Degenerate Saccheri Quadrilaterals, Möbius Transformations and Conjugate Möbius Transformations

Oğuzhan Demirel*

(Communicated by Yusuf Yaylı)

ABSTRACT

In this paper, we define a new geometric concept that we will call "degenerate Saccheri quadrilateral" and use it to give a new characterization of Möbius transformations. Our proofs are based on a geometric approach.

Keywords: Saccheri quadrilateral, Möbius transformation *AMS Subject Classification (2010):* Primary: 51B10 ; Secondary: 51M09; 30F45; 51M10; 51M25.

1. Introduction

Möbius transformations are rational functions of the form $f(z) = \frac{az+b}{cz+d}$ satisfying $ad - bc \neq 0$, where $a, b, c, d \in \mathbb{C}$. They are the automorphisms of extended complex plane $\overline{\mathbb{C}}$, that is, the meromorphic bijections $f:\overline{\mathbb{C}} \to \overline{\mathbb{C}}$. Möbius transformations are also directly conformal homeomorphisms of $\overline{\mathbb{C}}$ onto itself and they have beautiful properties. For example, a map is Möbius if, and only if it preserves cross ratios. As for geometric aspect, circle-preserving is another important characterization of Möbius transformations. There are well-known elementary proofs that if f is a continuous injective map of $\overline{\mathbb{C}}$ that maps circles into circles, then f is Möbius. In addition to this the following result is well known and fundamental in complex analysis.

Theorem 1.1. [1] If $f : \overline{\mathbb{C}} \to \overline{\mathbb{C}}$ is a circle preserving map, then f is a Möbius transformation if and only if f is a bijection.

The transformations $f(z) = \frac{a\overline{z}+b}{c\overline{z}+d}$ with $ad - bc \neq 0$, where $a, b, c, d \in \mathbb{C}$ are known as conjugate Möbius transformations of $\overline{\mathbb{C}}$. It is easy to see that each conjugate Möbius transformation f is the composition of complex conjugation with a Möbius transformation, since both of these are homeomorphisms of $\overline{\mathbb{C}}$ onto itself (complex conjugation being given by reflection in the plane through $\mathbb{R} \cup \{\infty\}$), so is f. Notice that the composition of a conjugate Möbius transformation with a Möbius transformation is a conjugate Möbius transformation and composition of two conjugate Möbius transformations is a Möbius transformation. There is a topological distinction between Möbius transformations and conjugate Möbius transformations and conjugate Transformations in that Möbius transformations preserve the orientation of $\overline{\mathbb{C}}$ while conjugate Möbius transformations reverse it. To see more details about conjugate Möbius transformations, we refer [11].

C. Carathéodory [4] proved that every arbitrary one to one correspondence between the points of a circular disc *C* and a bounded point set *C'* by which circles lying completely in *C* are transformed into circles lying in *C'* must always be either a Möbius transformation f(z) or $f(\overline{z})$. R. Höfer generalized the Carathéodory's theorem to arbitrary dimensions in [9]. R. Höfer proved that for a domain *D* of \mathbb{R}^n , if any injective mapping $f: D \to \mathbb{R}^n$ which takes hyperspheres whose interior is contained in *D* to hyperspheres in \mathbb{R}^n , then *f* is the restriction of a Möbius transformation. For more details about sphere preserving maps, see [2].

Since Möbius transformations play a major role in complex analysis and hyperbolic geometry, some authors tried to present new characterizations of Möbius transformations by using various Euclidean polygons and hyperbolic polygons. For example, in [8], H. Haruki and T.M. Rassias proved the following result by using Apollonius quadrilaterals as follows:

Received: 08-11-2016, Accepted: 06-06-2017

^{*} Corresponding author

Theorem 1.2. [8] Let $f : \overline{\mathbb{C}} \to \overline{\mathbb{C}}$ be a analytic and univalent transformation in a non-empty domain R on the z-plane. Then f is a Möbius transformation if and only if f preserves Apollonius quadrilaterals in R.

