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ABSTRACT

In this paper, we define a new geometric concept that we will call “degenerate Saccheri
quadrilateral” and use it to give a new characterization of Möbius transformations. Our proofs
are based on a geometric approach.
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1. Introduction

Möbius transformations are rational functions of the form f(z) = az+b
cz+d satisfying ad− bc 6= 0, where a, b, c, d ∈

C. They are the automorphisms of extended complex plane C, that is, the meromorphic bijections f : C→ C.
Möbius transformations are also directly conformal homeomorphisms of C onto itself and they have beautiful
properties. For example, a map is Möbius if, and only if it preserves cross ratios. As for geometric aspect, circle-
preserving is another important characterization of Möbius transformations. There are well-known elementary
proofs that if f is a continuous injective map of C that maps circles into circles, then f is Möbius. In addition to
this the following result is well known and fundamental in complex analysis.

Theorem 1.1. [1] If f : C→ C is a circle preserving map, then f is a Möbius transformation if and only if f is a bijection.

The transformations f(z) = az+b
cz+d with ad− bc 6= 0, where a, b, c, d ∈ C are known as conjugate Möbius

transformations of C. It is easy to see that each conjugate Möbius transformation f is the composition of
complex conjugation with a Möbius transformation, since both of these are homeomorphisms of C onto
itself (complex conjugation being given by reflection in the plane through R ∪ {∞}), so is f . Notice that
the composition of a conjugate Möbius transformation with a Möbius transformation is a conjugate Möbius
transformation and composition of two conjugate Möbius transformations is a Möbius transformation. There
is a topological distinction between Möbius transformations and conjugate Möbius transformations in that
Möbius transformations preserve the orientation of C while conjugate Möbius transformations reverse it. To
see more details about conjugate Möbius transformations, we refer [11].

C. Carathéodory [4] proved that every arbitrary one to one correspondence between the points of a circular
disc C and a bounded point set C ′ by which circles lying completely in C are transformed into circles lying
in C ′ must always be either a Möbius transformation f(z) or f(z). R. Höfer generalized the Carathéodory’s
theorem to arbitrary dimensions in [9]. R. Höfer proved that for a domain D of Rn, if any injective mapping
f : D → Rn which takes hyperspheres whose interior is contained in D to hyperspheres in Rn, then f is the
restriction of a Möbius transformation. For more details about sphere preserving maps, see [2].

Since Möbius transformations play a major role in complex analysis and hyperbolic geometry, some authors
tried to present new characterizations of Möbius transformations by using various Euclidean polygons and
hyperbolic polygons. For example, in [8], H. Haruki and T.M. Rassias proved the following result by using
Apollonius quadrilaterals as follows:
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Theorem 1.2. [8] Let f : C→ C be a analytic and univalent transformation in a non-empty domain R on the z−plane.
Then f is a Möbius transformation if and only if f preserves Apollonius quadrilaterals in R.

S. Yang and A. Fang presented a new characterization of Möbius transformations by using Lambert
quadrilaterals and Saccheri quadrilaterals in the hyperbolic plane B2 = {z : |z| < 1} as follows:

Theorem 1.3. [14], [15] Let f : B2 → B2 be a continuous bijection. Then f is Möbius if and only if f preserves Lambert
quadrilaterals in B2.

Theorem 1.4. [14], [15] Let f : B2 → B2 be a continuous bijection. Then f is Möbius if and only if f preserves Saccheri
quadrilaterals in B2.

Definition 1.1. [3] The Lambert quadrilateral is a hyperbolic quadrilateral with angles π
2 , π2 , π2 and θ, where

0 < θ < π
2 .

Definition 1.2. [3] The Saccheri quadrilateral is a hyperbolic quadrilateral with angles π
2 , π2 , θ and θ, where

0 < θ < π
2 .

To see other characterizations of Möbius transformations with the help of hyperbolic polygons, we refer [10],
[5], [6] and [7].

Distorting of the non-adjacent right angles of a Lambert quadrilateral, degenerate Lambert quadrilateral
concept is defined as follows:

Definition 1.3. [7] A degenerate Lambert quadrilateral is a hyperbolic convex quadrilateral with ordered
angles π

2 + ε, π2 , π2 − ε, θ where 0 < θ < π
2 and 0 < ε < π

2 −
θ
2 .

