 2.1. Let f ∈ EK .
(a) The function Vα(f) is of the class C∞ in the set

Ω =

{
(r, x, t); r > 0, x ∈ R, 0 < t <

1

4K

}
(if K = 0, then 0 < t <∞).

(b) The function Vα(f) is a solution of the equation (1.2) in Ω and

lim
(r,x,t)→(r0,x0,0+)

Vα(f ; r, x, t) = f(r0, x0)

for every (r0, x0) ∈ Ω. Moreover, we have

lim
t→0+

Vα(f ; r, x, t) = f(r, x)

in every closed subset in Ω.

In what follows, it will be useful to consider the functions:

ψ0,0(r, x) = eK(r2+x2), ψ0,i(r, x) = xieK(r2+x2),

ψi,0(r, x) = r2ieK(r2+x2) for i = 1, 2.

Using (see [20])∫ ∞
0

sα+2b+1 exp
(
−as2

)
Iα(βs) ds =

∞∑
k=0

βα+2kΓ(α+ k + b+ 1)

k!Γ(α+ k + 1)aα+k+b+12α+2k+1
,

α ≥ − 1
2 , b ≥ 0, a > 0, β > 0 and the equation (1.3), we have the following lemma.

Lemma 2.1. Let I =
(
0, 1

4K

)
for K > 0 and I = (0,∞) for K = 0. For t ∈ I , we have

Vα(ψ0,0; r, x, t) = A,

Vα(ψ0,1; r, x, t) = Ax(1− 4Kt)−1,

Vα(ψ0,2; r, x, t) = A
[
2x2(1− 4Kt)−2 + 2t(1− 4Kt)−1

]
,

Vα(ψ1,0; r, x, t) = A
[
r2(1− 4Kt)−2 + 4t(α+ 1)(1− 4Kt)−1

]
,

Vα(ψ2,0; r, x, t) = A
[
r4(1− 4Kt)−4 + 8tr2(α+ 2)(1− 4Kt)−3

+ 16t2(α+ 2)(α+ 1)(1− 4Kt)−2
]
,
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where A = (1− 4Kt)−(α+
3
2 )e

K(r2+x2)
1−4Kt .

Theorem 2.2. Let f ∈ EK . If K > 0, then for every δ > 0 and t ∈ (0, δ
4K(K+δ) ), the operator Vα

maps the space EK in EK+δ and

∥∥V tα(f)
∥∥
K+δ

≤
(

1 +
δ

K

)α+ 3
2

‖f‖K .(2.4)

If K = 0, then Vα maps the space E0 into itself and∥∥V tα(f)
∥∥
0
≤ ‖f‖0.(2.5)

Proof. By the positivity and linearity of Vα, we get

|Vα(f ; r, x, t)| ≤ Vα(|f |; r, x, t) ≤ ‖f‖KVα(ψ0,0; r, x, t) = A‖f‖K .

From above we have (2.5) for K = 0.
Let K > 0. If δ > 0 and t ∈ (0, δ

4K(K+δ) ), then K
1−4Kt < K + δ. Hence

‖V tα‖K+δ = sup
(r,x)∈D

e−(K+δ)(r2+x2)|Vα(f ; r, x, t)|

≤ sup
(r,x)∈D

e−
K

1−4Kt (r
2+x2)|Vα(f ; r, x, t)|

≤ (1− 4K)−(α+
3
2 )‖f‖K ≤

(
1 +

δ

K

)α+ 3
2

‖f‖K ,

which gives (2.4). �

3. RATE OF CONVERGENCE

In this section, we shall state an estimate of the rate of convergence of the integral Vα in terms
of the modulus of continuity.
Let δ > 0 and

ω(f ;EK , δ) = sup√
(s−r)2+(y−x)2≤δ

|f(s, y)− f(r, x)|e−K(s2+y2), K ≥ 0.

Observe that

ω(f ;EK , δ1) ≤ ω(f ;EK , δ2) for 0 < δ1 ≤ δ2,

ω(f ;EK , λδ) ≤ (1 + λ)ω(f ;EK , δ) for λ > 0.

Theorem 3.3. Let f ∈ EK , K ≥ 0 and A = (1− 4Kt)−(α+
3
2 )e

K(r2+x2)
1−4Kt . We have

|Vα(f ; r, x, t)− f(r, x)| ≤ 2Aω(f ;EK , δ),

where

δ =
{
x2 − 2x2(1− 4Kt)−1 + x2(1− 4Kt)−2 + 2t(1− 4Kt)−1

+
[
r4 − 2r4(1− 4Kt)−2 + r4(1− 4Kt)−4 − 8tr2(α+ 1)(1− 4Kt)−1

+ 8tr2(α+ 2)(1− 4Kt)−3 + 16t2(α+ 2)(α+ 1)(1− 4Kt)−2
]1/2}1/2

for r > 0, x ∈ R, 0 < t < 1
4K and K > 0.
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If K = 0, we have

|Vα(f ; r, x, t)− f(r, x)| ≤ 2ω

(
f ;E0,

√
2t+

√
8tr2 + 16t2(α+ 2)(α+ 1)

)
for r > 0, x ∈ R, t > 0.

