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ABSTRACT

In this paper, we study rectifying curves arising through the dilation of unit speed curves on the
unit sphere S3 and conclude that arcs of great circles on S3 do not dilate to rectifying curves, which
develope previously obtained results for rectifying curves in Eucidean spaces. This fact allows
us to prove that there exists an associated rectifying curve for each Frenet curve in the Euclidean
space E4 and a result of the fact rectifying curves in the Euclidean space E4 are ample , indeed as
an appication, we present an ordinary differential equation satisfied by the distance function of a
Frenet curve in E4 which alows us to characterize the spherical curves and rectifying curves in E4.
Furthermore, we study ccr-curves in the Euclidean space E4 which are generalizations of helices in
E3 and show that the property of a helix that its tangent vector field makes a constant angel with a
fixed vector (axis of helix) does not go through for a ccr-curve.

Keywords: Frenet curves, rectifying curves, Chen curves, ccr-curves, curvatures.

AMS Subject Classification (2010): 53A04

1. Introduction

The study of rectifying curves in the Euclidean space E3 was initiated by Professor B. Y. Chen (cf. [3, 4]) as
space curves whose position vector always lies in its rectifying plane, spanned by the tangent and the binormal
vector fields T and B of the curve. Accordingly, the position vector with respect to some chosen origin, of a
rectifying curve α in E3, satisfies the equation

α(s) = λ(s)T (s) + µ(s)B(s),

where λ(s) and µ(s) are arbitrary differentiable functions in arclength parameter s ∈ I ⊂ R.
It is well kown that rectifying curves have important role in physics as well as in joint kinematics (cf.

[1, 6, 7, 14, 16, 17]). In [2, 9], the authors have extended the notion of rectifying curves in the Euclidean
spaces E4 and to higher dimensional Euclidean spaces En respectively. As a matter of tribute to the enormous
contributions of Professor Bang-Yen Chen to geometry and its applications in physics, we shall call a rectifying
curve as a Chen curve. The main source of examples of Chen curves in the Euclidean space E4 is through dilation
of unit speed curves on the unit sphere S3 (cf. [9]). In [9], Ilarslan and Nesovic show that, given a unit speed
curve y(t) on the unit sphere S3 and a positive differentiable function f(t), the dilation of y(t) with dilation
factor f(t), that is, the curve α(t) = f(t)y(t) is a Chen curve if and only if f(t) = a sec(t+ t0), where a > 0 and
t0 are constants.

In this paper, we observe that the arcs of great circles do not dilate to a Chen curves (cf. Corollary 3.1) and
accordingly the Theorem 3.5 in [9] and Theorem 4.7 in [2] need to be refined and thus we restate this result of
[9]. Unlike to Chen curves in the Euclidean space E3, where examples are not too many, it is interesting to see
that in the Euclidean space E4 they are in abundance. Also, we show that for each Frenet curve in E4 there exists
an associated Chen curve (cf. Theorem 3.1) and thus there are as many Chen curves in E4 as Frenet curves. As
in case of Frenet curves in E3 (cf. [7]), we derive a differential equation satisfied by the distance function of unit
speed Frenet curve α : I → E4 (cf. Theorem 4.1) and as its applications we have several corollaries, which give
characterizations of spherical curves as well as Chen curves in the Euclidean space E4.
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On the other hand, helices in the Euclidean space E3 are very important curves as they appear in physical
applications as well as in medical sciences (specially in the structure of DNA), and are characterized by torsion
curvature ratio is a constant (Lancret theorem) [11]. Moreover, an important property of a helix is that its tangent
vector field makes a constant angle with a fixed direction (a constant unit vector in E3) called the axis of helix.
As generalization of a helix in E3 to higher dimensional spaces a curve with constant curvature ratios or a
ccr-curve is introduced, and these curves are studied in [13] and [15]. It is well known that, a Frenet curve
α : I → En is said to be ccr-curve if the curvature ratios κi+1

κi
are constants, i = 1, .., n− 1. A natural question

arises as to whether the property that the tangent vector field makes a constant angle with a constant vector in
E3 that of a helix holds for ccr-curves? Finally, we study this question and show that this property of helix in
E3 does not go through for ccr-curves in the Euclidean space E4 (cf. Theorem 5.1).