In [7], O. Demirel proved the following result:

Theorem 1.5. [7] Let f : B2 → B2 be a surjective transformation. Then f is a Möbius transformation or a conjugate
Möbius transformation if and only if f preserves all ε−Lambert quadrilaterals where 0 < ε < π

2 .

Distorting of the right angles of a Saccheri quadrilateral, degenerate Saccheri quadrilateral concept is defined
as follows:

Definition 1.4. A degenerate Saccheri quadrilateral is a hyperbolic convex quadrilateral with ordered angles
π
2 − ε,

π
2 + ε, θ, θ where 0 < θ < π

2 and 0 < ε < π
2 −

θ
2 .

Notice that, for a degenerate Saccheri quadrilateral, the sum of the measures of mutual distorted angles are
π
2 + ε+ θ and π

2 − ε+ θ.
In this paper we call the degenerate Saccheri quadrilaterals having ordered angles π

2 − ε,
π
2 + ε, θ, θ briefly

as ε−Saccheri quadrilaterals. We consider the hyperbolic plane B2 = {z : |z| < 1} with length differential
ds2 = 4|dz|2

(1−|z|2)2 .

Throughout of the paper we denote by X ′ the image of X under f , by [P,Q] the geodesic segment between
points P and Q, by PQ the geodesic through points P and Q, by PQR the hyperbolic triangle with three
ordered vertices P,Q and R, by PQRS the hyperbolic quadrilateral with four ordered vertices P,Q,R and S,
and by ∠PQR the angle between [P,Q] and [P,R].

2. A Characterization of Möbius Transformations by use of Degenerate Saccheri
Quadrilaterals

In this section, by the ε−Saccheri quadrilaterals preserving property of functions, we meant that if ABCD
is a ε−Saccheri quadrilateral having ordered angles π

2 − ε,
π
2 + ε, θ and θ, then A′B′C ′D′ is a ε−Saccheri

quadrilateral having ordered angles π
2 − ε,

π
2 + ε, θ′ and θ′.

Lemma 2.1. Let f : B2 → B2 be a mapping which preserves all ε−Saccheri quadrilaterals where 0 < ε < π
2 . Then f is

injective.

Proof. Let us take two different points P and Q in B2. Then by constructing a ε−Saccheri quadrilateral PQRS,
one can easily get that P ′Q′R′S′ is also a ε−Saccheri quadrilateral by the property of f . Therefore, the points P ′
and Q′ must be different which implies that f is injective.
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Lemma 2.2. Let f : B2 → B2 be a mapping which preserves all ε−Saccheri quadrilaterals where 0 < ε < π
2 . Then f

preserves the collinearity and betweenness properties of the points.

Proof. Let P and Q be two different points in B2 and assume that S is an interior point of [P,Q]. Then S must
be lie on all ε−Saccheri quadrilaterals whose vertices are P and Q. By the property of f , the images of all
ε−Saccheri quadrilaterals with vertices P and Q are ε−Saccheri quadrilaterals with vertices P ′ and Q′ and
must contain S′. Since f is injective by Lemma 2.1, we get P ′ 6= S′ 6= Q′. Therefore, S′ must be an interior point
of [P ′, Q′] which implies that f preserves the collinearity and betweenness properties of the points.

Lemma 2.3. Let f : B2 → B2 be a mapping which preserves all ε−Saccheri quadrilaterals where 0 < ε < π
2 . Then f

preserves the angles π
2 + ε and π

2 − ε.

