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ABSTRACT

The Borsuk-Ulam theorem is a well-known theorem in algebraic topology which states that if
φ : Sn → Rk is a continuous map from the unit n-sphere into the Euclidean k-space with k ≤ n,
then there is a pair of antipodal points on Sn that are mapped by φ to the same point in Rk.
In this paper we study continuous real-valued functions of compact symmetric spaces. The main
result states that if f : M → R is a continuous isotropic function of a compact symmetric space
M into the real line R. Then f carries some maximal antipodal set of M to the same point in R,
whenever M is one of the following spaces: Spheres; the projective spaces FPn(F = R,C,H); the
Cayley plane FII ; the exceptional spaces EIV ;EIV ∗;GI ; and the exceptional Lie group G2. Some
additional related results are also given.
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1. Introduction

Many interesting theorems have been proved in topology about continuous maps defined on an n-sphere
(see for instance [21]). The theorem with which we concern in this paper is the following well-known result in
algebraic topology.

Borsuk-Ulam Theorem (BUT). Let φ : Sn → Rk be a continuous map of an n-sphere into the Euclidean k-space. If
k ≤ n, then φ maps some pair of antipodal points into a single point.

Clearly, the Borsuk-Ulam Theorem fails for a continuous map φ : Sn → Rk with k > n, because Sn embedded
in Rn+1.

The Borsuk-Ulam Theorem has numerous applications which range from combinatorics to differential
equations and even economics (cf. [18]).

For n = 1, BUT implies that there always exist a pair of opposite points on the earth’s equator with the same
temperature.

For n = 2, BUT implies that at any moment there is always a pair of antipodal points on the Earth’s surface
with equal temperatures and equal barometric pressures.

The Borsuk-Ulam Theorem was conjectured by S. Ulam at the Scottish Café in Lvov, Ukraine. The conjecture
was solved in 1933 by K. Borsuk [2]. It turned out that the result had been proved three years before in [17] by
L. Lusternik and L. Schnirelmann (see [2, footnote, page 190]). Since then, many alternative proofs as well of
extensions have been found by various authors, as collected by H. Steinlein in [26].

In this paper, we seek Borsuk-Ulam’s type results for compact symmetric spaces. The main result of this
paper is related with maximal antipodal sets and the 2-numbers of compact symmetric spaces which were
introduced about 35 years ago by B.-Y. Chen and T. Nagano in [11, 12].

Both notions of maximal antipodal sets and the 2-numbers have been studied by a number of mathematicians
with some nice applications to several areas of mathematics.
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Figure 1. Scottish Café in Lvov, Ukraine

For the most recent surveys on 2-numbers and maximal antipodal sets of compact Lie groups and of compact
symmetric spaces, please refer to [7, 8].

2. Symmetric spaces

The class of Riemannian manifolds with parallel Riemannian curvature tensor, that is, ∇R = 0, was first
introduced independently by P. A. Shirokov in 1925 and by H. Levy in 1926. This class is known today as the
class of locally symmetric Riemannian spaces.

It was É. Cartan who noticed in 1926 that irreducible spaces of this type are separated into ten large classes
each of which depends on one or two arbitrary integers, and in addition there exist twelve special classes
corresponding to the exceptional simple groups. Based on this, É. Cartan created his theory of symmetric
Riemannian spaces in his famous papers

“Sur une classe remarquable d’espaces de Riemann”

in 1926 [4].
Symmetric spaces are generalizations of spaces of constant sectional curvature. Though symmetric spaces

need not have constant sectional curvature, their sectional curvatures remain constant under parallel
translations of 2-dimensional tangent planes along regular curves.

Symmetric spaces arise in a wide variety of situations in both mathematics and physics. They are important
objects of study in representation theory and harmonic analysis as well as in differential geometry. Symmetric
spaces are the most beautiful and most important Riemannian manifolds.

On the one hand, the class of symmetric spaces contains many prominent examples which are of great
importance for various branches of mathematics, like compact Lie groups, Grassmannians and bounded
symmetric domains. Any symmetric space has its own special geometry; euclidean, elliptic and hyperbolic
geometry are only the very first examples. On the other hand, these spaces have much in common, and there
exists a rich theory.