2. Preliminaries

Let α : I → E4 be a unit speed Frenet curve with Frenet-Serret apparatus {κ1, κ2, κ3, T,N,B1, B2}, κi 6= 0 and
ρi =

1
κi

, i = 1, 2, 3 ([11]). Then Frenet equations are given by

T
′
= κ1N , N

′
= −κ1T + κ2B1, B

′

1 = −κ2N + κ3B2, B
′

2 = −κ3B1. (2.1)

A Frenet curve α(t) is said to be a Chen curve if 〈α(t), N(t)〉 = 0, t ∈ I , (cf. [2, 9] ). The distance function
f(t) = ‖α(t)‖ of the Chen curve satisfies

f(t) =
√
t2 + c1t+ c2, (2.2)

where c1, c2 are constants and the converse is also true (cf. [9]).
A major source of examples of Chen curves in the Euclidean space E4 is the dilation of a unit speed curve on

the unit sphere S3 by a positive dilation factor (cf. [2, 9]). In [9], it is shown that if y(t) is a unit speed curve on
the unit sphere S3 and f(t) is a positive differentiable function, then the curve α(t) = f(t)y(t) is a Chen curve if
and only if

f(t) = a sec(t+ t0), (2.3)

where a > 0 and t0 are constants.

3. Chen curves through dilation of curves on S3

The major source of examples of Chen curves is provided by the dilated curves α(t) = a sec(t+ t0)y(t), where
y(t) is a unit speed curve on the unit sphere S3 and a > 0, t0 are constants.(cf. [9]). However, if we consider the
arc of a great circle y(t) on S3, we can choose its Frenet apparatus as

{
1, 0, 0, y

′
,−y, Y1, Y2

}
, where binormals

Y1, Y2 are constant unit vectors. Then we have the dilated curve (cf. Theorem 3.5, [9]),

α(t) = a sec(t+ t0)y(t),

and we find the speed va and the tangent vector filed Tα of α as

vα = a sec2(t+ t0), Tα = sin(t+ t0)y + cos(t+ t0)y
′
.

Differentiating Tα, and denoting the first curvature of α as κ1, we get

κ1a sec
2(t+ t0)Nα = cos(t+ t0)y + sin(t+ t0)y

′
− sin(t+ t0)y

′
+ cos(t+ t0)y

′′
=
−→
0 ,

where we used first equation (2.1) as y
′′
= −y. Hence, the first curvature κ1 = 0 and consequently, α(t) is not

a Chen curve, as the definition of Chen curve requires that its curvatures are nonzero (cf. [9]). Thus, not all
curves which are dilation of unit speed curve y(t) on S3 of the type α(t) = a sec(t+ t0)y(t) are Chen curves.
To understand this relationship between the Chen curve α(t) and the unit speed curve y(t), first we prove the
following Lemma.
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Lemma 3.1 Let y(t) be the unit speed curve on the unit sphere S3 and α(t) = a sec(t+ t0)y(t) be the dilation of y(t).
Then the first curvatures κα1 and κ1 of the curves α(t) and y(t) respectively satisfy

κα1 =
1

a
cos3(t+ t0)

√
κ21 − 1.

Proof. Let κα1 be the first curvature of α(t) and Tα, Nα be the tangent vector field and principal normal vector
field of α(t), and κ1, T , N be those of the unit speed curve y(t). Note that we have

T = y
′
, y

′′
= T

′
= κ1N , 〈y, y〉 =

〈
y

′
, y

′
〉
= 1,

〈
y, y

′
〉
= 0. (3.1)

Differentiating expression for α(t), we get

α
′
(t) = a sec(t+ t0)

(
tan(t+ t0)y + y

′
)

.

Thus, the speed of α(t) is given by vα = a sec2(t+ t0), and consequently, we get

Tα = sin(t+ t0)y + cos(t+ t0)y
′
.

Differentiating above equation and using equation (2.1), we get

κα1 a sec
2(t+ t0)Nα = cos(t+ t0)y + cos(t+ t0)y

′′
.

This equation gives

κα1 =
1

a
cos3(t+ t0)

√
1 + ‖y′′‖2 + 2 〈y, y′′〉. (3.2)

Using equation (3.1), we have
∥∥∥y′′

∥∥∥2 = κ21 and differentiating the equation
〈
y, y

′
〉
= 0, we get 1 +

〈
y, y

′′
〉
= 0.