Proof. Let ABCD be a ε−Saccheri quadrilateral with ∠ABC = π
2 − ε, ∠BCD = π

2 + ε, ∠CDA = ∠DAB = θ and
denote the midpoint of [B,C] by M . Now, for a fixed α ∈ R satisfying 0 < α < ε < π

2 , pick a point on DC, say
E, satisfying ∠MEC = π

2 − α and C ∈ [E,D]. Let F be the common point of the geodesics ME and AB. Notice
that, if E is close enough to C, then F is close enough to B. Because of the fact that ∠ECM = ∠MBF = π

2 − ε,
∠CME = ∠BMF and dH = (B,M) = dH(M,C) hold true, where dH is the hyperbolic distance function, by
hyperbolic angle-side-angle theorem [12], the triangles FBM and ECM are congruent. Hence AFED must be
a α− Saccheri quadrilateral with ∠AFE = π

2 + α, ∠FED = π
2 − α, ∠CDA = ∠DAB = θ. Since f preserves all

degenerate Saccheri quadrilaterals, then the hyperbolic quadrilaterals A′B′C ′D′ and A′F ′E′D′ are ε−Saccheri
quadrilateral and α− Saccheri quadrilateral, respectively. Let us denote the measures of the angles of A′B′C ′D′
and A′F ′E′D′ by π

2 − ε,
π
2 + ε, θ′, θ′ and π

2 − α, π2 + α, θ′, θ′, respectively. Notice that since ∠EDA = ∠CDA =
∠BAD = ∠FAD = θ, then we have ∠E′D′A′ = ∠C ′D′A′ = ∠B′A′D′ = ∠F ′A′D′ = θ′. Because of the fact that f
preserves the collinearity and betweenness of the points by Lemma 2.2, one can easily see that the points F ′ and
C ′ must be lie on [A′, B′] and [D′, E′], respectively. Therefore, we have ∠A′B′C ′ = π

2 − ε or ∠A′B′C ′ = π
2 + ε.

Now, assume that ∠A′B′C ′ = π
2 + ε. Thus we have ∠B′C ′D′ = π

2 − ε. Obviously, ∠A′F ′M ′ = π
2 + α must be

hold, otherwise, if ∠A′F ′M ′ = π
2 − α holds which implies ∠M ′F ′B′ = π

2 + α, then the sum of the measures of
interior angles of the triangle F ′B′M ′ is greater than π which is not possible in hyperbolic geometry. Thus we
get ∠A′F ′M ′ = π

2 + α and ∠M ′F ′B′ = π
2 − α. Let P and Q be the common points of the unit disc B2 and the

hyperbolic disc D′E′. Assume that E′ lies on [C ′, Q]. If X is a point moving from Q to P on PQ, then ∠M ′XP
must be increase from 0 to π. Hence, we get π

2 − α <
π
2 − ε which implies ε < α. This is a contradiction since

α < ε. Therefore, we get ∠A′B′C ′ = π
2 − ε which implies ∠B′C ′D′ = π

2 + ε.

Lemma 2.4. Let f : B2 → B2 be a mapping which preserves all ε−Saccheri quadrilaterals where 0 < ε < π
2 . Then f

preserves the measures of equal angles.

Proof. Let ABCD be a ε−Saccheri quadrilateral with ∠ABC = π
2 − ε, ∠BCD = π

2 + ε, ∠CDA = ∠DAB = θ. By
Lemma 2.3, we have ∠A′B′C ′ = π

2 − ε, ∠B
′C ′D′ = π

2 + ε. Now we have to prove that θ = ∠CDA = ∠DAB =
∠C ′D′A′ = ∠D′A′B′ = θ′. Let PQRS be a hyperbolic square with center is O, where O is the origin of B2

satisfying ∠PQR = ∠QRS = ∠RSP = ∠SPQ = θ
2 . Without loss of generality, we may assume that the points

P and R lie on the y−axis and the points Q and S lie on the x−axis. Let X and Y be the midpoints of
[P,Q] and [S,R], respectively. Notice that the hyperbolic quadrilateral PXY S is a Saccheri quadrilateral with
∠PXY = ∠XY S = π

2 by the property of a hyperbolic square. Now, pick a point on [S, Y ], say K, such that
∠OKY = θ. The existence of K is clear since ∠OSY = θ

4 and ∠OY S = π
2 . Now pick a point on [Q,X], say L,

such that dH(L,Q) = dH(S,K). It is not hard to see that the hyperbolic triangles OLQ and OKS are congruent.
Hence, we get ∠OLX = ∠OKY = θ. Because of θ < π

2 , we may represent θ as θ := π
2 − α. Thus we have

∠OLQ = π − θ = π − (π2 − α) =
π
2 + α which implies that KLQR is a α−Saccheri quadrilateral with ∠RKL =