An isometry s of a Riemannian manifold M is said to be involutive if s2 = idM . A Riemannian manifold M
is a symmetric space if for each point x ∈M there is an involutive isometry sx of M such that x is an isolated
fixed point of sx. The involutive isometry sx is called the symmetry at x. From the point of view of Lie theory, a
symmetric space is the quotient G/K of Lie group G by a Lie subgroup K, where the Lie algebra k of K is also
required to be the (+1)-eigenspace of an involution of the Lie algebra g of G.

Denote by G the closure of the group of isometries generated by {sp : p ∈M} in the compact-open topology.
Then G is a Lie group which acts transitively on the symmetric space; hence the typical isotropy subgroup K,
say at a point o ∈M , is compact and M = G/K. Therefore, symmetric spaces are homogeneous spaces as well.
From the point of view of the Erlangen program, in a homogeneous space one may understand that “all points
are the same”.

A Hermitian symmetric space is a Hermitian manifold which at every point has a symmetry preserving the
Hermitian structure.

In this paper, we use standard symbols (as in [14]) to denote symmetric spaces, mostly. Here are a
few minor exceptions. More specifically than AI,AI(n) denotes SU(n)/SO(n), AII(n) := SU(2n)/Sp(n), etc.
Gd(Rn), Gd(Cn) and Gd(Hn) are the Grassmann manifolds of d-dimensional subspaces in the real, complex and
quaternion vector spaces (or modules), respectively. M∗ denotes the bottom space (the adjoint space in [14])
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of the space M . The standard notations for the exceptional spaces such as G2, F4, E6, ..., GI, ..., EIX denote the
simply-connected spaces, where we write GI for G2/SO(4).

Every complete totally geodesic submanifold of a symmetric space is a symmetric space. For a symmetric
space M , the dimension of a maximal flat totally geodesic submanifold of M is a well-defined natural number
which is called the rank of M , denoted by rk(M). It follows from the equation of Gauss that rk(B) ≤ rk(M) for
each totally geodesic submanifold B of a symmetric space M (cf. [5]). Clearly, the rank of a symmetric space
is at least one. It is well-known that the class of rank one compact symmetric spaces consists of n-sphere Sn, a
projective space FPn(F = R,C,H), or the 16-dimensional Cayley plane FII = OP 2.

Suppose a finite group Γ is acting on two spacesM andN freely as automorphism groups. Then Γ acts on the
product space M ×N freely. And the orbit space (M ×N)/Γ is called the dot product of M and N (with respect
to Γ) and denoted by M ·N . In most cases Γ will be the group of order two acting on M and N as the covering
transformation groups for double covering morphisms in the sequel. Γ will not be mentioned in that case, if Γ
is obvious or if Γ need not be specified.

3. (M+,M−)-theory

Here we provide a brief introduction of the (M+,M−)-theory for compact symmetric spaces introduced by
B.-Y. Chen and T. Nagano in [10, 12]. Our approach to compact symmetric spaces was based on antipodal
points and fixed point sets on compact symmetric spaces. Consequently, our approach to compact symmetric
spaces is very different from other approaches done by Cartan and others.

In fact, our approach to compact symmetric spaces plays the Key Roles in the determination of 2-numbers
of compact symmetric spaces; including the determination of 2-ranks of compact Lie groups (see [6, 7]).

Let o be a point of a compact symmetric space M = G/K. We call a connected component of the fixed point
set F (so,M) r {o} of the symmetry so in M a polar of o. We denote it by M+ or M+(p) if M+ contains a point p.
We have the following useful lemma from [10] (see, also [6, page 15]).

Lemma 3.1. Let M = G/K be a compact symmetric space. Then for each antipodal point p of o ∈M , the isotropy
subgroup K at o acts transitively on the polar M+(p). Moreover, we have K(p) = M+(p) and K(p) is connected.
Consequently, we have M+(p) = K/Kp, where Kp is given by {k ∈ K : k(p) = p}.