S. Yang and A. Fang presented a new characterization of Möbius transformations by using Lambert quadrilaterals and Saccheri quadrilaterals in the hyperbolic plane $B^2 = \{z : |z| < 1\}$ as follows:

Theorem 1.3. [14], [15] Let $f : B^2 \to B^2$ be a continuous bijection. Then f is Möbius if and only if f preserves Lambert quadrilaterals in B^2 .

Theorem 1.4. [14], [15] Let $f : B^2 \to B^2$ be a continuous bijection. Then f is Möbius if and only if f preserves Saccheri quadrilaterals in B^2 .

Definition 1.1. [3] The Lambert quadrilateral is a hyperbolic quadrilateral with angles $\frac{\pi}{2}$, $\frac{\pi}{2}$, $\frac{\pi}{2}$, $\frac{\pi}{2}$ and θ , where $0 < \theta < \frac{\pi}{2}$.

Definition 1.2. [3] The Saccheri quadrilateral is a hyperbolic quadrilateral with angles $\frac{\pi}{2}$, $\frac{\pi}{2}$, θ and θ , where $0 < \theta < \frac{\pi}{2}$.

To see other characterizations of Möbius transformations with the help of hyperbolic polygons, we refer [10], [5], [6] and [7].

Distorting of the non-adjacent right angles of a Lambert quadrilateral, degenerate Lambert quadrilateral concept is defined as follows:

Definition 1.3. [7] A degenerate Lambert quadrilateral is a hyperbolic convex quadrilateral with ordered angles $\frac{\pi}{2} + \epsilon$, $\frac{\pi}{2}$, $\frac{\pi}{2} - \epsilon$, θ where $0 < \theta < \frac{\pi}{2}$ and $0 < \epsilon < \frac{\pi}{2} - \frac{\theta}{2}$.

In [7], O. Demirel proved the following result:

Theorem 1.5. [7] Let $f: B^2 \to B^2$ be a surjective transformation. Then f is a Möbius transformation or a conjugate Möbius transformation if and only if f preserves all ϵ -Lambert quadrilaterals where $0 < \epsilon < \frac{\pi}{2}$.

Distorting of the right angles of a Saccheri quadrilateral, degenerate Saccheri quadrilateral concept is defined as follows:

Definition 1.4. A degenerate Saccheri quadrilateral is a hyperbolic convex quadrilateral with ordered angles $\frac{\pi}{2} - \epsilon, \frac{\pi}{2} + \epsilon, \theta, \theta$ where $0 < \theta < \frac{\pi}{2}$ and $0 < \epsilon < \frac{\pi}{2} - \frac{\theta}{2}$.

Notice that, for a degenerate Saccheri quadrilateral, the sum of the measures of mutual distorted angles are $\frac{\pi}{2} + \epsilon + \theta$ and $\frac{\pi}{2} - \epsilon + \theta$.

In this paper we call the degenerate Saccheri quadrilaterals having ordered angles $\frac{\pi}{2} - \epsilon$, $\frac{\pi}{2} + \epsilon$, θ , θ briefly as ϵ -Saccheri quadrilaterals. We consider the hyperbolic plane $B^2 = \{z : |z| < 1\}$ with length differential $ds^2 = \frac{4|dz|^2}{(1-|z|^2)^2}$.

Throughout of the paper we denote by X' the image of X under f, by [P,Q] the geodesic segment between points P and Q, by PQ the geodesic through points P and Q, by PQR the hyperbolic triangle with three ordered vertices P,Q and R, by PQRS the hyperbolic quadrilateral with four ordered vertices P,Q,R and S, and by $\angle PQR$ the angle between [P,Q] and [P,R].