π
2 − α, ∠KLQ = π

2 + α, ∠LQR = ∠QRK = θ
2 . The angle ∠CDA of the ε−Saccheri quadrilateral ABCD can

be moved to the point K by an appropriate hyperbolic isometry g, such that the points g(A) and g(C) lie
on the geodesics KL and KR, respectively. Because of the fact that f preserves ε−Saccheri quadrilaterals
for all 0 < ε < π

2 , then K ′L′Q′R′ is a α−Saccheri quadrilateral with ∠L′K ′R′ = π
2 − α = θ, ∠K ′L′Q′ = π

2 + α =
π − θ, ∠L′Q′R′ = ∠Q′R′K ′ by Lemma 2.3. Thus we get ∠A′D′C ′ = ∠g(A)g(D)g(C) = ∠L′K ′R′ = θ holds true.
Similarly, one can easily prove that ∠D′A′B′ = θ holds true. Hence f preserves the measures of equal angles.

Lemma 2.5. Let f : B2 → B2 be a mapping which preserves all ε−Saccheri quadrilaterals where 0 < ε < π
2 . Then f

preserves hyperbolic distance.
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Proof. Let A and B be two different points in B2. These points define two different hyperbolic squares. Choose
one of them and denote it by ABCD. Assume ∠ABC = ∠BCD = ∠CDA = ∠DAB := θ and denote it center
by M . The geodesics passing through M , must intersect ABCD at two points. Let p be a hyperbolic geodesic
passing throughM but not passing through the pointsA,B,C,D,M1,M2,M3,M4 whereM1,M2,M3,M4 are the
midpoints of [A,B], [B,C], [C,D], [D,A], respectively. Therefore the hyperbolic square ABCD and hyperbolic
geodesic p define two congruent degenerate Saccheri quadrilaterals. Assume that these degenerate Saccheri
quadrilaterals be two β−Saccheri quadrilaterals. By Lemma 2.3 and Lemma 2.4, the images of these two
degenerate Saccheri quadrilaterals are β−Saccheri quadrilaterals with angles π

2 − β, π2 + β, θ, θ. By Lemma 2.4,
we get ∠A′B′C ′ = ∠B′C ′D′ = ∠C ′D′A′ = ∠D′A′B′ := θ. Because of the fact that the angles at the vertices of a
hyperbolic square define its lengths, we get dH(A,B) = dH(A′, B′), see [13].

Theorem 2.1. Letf : B2 → B2 be a surjective transformation. Then f is a Möbius transformation or a conjugate Möbius
transformation if and only if f preserves all ε−Saccheri quadrilaterals where 0 < ε < π

2 .

Proof. The “only if ” part is obvious because f is an isometry. Conversely, we may assume that f preserves
ε−Saccheri quadrilaterals for all 0 < ε < π

2 in B2 and f(O) = O by composing an hyperbolic isometry if
necessary. Let us take two different points in B2 and denote them by x, y. By Lemma 2.5, we immediately get
dH(O, x) = dH(O, x′) and dH(O, y) = dH(O, y′), namely |x| = |x′| and |y| = |y′|, where | · | denotes the Euclidean
norm. Therefore we get |x− y| = |x′ − y′| by since f preserves angular sizes by Lemma 2.4. As

2〈x, y〉 = |x|2 + |y|2 − |x− y|2 = |x′|2 + |y′|2 − |x′ − y′|2 = 2〈x′, y′〉,

f preserves inner-products and then is the restriction on B2 of an orthogonal transformation, that is, f is a
Möbius transformation or a conjugate Möbius transformation by Carathéodory’s theorem.

Corollary 2.1. Let f : B2 → B2 be a conformal (angle preserving with sign) surjective transformation. Then f is a
Möbius transformation if and only if f preserves all ε−Saccheri quadrilaterals where 0 < ε < π

2 .

Corollary 2.2. Let f : B2 → B2 be a angle reversing surjective transformation. Then f is a conjugate Möbius
transformation if and only if f preserves all ε−Saccheri quadrilaterals where 0 < ε < π

2 .
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