When a polar consists of a single point, we call it a pole.

Lemma 3.2. Under the hypothesis of Lemma 3.1, the normal space toM+(p) at p inM is the tangent space of a connected
complete totally geodesic submanifold M−(p). Thus we have

dimM+(p) + dimM−(p) = dimM. (3.1)

Lemma 3.3. For each antipodal point p of o in a compact symmetric space M , we have (1) rk(M−(p)) = rk(M) and (2)
M−(p) is a connected component of the fixed point set F (sp ◦ so,M) of sp ◦ so through p.

Polars and meridians are totally geodesic submanifolds of a compact symmetric space M ; they are thus
compact symmetric spaces as well. Polars and meridians have been determined for every compact connected
irreducible Riemannian symmetric space (see [6, 12, 19, 20]). One of the most important properties of these
totally geodesic submanifolds is that M is determined by any pair of (M+(p),M−(p)) completely.

Let M be a compact connected Riemannian symmetric space and o be a point in M . If there exists a pole p of
o ∈M , then we call the set consisting of the midpoints of the geodesic segments from o to p the centrosome and
denote it by C(o, p). Each connected component of the centrosome of {o, p} is a totally geodesic submanifold of
M . Centrosomes play some important roles in topology. In particular, centrosomes were applied by J. M. Burns
in [3] to compute homotopy in many compact symmetric spaces.

4. Maximal antipodal sets and 2-numbers

Two points {p, q} on a Riemannian manifold M are called antipodal if there exists a closed geodesic γ in M
such that p and q are antipodal points in γ. A subset S of M is called an antipodal set if any two points in S are
antipodal. An antipodal set A2M of M is a maximal antipodal set if it is not a proper subset of any antipodal set
of M . A closed geodesic in a Riemannian manifold is simply called a circle.
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The notions of maximal antipodal sets and 2-numbers of connected Riemannian manifolds were introduced by
B.-Y. Chen and T. Nagano in [11]. It was proved in [12] that the 2-numbers relates directly with the 2-rank of
compact connected Lie group studied initially by A. Borel and J. P. Serre in [1]. A detailed study on 2-numbers
and maximal antipodal sets of compact symmetric spaces, including compact Lie groups, was established in
[12] (see also [6]).

For a compact symmetric space M , the 2-number denoted by #2M , is defined to be the maximal possible
cardinality #A2M of a subset A2M of M such that the point symmetry sx fixes every point of A2M for every
x ∈ A2M . It is known that a subset A2 of a connected symmetric space M is antipodal if and only if any pair of
points in A2 are antipodal points on some closed geodesic in M .

The definition is equivalent to saying that #2M is a maximal possible cardinality #A2M of a subset A2M
of M such that, for every pair of points x and y of A2M , there is a closed geodesic of M on which x and y are
antipodal to each other. Thus the invariant #2M can also be defined on Riemannian manifolds. Because every
compact Riemannian manifold admits a closed geodesic [16], the 2-number #2M of a compact Riemannian
manifold is at least 2.

Obviously, the (Riemannian) n-sphere Sn satisfies

#2S
n = 2. (4.1)

Clearly, if B is a complete totally geodesic submanifold of a compact symmetric space M , then every antipodal
set of B is also an antipodal set of M . Consequently, we have #2B ≤ #2M . Moreover, for the (Riemannian)
product of two compact symmetric spaces, we have

#2(M ×N) = (#2M)(#2N). (4.2)

Chen and Nagano proved in [12] many fundamental properties of maximal antipodal sets (see also, [6, 7]).
They also explicitly described antipodal sets in most compact Riemannian symmetric spaces, but they did not
mention antipodal sets in oriented real Grassmann manifolds. The antipodal sets in oriented real Grassmann
manifolds was then studied and determined later by H. Tasaki in [32].

As it was pointed out in [12], the invariant, #2M , has certain bearings on the topology of M ; for instance,
#2M equals X (M), the Euler number of M , if M is a semisimple hermitian symmetric space. And in general
one has the inequality #2M ≥ X (M) for any compact connected symmetric space M .