2. A Characterization of Möbius Transformations by use of Degenerate Saccheri Quadrilaterals

In this section, by the ϵ -Saccheri quadrilaterals preserving property of functions, we meant that if *ABCD* is a ϵ -Saccheri quadrilateral having ordered angles $\frac{\pi}{2} - \epsilon$, $\frac{\pi}{2} + \epsilon$, θ and θ , then *A'B'C'D'* is a ϵ -Saccheri quadrilateral having ordered angles $\frac{\pi}{2} - \epsilon$, $\frac{\pi}{2} + \epsilon$, θ' and θ' .

Lemma 2.1. Let $f: B^2 \to B^2$ be a mapping which preserves all ϵ -Saccheri quadrilaterals where $0 < \epsilon < \frac{\pi}{2}$. Then f is injective.

Proof. Let us take two different points *P* and *Q* in B^2 . Then by constructing a ϵ -Saccheri quadrilateral *PQRS*, one can easily get that P'Q'R'S' is also a ϵ -Saccheri quadrilateral by the property of *f*. Therefore, the points *P'* and *Q'* must be different which implies that *f* is injective.

Lemma 2.2. Let $f: B^2 \to B^2$ be a mapping which preserves all ϵ -Saccheri quadrilaterals where $0 < \epsilon < \frac{\pi}{2}$. Then f preserves the collinearity and betweenness properties of the points.

Proof. Let *P* and *Q* be two different points in B^2 and assume that *S* is an interior point of [P, Q]. Then *S* must be lie on all ϵ -Saccheri quadrilaterals whose vertices are *P* and *Q*. By the property of *f*, the images of all ϵ -Saccheri quadrilaterals with vertices *P* and *Q* are ϵ -Saccheri quadrilaterals with vertices *P'* and *Q'* and must contain *S'*. Since *f* is injective by *Lemma* 2.1, we get $P' \neq S' \neq Q'$. Therefore, *S'* must be an interior point of [P', Q'] which implies that *f* preserves the collinearity and betweenness properties of the points.

Lemma 2.3. Let $f: B^2 \to B^2$ be a mapping which preserves all ϵ -Saccheri quadrilaterals where $0 < \epsilon < \frac{\pi}{2}$. Then f preserves the angles $\frac{\pi}{2} + \epsilon$ and $\frac{\pi}{2} - \epsilon$.