Proof. Let δ > 0. Using the property of the modulus of continuity, we obtain

|f(s, y)− f(r, x)| ≤ eK(s2+y2)ω
(
f ;EK ,

√
(s− r)2 + (y − x)2

)
for f ∈ EK . From this, we get

|f(s, y)− f(r, x)|

≤ eK(s2+y2)

(
1 +

√
(s− r)2 + (y − x)2

δ

)
ω (f ;EK , δ)

≤ eK(s2+y2)

(
1 +

(s− r)2 + (y − x)2

δ2

)
ω (f ;EK , δ) .

In view of (s− r)2 ≤ |s2 − r2|, we can write

|f(s, y)− f(r, x)| ≤ eK(s2+y2)

(
1 +
|s2 − r2|+ (y − x)2

δ2

)
ω (f ;EK , δ) .

The operator Vα is positive and linear (see also [9]), so

|Vα(f ; r, x, t)− f(r, x)|

≤ Vα(|f − f(r, x)|; r, x, t)

≤ ω (f ;EK , δ)Vα

(
ψ0,0 +

x2ψ0,0 − 2xψ0,1 + ψ0,2 + φψ0,0

δ2
; r, x, t

)
,

where φ(s, y) = |s2 − r2|. Observe that

Vα (φψ0,0; r, x, t) ≤
{
Vα(ψ0,0; r, x, t)Vα(φ2ψ0,0; r, x, t)

}1/2
=

{
Vα(ψ0,0; r, x, t)

[
r4Vα(ψ0,0; r, x, t)

− 2r2Vα(ψ1,0; r, x, t) + Vα(ψ2,0; r, x, t)
]}1/2

.

Hence

|Vα(f ; r, x, t)− f(r, x)|

≤ ω (f ;EK , δ)
{
Vα (ψ0,0; r, x, t)

+
1

δ2
[
x2Vα (ψ0,0; r, x, t)− 2xVα (ψ0,1; r, x, t) + Vα (ψ0,2; r, x, t)

]
+

1

δ2
[
Vα(ψ0,0; r, x, t)

(
r4Vα(ψ0,0; r, x, t)− 2r2Vα(ψ1,0; r, x, t)

+ Vα(ψ2,0; r, x, t))]
1/2
}
.
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If K = 0, then from Lemma 2.1, we have

Vα (ψ0,0; r, x, t) = 1,

Vα (ψ0,1; r, x, t) = x,

Vα (ψ0,2; r, x, t) = 2x2 + 2t,

Vα (ψ1,0; r, x, t) = r2 + 4t(α+ 1),

Vα (ψ2,0; r, x, t) = r4 + 8tr2(α+ 2) + 16t2(α+ 2)(α+ 1).

Hence, we conclude

|Vα(f ; r, x, t)− f(r, x)| ≤ 2ω

(
f ;E0,

√
2t+

√
8tr2 + 16t2(α+ 2)(α+ 1)

)
for r > 0, x ∈ R, t > 0.
For K > 0, we obtain from Lemma 2.1 the following estimation

|Vα(f ; r, x, t)− f(r, x)|

≤ Aω (f ;EK , δ)

×
{

1 +
1

δ2
[
x2 − 2x2(1− 4Kt)−1 + x2(1− 4Kt)−2 + 2t(1− 4Kt)−1

]
+

1

δ2
[
r4 − 2r4(1− 4Kt)−2 + r4(1− 4Kt)−4 − 8tr2(α+ 1)(1− 4Kt)−1

+ 8tr2(α+ 2)(1− 4Kt)−3 + 16t2(α+ 2)(α+ 1)(1− 4Kt)−2
]1/2}

.

Setting

δ =
{
x2 − 2x2(1− 4Kt)−1 + x2(1− 4Kt)−2 + 2t(1− 4Kt)−1

+
[
r4 − 2r4(1− 4Kt)−2 + r4(1− 4Kt)−4 − 8tr2(α+ 1)(1− 4Kt)−1

+ 8tr2(α+ 2)(1− 4Kt)−3 + 16t2(α+ 2)(α+ 1)(1− 4Kt)−2
]1/2}1/2

,

we get the assertion. �
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