Furthermore, M. Takeuchi proved in [27] that #2M = dimH(M,Z2) for any symmetric R-space, where
H(M,Z2) is the homology group of M with coefficients in Z2.

It was proved in [30] that any two maximal antipodal sets of a symmetric R-space or of a Hermitian
symmetric spaces are congruent,

The following theorem from [12] provides some link between dot product, centrosome and 2-numbers of
compact symmetric spaces.

Theorem 4.1. The dot product for double coverings M →M ′′ and N → N ′′ has these properties:

(a) #2M ≤ #2(M ·N);
(b) #2(M ·N) ≤ #2(F (so,M) · F (sp, N)) + #2(CM · CN), where CM and CN are the centrosomes for the point o

of M and its pole and for pof N and its pole;
(c) 1

2 (#2M)(#2N) ≤ #2(M ·N) ≤ 2(#2M
′′)(#2N

′′).

The 2-numbers has several other links and some nice applications to several ares of mathematics (see e.g.
[13, 15, 19, 22, 23, 24, 25, 28, 29, 30, 31, 32, 33]). For the most recent survey on 2-numbers, please refer to the
survey article [8].

5. Main theorem

Let M be a compact symmetric space. Then each polar M+ of a point o ∈M is invariant under the action
of the isotropy K at o (cf. Lemma 3.1). A continuous real-valued function f : M → R of a compact symmetric
space M = G/K is called isotropic if, for each element τ in the isotropy subgroup K at o ∈M and for each
antipodal point ō of o, we have f(σ(ō)) = f(ō).

The main result of this paper is the following.

Main Theorem. Let f : M → R be a continuous isotropic function of a compact symmetric space M into the real line
R. Then f carries some maximal antipodal set of M to the same point in R, whenever M is one of the following spaces:
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Spheres; the projective spaces FPn(F = R,C,H); the Cayley plane FII ; the exceptional spaces EIV ;EIV ∗;GI ; and the
exceptional Lie group G2. Consequently, the function f : M → R carries an antipodal set of M with #2M elements to
the same point in R.

Proof. If dimM = 1, then M is a circle. Although, in this case the result follows from the Borsuk-Ulam theorem,
however for completeness we provide a simple proof for this case.

Without loss of generality, we may assume that M is the unit circle in R2 centered at the origin. For the
continuous real-valued function f : M → R, we put

g(x) = f(x)− f(−x), ∀x ∈M ⊂ R2. (5.1)

Then g is a continuous odd function. So we have g(−x) = −g(x). Let x0 be an arbitrary given point in M . If
we have g(x0) = 0, then f(x0) = f(−x0) holds. Thus f must carry the pair {x0,−x0} of antipodal points of M
to the same point. On the other hand, it follows from (4.1) that {x0,−x0} is a maximal antipodal set of M .
Consequently, we have the desired result.

If g(x0) 6= 0, without loss of generality we may assume that g(x0) > 0. Since g is odd, we have g(−x0) < 0.
Therefore, it follows from the Intermediate Value Theorem that there exists a point y between x0 and −x0 on
which g(y) = 0. Consequently, the Main Theorem holds for dimM = 1.

Next, let us assume that dimM ≥ 2 and also M is one of the following spaces: Spheres; the projective spaces
FPn (F = R,C, or H); the Cayley plane FII ; the exceptional spaces EIV,EIV ∗, GI ; and the exceptional Lie
group G2.

Case (a): M = Sn. In this case, the Main Theorem follows from the Borsuk-Ulam theorem and (4.1).