Proof. Let *ABCD* be a ϵ -Saccheri quadrilateral with $\angle ABC = \frac{\pi}{2} - \epsilon$, $\angle BCD = \frac{\pi}{2} + \epsilon$, $\angle CDA = \angle DAB = \theta$ and denote the midpoint of [B, C] by M. Now, for a fixed $\alpha \in \mathbb{R}$ satisfying $0 < \alpha < \epsilon < \frac{\pi}{2}$, pick a point on DC, say *E*, satisfying $\angle MEC = \frac{\pi}{2} - \alpha$ and $C \in [E, D]$. Let *F* be the common point of the geodesics *ME* and *AB*. Notice that, if *E* is close enough to *C*, then *F* is close enough to *B*. Because of the fact that $\angle ECM = \angle MBF = \frac{\pi}{2} - \epsilon$, $\angle CME = \angle BMF$ and $d_H = (B, M) = d_H(M, C)$ hold true, where d_H is the hyperbolic distance function, by hyperbolic angle-side-angle theorem [12], the triangles FBM and ECM are congruent. Hence AFED must be a α -Saccheri quadrilateral with $\angle AFE = \frac{\pi}{2} + \alpha$, $\angle FED = \frac{\pi}{2} - \alpha$, $\angle CDA = \angle DAB = \theta$. Since *f* preserves all degenerate Saccheri quadrilaterals, then the hyperbolic quadrilaterals A'B'C'D' and A'F'E'D' are ϵ -Saccheri quadrilateral and α – Saccheri quadrilateral, respectively. Let us denote the measures of the angles of A'B'C'D'and A'F'E'D' by $\frac{\pi}{2} - \epsilon$, $\frac{\pi}{2} + \epsilon$, θ' , θ' and $\frac{\pi}{2} - \alpha$, $\frac{\pi}{2} + \alpha$, θ' , θ' , respectively. Notice that since $\angle EDA = \angle CDA = \angle C$ $\angle BAD = \angle FAD = \theta$, then we have $\angle E'D'A' = \angle C'D'A' = \angle B'A'D' = \angle F'A'D' = \theta'$. Because of the fact that f preserves the collinearity and betweenness of the points by Lemma 2.2, one can easily see that the points F' and *C'* must be lie on [A', B'] and [D', E'], respectively. Therefore, we have $\angle A'B'C' = \frac{\pi}{2} - \epsilon$ or $\angle A'B'C' = \frac{\pi}{2} + \epsilon$. Now, assume that $\angle A'B'C' = \frac{\pi}{2} + \epsilon$. Thus we have $\angle B'C'D' = \frac{\pi}{2} - \epsilon$. Obviously, $\angle A'F'M' = \frac{\pi}{2} + \alpha$ must be hold, otherwise, if $\angle A'F'M' = \frac{\pi}{2} - \alpha$ holds which implies $\angle M'F'B' = \frac{\pi}{2} + \alpha$, then the sum of the measures of interior angles of the triangle F'B'M' is greater than π which is not possible in hyperbolic geometry. Thus we get $\angle A'F'M' = \frac{\pi}{2} + \alpha$ and $\angle M'F'B' = \frac{\pi}{2} - \alpha$. Let *P* and *Q* be the common points of the unit disc B^2 and the hyperbolic disc D'E'. Assume that E' lies on [C', Q]. If X is a point moving from Q to P on PQ, then $\angle M'XP$ must be increase from 0 to π . Hence, we get $\frac{\pi}{2} - \alpha < \frac{\pi}{2} - \epsilon$ which implies $\epsilon < \alpha$. This is a contradiction since $\alpha < \epsilon$. Therefore, we get $\angle A'B'C' = \frac{\pi}{2} - \epsilon$ which implies $\angle B'C'D' = \frac{\pi}{2} + \epsilon$.

Lemma 2.4. Let $f: B^2 \to B^2$ be a mapping which preserves all ϵ -Saccheri quadrilaterals where $0 < \epsilon < \frac{\pi}{2}$. Then f preserves the measures of equal angles.

Proof. Let *ABCD* be a ϵ -Saccheri quadrilateral with $\angle ABC = \frac{\pi}{2} - \epsilon$, $\angle BCD = \frac{\pi}{2} + \epsilon$, $\angle CDA = \angle DAB = \theta$. By Lemma 2.3, we have $\angle A'B'C' = \frac{\pi}{2} - \epsilon$, $\angle B'C'D' = \frac{\pi}{2} + \epsilon$. Now we have to prove that $\theta = \angle CDA = \angle DAB = \Box AB = \Box AB$ $\angle C'D'A' = \angle D'A'B' = \theta'$. Let $P\bar{Q}RS$ be a hyperbolic square with center is O, where O is the origin of B^2 satisfying $\angle PQR = \angle QRS = \angle RSP = \angle SPQ = \frac{\theta}{2}$. Without loss of generality, we may assume that the points P and R lie on the y-axis and the points Q and S lie on the x-axis. Let X and Y be the midpoints of [P,Q] and [S,R], respectively. Notice that the hyperbolic quadrilateral PXYS is a Saccheri quadrilateral with $\angle PXY = \angle XYS = \frac{\pi}{2}$ by the property of a hyperbolic square. Now, pick a point on [S, Y], say K, such that $\angle OKY = \theta$. The existence of K is clear since $\angle OSY = \frac{\theta}{4}$ and $\angle OYS = \frac{\pi}{2}$. Now pick a point on [Q, X], say L, such that $d_H(L,Q) = d_H(S,K)$. It is not hard to see that the hyperbolic triangles OLQ and OKS are congruent. Hence, we get $\angle OLX = \angle OKY = \theta$. Because of $\theta < \frac{\pi}{2}$, we may represent θ as $\theta := \frac{\pi}{2} - \alpha$. Thus we have $\angle OLQ = \pi - \theta = \pi - (\frac{\pi}{2} - \alpha) = \frac{\pi}{2} + \alpha$ which implies that KLQR is a α -Saccheri quadrilateral with $\angle RKL = \frac{\pi}{2} + \alpha$ $\frac{\pi}{2} - \alpha$, $\angle KLQ = \frac{\pi}{2} + \alpha$, $\angle LQR = \angle QRK = \frac{\theta}{2}$. The angle $\angle CDA$ of the ϵ -Saccheri quadrilateral ABCD can be moved to the point K by an appropriate hyperbolic isometry g, such that the points g(A) and g(C) lie on the geodesics KL and KR, respectively. Because of the fact that f preserves ϵ -Saccheri quadrilaterals for all $0 < \epsilon < \frac{\pi}{2}$, then K'L'Q'R' is a α -Saccheri quadrilateral with $\angle L'K'R' = \frac{\pi}{2} - \alpha = \theta$, $\angle K'L'Q' = \frac{\pi}{2} + \alpha = \theta$ $\pi - \theta$, $\angle L'Q'R' = \angle Q'R'K'$ by Lemma 2.3. Thus we get $\angle A'D'C' = \angle g(A)g(D)g(C) = \angle L'K'R' = \theta$ holds true. Similarly, one can easily prove that $\angle D'A'B' = \theta$ holds true. Hence *f* preserves the measures of equal angles.