Thus equation (3.2) proves the Lemma. �
Since, by Theorem 3.5 (cf. [9], p-27) α(t) = a sec(t+ t0)y(t) is a Chen curve, which requires κα1 > 0. Hence, by

above Lemma, we have the following:

Corollary 3.1. Let y(t) be an unit speed curve on the unit sphere S3 that is not an arc of the great circle, then
α(t) = a sec(t+ t0)y(t) is a Chen curve.

Consequently, great circles are to be excluded in the Theorem 3.5 of [9] (as well as in Theorem 4.7 of [2]). We
restate the result in [9] (similarly Theorem 4.7 in [2] is to be restated with dimensional adjustment) as follows:

Theorem ([9]). Let y : I → S3 be a unit speed curve on the unit sphere S3 centered at the origin o ∈ E4 and
f(t) a positive differentiable function defined on open interval I . Then α(t) = f(t)y(t) is a Chen curve if and only if
f(t) = a sec(t+ t0) for some constants a > 0 and t0 such that there exists no subinterval J ⊂ I with y(J) ⊂ S3 ∩ E2 for
any 2-plane E2 containing the origin of E4.

In the rest of this section, we prove the following theorem, which asserts that to each unit speed Frenet curve
in E4, there is an associated Chen curve, showing the Chen curves are in abundance, indeed as many as unit
speed Frenet curves in the Euclidean space E4.

Theorem 3.1. Let α : I → E4 be a unit Frenet curve of class C5, with Frenet apparatus {κ1, κ2, κ3, T,N,B1, B2}.
Then for a point t0 ∈ I , and the curve β : I → E4 defined by

β(t) =
κ2
κ1

sin

 t∫
t0

κ3du

T + sin

 t∫
t0

κ3du

B1 + cos

 t∫
t0

κ3du

B2

there exists a subinterval J of I containing the point t0 such that the curve β : J → E4 is a Chen curve.

Proof : Using equations in (2.1), we compute

β
′
(t) =

κ2
κ1

sin

 t∫
t0

κ3du


′

T . (3.3)
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Note that

β
′
(t0) =

(
κ2κ3
κ1

)
(t0)T (t0) 6=

−→
0 ,

and thus by continuity of β
′
(t) on I , there is a subinterval J of I containing t0 such that β

′
(t) 6= −→0 for each

t ∈ J . Hence, β : J → E4 is a regular curve with speed vβ and tangent vector field Tβ given by

vβ =

∣∣∣∣∣∣∣
κ2
κ1

sin

 t∫
t0

κ3du


′∣∣∣∣∣∣∣ , Tβ = ±T . (3.4)

Differentiating second equation in (3.4) and using equation (2.1), we get

κβ1vβNβ = ±κ1N , (3.5)

where κβ1 is the first curvature and Nβ is the principal normal of the regular curve β(t). Hence, we have

κβ1 =
κ1
vβ

, Nβ = ±N . (3.6)

Similarly, differentiating second equation in (3.6) and using equations (2.1), (3.4), (3.6), we find the second
curvature κβ2 and the first binormal vector field Bβ1 as

κβ2 =
κ2
vβ

, Bβ1 = ±B1. (3.7)

Finally, differentiating the second equation in (3.7), we find the third curvature κβ3 and the second binormal
vector field Bβ2 given by

κβ3 =
κ3
vβ

, Bβ2 = ±B2. (3.8)

Since all the curvatures κβi = κi
vβ
6= 0, i = 1, 2, 3, the curve β(t) is a Frenet curve and it follows from equation

(3.5) and definition of β(t) that
〈β(t), Nβ〉 = 0.

Hence, β(t) is a Chen curve. �

Remark: Let s be the arc length parameter of the Chen curve β(t) of Theorem 3.1. Then using equation (3.4),
we find

s =
κ2
κ1

sin

 t∫
t0

κ3du

+ c

for a constant c, and thus, the distance function f(s) = ‖β(s)‖ is given by

f(s) =

√√√√√
κ2
κ1

sin

 t∫
t0

κ3du

2

+ 1 =
√

(s− c)2 + 1 =
√
s2 + c1s+ c2,

where c1, c2 are constants, which is the required representation of the distance function of a Chen curve (cf.
[9]).