Case (b): M = RPn. In this case, it follows from [6, 12] that the 2-number of RPn is given by

#2RPn = n+ 1. (5.2)

Thus every maximal antipodal set of RPn must consist of n+ 1 mutual antipodal points. Moreover, we have

RPn = SO(n+ 1)/SO(n)× {±1}. (5.3)

It is well-known that the n-sphere Sn is a Riemannian double covering of RPn given by

π : Sn = SO(n+ 1)/SO(n)× {1} → RPn = SO(n+ 1)/SO(n)× {±1}, (5.4)

which is nothing but the antipodal map, that is, π maps each antipodal pair of Sn to the same point in RPn.
Without loss of generality, we may regard Sn as the unit hypersphere of Rn+1 centered at the origin of Rn+1.
Via (5.4), we may regard RPn as the south hemisphere Šn of Sn such that each antipodal pair in E was mapped
to the same point in RPn via π.

Let s be the south pole of Sn. We put o = π(s) ∈ RPn. Then the set of all antipodal points of o ∈ RPn is exactly
given by π(E) which is the only polar of o in RPn (see [10, Table IV, page 416]).

Now, let f : RPn → R be a continuous isotropic function. Let γ be a circle in RPn containing o. Then there
exists an antipodal pair {p, q} on γ which is mapped by the function f to the same point in R according
to Borsuk-Ulam’s theorem. Without loss of generality, we may assume that q is the point o. Hence we have
f(o) = f(p) ∈ R and p ∈ π(E) = RPn−1.

Now, let A2(RPn−1) be a maximal antipodal set of the polar (RPn)+(p) of o in RPn. Since the isotropy
subgroup K of RPn at o acts transitively on the polar (RPn)+(p) of o according to Lemma 3.1, we know that,
for each point r ∈ A2(RPn−1), there exists an element τ ∈ K such that τ(p) = r. Therefore, after applying the
isotropic property of the function f we obtain f(p) = f(r). Consequently, the continuous isotropic function f
must carry every point of A2(RPn−1) to the same point f(o) = f(p). Therefore the Main Theorem is also true
for M = RPn.

Case (c): M = FPn with F = C or H. Since RPn can be isometrically embedded in CPn and also in HPn as
a totally geodesic submanifold canonically, it follows from Case (b) that the continuous isotropic function
f : FPn → R carries a maximal antipodal set of RPn ⊂ FPn into the same point in R.

On the other hand, it follows from [12] or from [6] that every maximal antipodal set of RPn is also a maximal
antipodal set of FPn for F = C or H. Consequently, the Main Theorem holds for M = FPn with F = C or H.

Case (d): M = FII;EIV ;EIV ∗;GI or G2. Let o be a given fixed point in M . Then it follows from [12] or [10,
Table IV, page 416] that o has only one polar M+ in M , whenever M = FII;EIV ;EIV ∗;GI or G2.
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Again, let γ be a circle in M , then the continuous isotropic function f : M → R carries a pair of antipodal
points on γ to the same point in R. Again, without loss of generality, we may assume that one of the antipodal
point from the antipodal pair is o and the other is p. Clearly, the antipodal point p must lie in the polar M+(p) of
o. Now, since M+(p) is only polar of o in M , the same argument as given in Case (b) implies that the continuous
isotropic function f carries a maximal antipodal set of M to the same point in R. This completes the proof of
the Main Theorem.

Now, we provide a simple example to illustrate that the isotropic condition on f in the Main Theorem is
essential.

Example 5.1. Consider the real projective plane RP 2. Then there is a double covering π : S2 → RP 2. Without
loss of generality, we may assume that S2 is the unit sphere in E3 centered at the origin of E3. For each real-
valued function f : RP 2 → R, the lift f̂ : S2 → R of f is an even function via the double covering π, i.e.,

f̂(−x) = f̂(x), ∀x = (x, y, z) ∈ S2.

Conversely, for every given real-valued even function g : S2 → R of S2, g induces a real-valued function
ǧ : RP 2 → R of RP 2.

Now, if we choose g : S2 → R to be g = (x− y)2, then g induces a real-valued function ǧ : RP 2 → R which
does not carry any maximal antipodal set of RP 2 to the same point in R.

6. Some additional results

All of the compact symmetric spaces M mentioned in the list of the Main Theorem have single polar for a
fixed point o ∈M . In this section, we discuss the case in which the point o ∈M has multiple polars.