Lemma 2.5. Let $f: B^2 \to B^2$ be a mapping which preserves all ϵ -Saccheri quadrilaterals where $0 < \epsilon < \frac{\pi}{2}$. Then f preserves hyperbolic distance.

Proof. Let *A* and *B* be two different points in B^2 . These points define two different hyperbolic squares. Choose one of them and denote it by *ABCD*. Assume $\angle ABC = \angle BCD = \angle CDA = \angle DAB := \theta$ and denote it center by *M*. The geodesics passing through *M*, must intersect *ABCD* at two points. Let *p* be a hyperbolic geodesic passing through *M* but not passing through the points *A*, *B*, *C*, *D*, *M*₁, *M*₂, *M*₃, *M*₄ where *M*₁, *M*₂, *M*₃, *M*₄ are the midpoints of [*A*, *B*], [*B*, *C*], [*C*, *D*], [*D*, *A*], respectively. Therefore the hyperbolic square *ABCD* and hyperbolic geodesic *p* define two congruent degenerate Saccheri quadrilaterals. Assume that these degenerate Saccheri quadrilaterals be two β -Saccheri quadrilaterals. By *Lemma* 2.3 and *Lemma* 2.4, the images of these two degenerate Saccheri quadrilaterals are β -Saccheri quadrilaterals with angles $\frac{\pi}{2} - \beta$, $\frac{\pi}{2} + \beta$, θ , θ . By *Lemma* 2.4, we get $\angle A'B'C' = \angle B'C'D' = \angle C'D'A' = \angle D'A'B' := \theta$. Because of the fact that the angles at the vertices of a hyperbolic square define its lengths, we get $d_H(A, B) = d_H(A', B')$, see [13].

Theorem 2.1. Let $f : B^2 \to B^2$ be a surjective transformation. Then f is a Möbius transformation or a conjugate Möbius transformation if and only if f preserves all ϵ -Saccheri quadrilaterals where $0 < \epsilon < \frac{\pi}{2}$.