Example: Theorem 3.1, provides an equal number of Chen curves as those of Frenet curves. For example
consider the unit speed curve α : I → E4 defined by

α(t) =

(
cos

√
2

3
t, sin

√
2

3
t, cos

√
1

3
t, sin

√
1

3
t

)
,
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The curvatures of α(t) are given by κ1 =
√
5
3 , κ2 = 1

3

√
2
5 and κ3 =

√
2
5 and Frenet frame vector fields are given

by

T =

(
−
√

2

3
sin

√
2

3
t,

√
2

3
cos

√
2

3
t,−
√

1

3
sin

√
1

3
t,

√
1

3
cos

√
1

3
t

)
,

N = − 1√
5

(
2 cos

√
2

3
t, 2 sin

√
2

3
t, cos

√
1

3
t, sin

√
1

3
t

)
,

B1 =
1√
2

(√
2

3
sin

√
2

3
t,−
√

2

3
cos

√
2

3
t,− 2√

3
sin

√
1

3
t,

2√
3
cos

√
1

3
t

)
,

B2 =
1√
5

(
cos

√
2

3
t, sin

√
2

3
t,−2 cos

√
1

3
t,−2 sin

√
1

3
t

)
.

Thus, the corresponding Chen curve is given by

β(t) =

√
2

5
sin

(√
2

5
t

)
T + sin

(√
2

5
t

)
B1 + cos

(√
2

5
t

)
B2

and its curvatures are given by

κβ1 =
25

6
sec

(√
2

5
t

)
, κβ2 =

5

3
√
2
sec

(√
2

5
t

)
and κβ3 =

5√
2
sec

(√
2

5
t

)
.

4. A differential equation and its applications

Let α : I → E4 be a unit speed Frenet curve of class C6 and f(t) = ‖α(t)‖ be the distance function. The
distance function is assumed to be differentiable (If the curve passes through origin, we could use an isometry
of E4 to make the distance function differentiable). In this section, first we find a differential equation satisfied
by the distance function of any Frenet curve and then as an application of this differential equation we derive
characterizations of sphere curves and Chen curves in the Euclidean space E4.

Note that using equations in (2.1), we have the following

〈α(t), T 〉
′
= 1 + κ1 〈α(t), N〉 , 〈α(t), N〉

′
= −κ1 〈α(t), T 〉+ κ2 〈α(t), B1〉 , (4.1)

〈α(t), B1〉
′
= −κ2 〈α(t), N〉+ κ3 〈α(t), B2〉 , 〈α(t), B2〉

′
= −κ3 〈α(t), B1〉 . (4.2)

Theorem 4.1. Let α : I → E4 be a unit speed Frenet curve of class C5 with Frenet-Serret apparatus
{κ1, κ2, κ3, T,N,B1, B2}, ρi = 1

κi
, i = 1, 2, 3. Then the function h(t) = f(t)f

′
(t), where f(t) = ‖α(t)‖ is the distance

function of α, satisfies the differential equation

ρ1ρ2ρ3h
(iv) +

[
(ρ1ρ2ρ3)

′
+ ρ3 (ρ1ρ2)

′
+ ρ

′

1ρ2ρ3

]
h

′′′

+

[(
ρ3

(
(ρ1ρ2)

′
+
(
ρ

′

1ρ2

)))′

+ ρ3

((
ρ

′

1ρ2

)′

+
ρ1
ρ2

+
ρ2
ρ1

)
+
ρ1ρ2
ρ3

]
h

′′

+

[(
ρ3

((
ρ

′

1ρ2

)′

+
ρ1
ρ2

+
ρ2
ρ1

))′

+ ρ3

(
ρ2
ρ1

)′

+
ρ2
ρ3
ρ

′

1

]
h

′

+

(ρ3(ρ2
ρ1

)′)′

+
ρ2
ρ1ρ3

h− [(ρ3((ρ′

1ρ2

)′

+
ρ1
ρ2

))′

+
ρ2
ρ3
ρ

′

1

]
= 0.
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Proof : Differentiating f2(t) = 〈α(t), α(t)〉 and using equations (4.1) and (4.2), we get

h(t) = 〈α(t), T 〉 〈α(t), T 〉
′
+ 〈α(t), N〉 〈α(t), N〉

′
+ 〈α(t), B1〉 〈α(t), B1〉

′

+ 〈α(t), B2〉 〈α(t), B2〉
′

= 〈α(t), T 〉 . (4.1)