Suppose M is a compact connected symmetric space such that o ∈M has multiple polars M1
+,M

2
+, . . . ,M

i
+.

Let M̂+ denote the polar of o ∈M with the maximal 2-number among all polars of o.

Theorem 6.1. Let f : M → R be a continuous isotropic function of a compact symmetric space M into the real line R. If
M admits more than one polar, then f carries an antipodal set SM of M consisting of 1 + #2M̂+ points of M to the same
point in R.

Proof. This can be done in a similar way as Case (d) in the proof of the Main Theorem; just replacing M+(p) by
M̂+(p) for an antipodal point p ∈ M̂+ of o ∈M .

At the end of this paper, we provide some (not all) examples of compact connected symmetric spaces which
admit multiple polars (see TABLES 2-5).

For instance, from Theorem 6.1 and TABLE 3 we have the following.

Corollary 6.1. If f : E8 → R is a continuous isotropic function of the exceptional Lie group E8 into the real line R, then
f carries an antipodal set of E8 with 392 elements to the same point in R.

Similarly, from Theorem 6.1 and TABLE 5 we also have the following.

Corollary 6.2. If f : FI → R is a continuous isotropic function of the compact symmetric space FI = F4/Sp(3) · SU(2)
into the real line R, then f carries an antipodal set of FI with 24 elements to the same point in R.
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Table 1. Compact symmetric spaces M with single polar

Compact symmetric space M polar M+ #2M
Sn a point 2

FPn (F = R,C,H) FPn−1 n+ 1
EIV FII 4
EIV ∗ FII 4
FII S8 3
GI S2 · S2 7
G2 GI 8

Table 2. Classical group manifolds with multiple polars

Classical group M #2M M̂+ #2M̂+

SU(n) 2n−1 G[n2 ](Cn)
(

n
[n2 ]

)
SO(n) 2n−1 G[n2 ](Rn)

(
n
[n2 ]

)
Sp(n) 2n G[n2 ](Hn)

(
n
[n2 ]

)

Table 3. Exceptional group manifolds with multiple polars

Exceptional group M #2M M̂+ #2M̂+

E6 26 EII 36
E7 27 EVI 63
E∗7 28 EV ∗ 164
E8 29 EVIII 391
F4 25 FI 28

Table 4. Classical symmetric spaces with multiple polars

Classical symmetric space M #2M M̂+ #2M̂+

AI(n) = SU(n)/SO(n), n = 4k, 4k + 1, 4k + 2 2n−1 G2k(Rn)
(
n
2k

)
AI(n) = SU(n)/SO(n), n = 4k + 3 2n−1 G2k+2(Rn)

(
n

2k+2

)
AII(n) = SU(n)/Sp(n), n = 4k, 4k + 1, 4k + 2 2n−1 G2k(Hn)

(
n
2k

)
AII(n) = SU(n)/Sp(n), n = 4k + 3 2n−1 G2k+2(Hn)

(
n

2k+2

)
G[n2 ](Fn), F = R,C,H, n ≥ 3

(
n
[n2 ]

)
G[n4 ](F[n2 ])×G[n2 ]−[n4 ](Fn−[n2 ])

([n2 ]

[n4 ]

)( n−[n2 ]

[n2 ]−[n4 ]

)
CI(n) = Sp(n)/U(n) 2n Gr(Cn), r = [n2 ]

(
n
r

)
DIII(n) = SO(2n)/U(n), n = 4k, 4k + 1, 4k + 2 2n−1 G2k(Cn)

(
n
2k

)
DIII(n) = SO(2n)/U(n), n = 4k + 3 2n−1 G2k+2(Cn)

(
n

2k+2

)
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Table 5. Exceptional symmetric spaces with multiple polars

Exceptional symmetric space M #2M M̂+ #2M̂+

EI 64 CI(4)∗ 36
EII 36 S2 ·G3(C6) 20
EIII 27 G̃2(R10) 10
EV 128 G4(C8)∗ 35

EVII 56 EIII 27
FI 28 S2 · CI(3) 23
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