Proof. The "only if " part is obvious because f is an isometry. Conversely, we may assume that f preserves ϵ -Saccheri quadrilaterals for all $0 < \epsilon < \frac{\pi}{2}$ in B^2 and f(O) = O by composing an hyperbolic isometry if necessary. Let us take two different points in B^2 and denote them by x, y. By *Lemma* 2.5, we immediately get $d_H(O, x) = d_H(O, x')$ and $d_H(O, y) = d_H(O, y')$, namely |x| = |x'| and |y| = |y'|, where $|\cdot|$ denotes the Euclidean norm. Therefore we get |x - y| = |x' - y'| by since f preserves angular sizes by *Lemma* 2.4. As

$$2\langle x, y \rangle = |x|^2 + |y|^2 - |x - y|^2 = |x'|^2 + |y'|^2 - |x' - y'|^2 = 2\langle x', y' \rangle,$$

f preserves inner-products and then is the restriction on B^2 of an orthogonal transformation, that is, *f* is a Möbius transformation or a conjugate Möbius transformation by *Carathéodory's theorem*.

Corollary 2.1. Let $f: B^2 \to B^2$ be a conformal (angle preserving with sign) surjective transformation. Then f is a Möbius transformation if and only if f preserves all ϵ -Saccheri quadrilaterals where $0 < \epsilon < \frac{\pi}{2}$.

Corollary 2.2. Let $f: B^2 \to B^2$ be a angle reversing surjective transformation. Then f is a conjugate Möbius transformation if and only if f preserves all ϵ -Saccheri quadrilaterals where $0 < \epsilon < \frac{\pi}{2}$.

References

- Aczél, J. and McKiernan, M.A., On the characterization of plane projective and complex Möbius transformations. *Math. Nachr.* 33, (1967), 315–337.
- [2] Beardon, A.F. and Minda, D., Sphere-preserving maps in inversive geometry. Proc. Amer. Math. Soc. 130 (2002), no. 4, 987–998.
- [3] Beardon, A.F., The geometry of discrete groups, Springer-Verlag, New York, 1983.
- [4] Carathéodory, C., The most general transformations of plane regions which transform circles into circles. Bull. Am. Math. Soc. 43, (1937), 573–579.
- [5] Demirel, O. and Seyrantepe, E.S., A characterization of Möbius transformations by use of hyperbolic regular polygons. J. Math. Anal. Appl. **374** (2011), no. 2, 566–572.
- [6] Demirel, O., A characterization of Möbius transformations by use of hyperbolic regular star polygons. *Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci.* 14 (2013), no. 1, 13–19.
- [7] Demirel, O., Degenerate Lambert quadrilaterals and Möbius transformations. Bull. Math. Soc. Sci. Math. Roumanie, (accepted for publication).
- [8] Haruki, H and Rassias, T.M., A new characteristic of Möbius transformations by use of Apollonius quadrilaterals. *Proc. Amer. Math. Soc.* 126 (1998), no. 10, 2857–2861.
- [9] Höfer, R., A characterization of Möbius transformations. Proc. Amer. Math. Soc. 128 (2000), no. 4, 1197–1201.
- [10] Jing, L., A new characteristic of Möbius transformations by use of polygons having type A. J. Math. Anal. Appl. 324 (2006), no. 1, 281–284.
- [11] Jones, G.A and Singerman, D., Complex functions. An algebraic and geometric viewpoint. Cambridge University Press, Cambridge, 1987.
- [12] Ungar, A.A., Analytic hyperbolic geometry. Mathematical foundations and applications. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005
- [13] Ungar, A.A., The hyperbolic square and Möbius transformations, Banach J. Math. Anal. 1 (2007), no. 1, 101–116.
- [14] Yang, S. and Fang, A., A new characteristic of Möbius transformations in hyperbolic geometry. J. Math. Anal. Appl. **319** (2006), no. 2, 660–664.
- [15] Yang, S. and Fang, A., Corrigendum to "A new characteristic of Möbius transformations in hyperbolic geometry, J. Math. Anal. Appl. 319
 (2) (2006) 660-664" J. Math. Anal. Appl. 376 (2011), no. 1, 383–384.

Affiliations

OĞUZHAN DEMİREL ADDRESS: Afyon Kocatepe University, Dept. of Mathematics, Afyonkarahisar-TURKEY. E-MAIL: odemirel@aku.edu.tr ORCID ID : orcid.org/ 0000-0001-8948-1549