Differentiating equation (4.3) and using equation (4.1), we have

ρ1

(
h

′
− 1
)
= 〈α(t), N〉 , (4.4)

which on differentiating and using equations (4.1), (4.3), leads to

ρ1ρ2h
′′
+ ρ

′

1ρ2

(
h

′
− 1
)
+
ρ2
ρ1
h = 〈α(t), B1〉 . (4.5)

Differentiating above equation and using equations (4.2), (4.4), we get

ρ1ρ2ρ3h
′′′
+ ρ3

(
(ρ1ρ2)

′
+
(
ρ

′

1ρ2

))
h

′′
+ ρ3

((
ρ

′

1ρ2

)′

+
ρ1
ρ2

+
ρ2
ρ1

)
h

′

+ρ3

(
ρ2
ρ1

)′

h−
(
ρ3

((
ρ

′

1ρ2

)′

+
ρ1
ρ2

))
= 〈α(t), B2〉 .

Finally, differentiating above equation and using equations (4.2), (4.5) after a straight forward computation, we
get the differential equation in the statement of the theorem. �

As an application of Theorem 4.1, we have the following corollaries giving characterizations of the spherical
curves and Chen curves in the Euclidean space E4.

Corollary 4.1.[13] A unit speed Frenet curve α : I → E4 is a spherical curve if and only if

ρ21 +
(
ρ

′

1ρ2

)2
+

(
ρ3

[(
ρ

′

1ρ2

)′

+
ρ1
ρ2

])2

= r2,

where r is a positive constant.

Proof. Suppose α(t) is a spherical curve that lies on a sphere of radius r. Without loss of generality, we can
assume that the center of the sphere is at the origin (for otherwise, we could use an isometry of the Euclidean
space E4 to achieve this objective). Thus, the distance function of α(t) satisfies f(t) = r and consequently, we
have h(t) = 0 in the differential equation of Theorem 4.1, which gives(

ρ3

((
ρ

′

1ρ2

)′

+
ρ1
ρ2

))′

+
ρ2
ρ3
ρ

′

1 = 0. (4.6)

Multiplying equation (4.6) by

2

(
ρ3

[(
ρ

′

1ρ2

)′

+
ρ1
ρ2

])
,

we get

2ρ3

[(
ρ

′

1ρ2

)′

+
ρ1
ρ2

](
ρ3

[(
ρ

′

1ρ2

)′

+
ρ1
ρ2

])′

+ 2
(
ρ

′

1ρ2

)(
ρ

′

1ρ2

)′

+ 2ρ1ρ
′

1 = 0,

which on integration gives the required result.
Conversely, suppose α(t) is a unit speed Frenet curve that satisfies the given condition, which is equivalent

to equation (4.6). We use equations in (2.1) and (4.6) to compute(
α(t) + ρ1N +

(
ρ

′

1ρ2

)
B1 + ρ3

[(
ρ

′

1ρ2

)′

+
ρ1
ρ2

]
B2

)′

=
−→
0 .
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Hence, we get a constant vector −→m that satisfies 〈α(t)−−→m,α(t)−−→m〉 = r2, that is, α(t) is a spherical curve. �

Corollary 4.2 (Theorem 3.1[9]). A unit speed Frenet curve α : I → E4 is a Chen curve if and only if(
ρ3

(
ρ2
ρ1

)′

(t+ c) +
ρ2ρ3
ρ1

)′

+
ρ2
ρ1ρ3

(t+ c) = 0,

where c is a constant.

Proof. Suppose α(t) is a Chen curve. Then the distance function f(t) = ‖α(t)‖ is given by equation (2.2) (cf.
[9])

f(t) =
√
t2 + c1t+ c2,

where c1, c2 are constants. Then it follows that h(t) = f(t)f
′
(t) = t+ c, where 2c = c1. Using h(t) = t+ c and

h
′
(t) = 1 in the differential equation of Theorem 4.1, we get[(

ρ3

((
ρ

′

1ρ2

)′

+
ρ1
ρ2

+
ρ2
ρ1

))′

+ ρ3

(
ρ2
ρ1

)′

+
ρ2
ρ3
ρ

′

1

]

+

(ρ3(ρ2
ρ1

)′)′

+
ρ2
ρ1ρ3

 (t+ c)−

[(
ρ3

((
ρ

′

1ρ2

)′

+
ρ1
ρ2

))′

+
ρ2
ρ3
ρ

′

1

]
= 0,

which gives the condition in the statement. The converse follows from [9]. �

Corollary 4.3 ( [5]). A unit speed Frenet curve α : I → E4 satisfies

〈α(t), N〉2 + 〈α(t), B1〉2 + 〈α(t), B2〉2 = c2,

for a constant c, if and only if either it is a spherical curve or a Chen curve.

Proof. Suppose α(t) is a unit speed Frenet curve satisfying the given condition. Differentiating the condition
in the statement and using equations in (2.1), we get

κ1 〈α(t), T 〉 〈α(t), N〉 = 0. (4.7)

Also, in view of given condition, the distance function is given by

f(t) =

√
〈α(t), T 〉2 + c2, (4.8)

which on differentiating leads to

h(t) = 〈α(t), T 〉+ κ1 〈α(t), T 〉 〈α(t), N〉 .

Using equations (4.7) and (4.8) in the above equation, we conclude that

f2 = h2 + c2,

which on differentiation gives h = hh
′
, that is either h = 0 or h = 1 holds. Hence, Corollaries 4.1 and 4.2 imply

that either α(t) is a sphere curve or a Chen curve. The converse is trivial. �

5. Curves with constant curvature ratios

Helices in the Euclidean space E3 are very important curves as they appear in physical applications as well
as in medical sciences (specially in the structure of DNA). From the view of differential geometry, a helix is a
geometric curve with nonvanishing constant curvature κ and non-vanishing constant torsion τ [11]. The helix
is also known as circular helix or W -curve which is a special case of the general helix. The main feature of
general helix is that the tangent makes a constant angle with a fixed straight line which is called the axis of
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the general helix. A classical result stated by Lancret in 1802 and first proved by de Saint Venant in 1845 says
that: A necessary and sufficient condition that a curve be a general helix is that the ratio κ

τ is constant along
the curve.

As generalization of a helix in E3 to higher dimensional spaces, a curve with constant curvature ratios or a
ccr-curve, is introduced and these curves are studied in [13] and [15]. A Frenet curve α : I → En is said to be
ccr-curve if the curvature ratios κi+1

κi
are constants, i = 1, .., n− 1.

A natural question arises as to whether the property that the tangent vector field makes a constant angle
with a constant vector in E3 that of a helix holds for ccr-curves? In this section, we study this question for the
Frenet curves in the Euclidean space E4 and show that this property of helix in E3 does not go through for
ccr-curves in the Euclidean space E4.

Proposition 5.1. The tangent vector field of a unit speed Frenet curve α : I → E4 makes a constant angle with a
constant unit vector in E4 if and only if

κ1
κ2

= a sin

 t∫
0

κ3du

 ,

where a 6= 0 is a constant.

Proof. Suppose −→u is a constant unit vector in E4 such that 〈−→u , T 〉 = c for a constant c. Then using equation
(2.1), we get 〈−→u ,N〉 = 0, which on differentiating and using equation (2.1), gives

〈−→u ,B1〉 = c

(
κ1
κ2

)
.

Differentiating above equation gives

〈−→u ,B2〉 =
c

κ3

(
κ1
κ2

)′

and consequently, the unit vector −→u has the following representation

−→u = cT + c

(
κ1
κ2

)
B1 +

c

κ3

(
κ1
κ2

)′

B2. (5.1)

Differentiation of above equation, in view of equation (2.1) leads to

c

( 1

κ3

(
κ1
κ2

)′)′

+

(
κ1
κ2

)
κ3

B2 = 0,

which implies either c = 0 or (
1

κ3

(
κ1
κ2

)′)′

+

(
κ1
κ2

)
κ3 = 0. (5.2)

However, using c = 0 in equation (5.1) gives −→u =
−→
0 , a contradiction. Hence, equation (5.2) holds, which on

multiplication by 2 1
κ3

(
κ1

κ2

)′

leads to

(
1

κ3

(
κ1
κ2

)′)2

+

(
κ1
κ2

)2

= a2,

where constant a 6= 0 is a constant (by virtue of the fact that α(t) is a Frenet curve). The above equation could
be rearranged as (

κ1

κ2

)′

√
a2 −

(
κ1

κ2

)2 = κ3,
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(we have considered only positive sign of the radical, as the negative sign could be adjusted with the constant
in the final result giving the same result). Integrating above equation, we get the result.

Conversely, assume that the unit speed Frenet curve α(t) in the Euclidean space E4 satisfies

κ1
κ2

= a sin

 t∫
0

κ3du

 , (5.3)

where a is a nonzero constant. Define a unit vector −→u in E4 by

−→u =
1√

1 + a2
T +

a√
1 + a2

sin

 t∫
0

κ3du

B1 +
a√

1 + a2
cos

 t∫
0

κ3du

B2.

Differentiation of above equation, in view of equations (2.1) and (5.3), gives

−→u
′

=
κ1√
1 + a2

N − aκ2√
1 + a2

sin

 t∫
0

κ3du

N

=
κ2√
1 + a2

κ1
κ2
− a sin

 t∫
0

κ3du

N =
−→
0 ,

that is, −→u is a constant unit vector that satisfies 〈−→u , T 〉 = 1√
1+a2

. Hence the tangent vector field T of the Frenet
curve α(t) makes a constant angle with the constant unit vector −→u . �

As a consequence of above Proposition, we have the following:

Corollary 5.1. There does not exist a Frenet ccr-curve in the Euclidean space E4 whose tangent vector field makes a
constant angle with a constant unit vector field.

Proof. Suppose α : I → E4 is a Frenet ccr-curve such that 〈−→u , T 〉 = c, where c is a constant. Then differentiating
equation (5.3) would give

cos

 t∫
0

κ3du

 = 0,

as κ3 6= 0 for a Frenet curve. The above equation implies

t∫
0

κ3du = a constant,

which on differentiation leads to κ3 = 0, a contradiction. �

We also have the following Proposition, whose proof is parallel to Proposition 5.1.

Proposition 5.2. The second binormal vector field B2 of a unit speed Frenet curve α : I → E4 makes a constant angle
with a constant unit vector in E4 if and only if

κ3
κ2

= a sin

 t∫
0

κ1du

 ,

where a 6= 0 is a constant.

As a consequence of above Proposition, we have the following:
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Corollary 5.2. There does not exist a Frenet ccr-curve in the Euclidean space E4 whose second binormal vector field
makes a constant angle with a constant unit vector field.

Corollary 5.3. There does not exist a Frenet ccr-curve in the Euclidean space E4 whose principal normal vector field
makes a constant angle with a constant unit vector field.

Proof. Suppose α(t) be a Frenet ccr-curve in E4 whose principal normal vector field N makes a constant angle
with a constant unit vector−→u , that is 〈−→u ,N〉 = c for a constant c. Since, for a ccr-curve we have κ2

κ1
= c1, κ3

κ2
= c2,

and κ3

κ1
= c1c2, where c1, c2 are nonzero constants. Differentiating 〈−→u ,N〉 = c, we get

〈−→u , T 〉 = c1 〈−→u ,B1〉 , (5.4)

which again on differentiation leads to

〈u,B2〉 =
c

c2

(
1 +

1

c21

)
. (5.5)

Differentiating above equation, we get 〈−→u ,B1〉 = 0 and consequently, by equation (5.4) that 〈−→u , T 〉 = 0. Hence,
the unit vector field −→u admits the following expression

−→u = cN +
c

c2

(
1 +

1

c21

)
B2, (5.6)

and differentiation of this equation leads to

−→
0 = c

(
−κ1T + κ2B1 −

κ3
c2

(
1 +

1

c21

)
B1

)
= c

(
−κ1T −

κ2
c21
B1

)
.

Thus c = 0, which in view of equation (5.6), gives −→u =
−→
0 , a contradiction and this proves the Corollary. �

We also have the following Corollary, whose proof is parallel to Corollary 5.3.

Corollary 5.4. There does not exist a Frenet ccr-curve in the Euclidean space E4 whose first binormal vector field makes
a constant angle with a constant unit vector field.

Combining corollaries 5.1-5.4, we have the following:

Theorem 5.1. There does not exist a Frenet ccr-curve in the Euclidean space E4 whose any Frenet frame vector field
makes a constant angle with a constant unit vector field.
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