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ABSTRACT

In this work, we study timelike rectifying slant helices in E3
1 . First, we find general equations of

the curvature and the torsion of timelike rectifying slant helices. After that, by solving second
order linear differential equations, we obtain families of timelike rectifying slant helices that lie
on cones.
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1. Introduction

Helices arise in nanosprings, carbon nanotubes, DNA double and collagen triple helices. The double helix
shape is commonly associated with DNA [1].

In differential geometry, a general helix in Euclidean 3-space is characterized by the property that the tangent
lines make a constant angle with a fixed direction [12, 13].

Similarly, the notion of slant helix was introduced by Izuyama and Takeuchi by the property that the
principal normal lines make a constant angle with a fixed direction [8, 9]. They showed that a space curve
is a slant helix if and only if the geodesic curvature of the principal normal of the curve is a constant function.
In [10, 11], Kula et al. studied the spherical images of slant helices.

Later, Ahmet T. Ali studied slant helices in Minkowski 3-space [1, 2].
The notion of rectifying curve has been introduced by Chen [5, 6]. Chen proposed the conditions under

which the position vector of a unit speed curve lies in its rectifying plane. Besides, he stated the importance of
rectifying curves in Physics.

In [3, 4], Altunkaya and Kula studied rectifying slant helices and found the position vector of these curves.
They obtained unit speed families of rectifying slant helices which lie on cones.

The papers mentioned above led us to study on the notion of timelike rectifying slant helices. We begin
with finding the equations of curvature and torsion of a timelike rectifying slant helix. After that, we construct
second order linear differential equations to determine position vector of timelike rectifying slant helices. By
solving these equations for some special cases, we find unit speed families of rectifying slant helices which lie
on cones.

2. Basic Concepts

E3
1 denote the Minkowski 3-space with the metric,

g = dx21 + dx22 − dx23

where (x1, x2, x3) is a rectangular coordinate system of E3
1 . Since g is an indefinite metric, the pseudo-norm of

a vector v is given by ‖v‖ =
√
|g (v, v)|.
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A vector v ∈ R3 is called spacelike if g (v, v) > 0 or v = 0, timelike if g (v, v) < 0, and lightlike (null) if
g (v, v) = 0 with v 6= 0 [7].

Given a curve α : I ⊂ R→ E3
1 , we say that the curve α is spacelike (resp. timelike, lightlike) if α′ (s) is

spacelike (resp. timelike, lightlike) at any s ∈ I where α′ (s) = dα/ds [7].
A non-lightlike or a lightlike curve α : I ⊂ R −→ E3

1 is said to be parametrized by the pseudo arclength
parameter s if g(α

′
(s) , α

′
(s)) = ±1 or g(α

′′
(s) , α

′′
(s)) = 1. In both cases, we call α a unit speed curve.

In E3
1 a unit speed timelike curve which has at least four continuous derivatives has a natural frame called

Frenet Frame with the equations below [2, 7],

t
′
= κn

n
′
= κt+ τb

b
′
= −τn,

where κ is the curvature, τ is the torsion, and {t, n, b} is the Frenet Frame of the curve α. We denote unit timelike
tangent vector field with t, unit spacelike principal normal vector field with n, and the unit spacelike binormal
vector with b.

As we know, n can be considered as the normal indicatrix curve of the curve α. If n is a non-lightlike curve,
we know that ε = sgn[g(n

′
, n

′
)] = ±1. Note that when n is a timelike curve ε = −1.

Definition 2.1. A curve is called a slant helix if its principal normal vector field makes a constant angle with a
fixed direction in E3

1 [8].

Lemma 2.1. Let α be a unit speed timelike curve in E3
1 . Then, α is a slant helix if and only if the geodesic curvature of

the spherical image of principal normal indicatrix n of α

κ2

(ετ2 − εκ2)3/2
( τ
κ

)′

is constant everywhere τ2 − κ2 does not vanish [2].

The curve α is called a rectifying curve when its position vector always lies in its rectifying plane [5]. So, for
a rectifying curve, we can write

α (s) = λ (s) t (s) + µ (s) b (s) .

Lemma 2.2. Let α be a unit speed non-lightlike curve with timelike or spacelike principal normal vector field in E3
1 , then

α is congruent to a rectifying curve if and only if

τ(s)

κ(s)
= c1s+ c2

for some constants c1 and c2 with c1 6= 0 [7].

The angle between two vectors in E3
1 is defined at [1]:

Definition 2.2. Let u and v be spacelike vectors that span a spacelike vector subspace. Then, there is a unique
positive real number θ such that

|g(u, v)| = ‖u‖ ‖v‖ cos θ.

θ is called the Lorentzian spacelike angle between u and v.

Definition 2.3. Let u and v be spacelike vectors that span a timelike vector subspace. Then, there is a unique
positive real number θ such that

|g(u, v)| = ‖u‖ ‖v‖ cosh θ.

θ is called the Lorentzian timelike angle between u and v.

Definition 2.4. Let u be a spacelike vector and v a positive timelike vector. Then, there is a unique positive real
number θ such that

|g(u, v)| = ‖u‖ ‖v‖ sinh θ.

θ is called the Lorentzian timelike angle between u and v.
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3. Curvatures of Timelike Rectifying Slant Helices in E3
1

In E3
1 , if the position vector of a unit speed timelike slant helix always lies in its rectifying plane, we call it

timelike rectifying slant helix. For the curvatures of timelike rectifying slant helices, we have the following two
theorems.

Theorem 3.1. Let α be a unit speed timelike curve which has spacelike principal normal indicatrix with the pseudo
arclength parameter s in E3

1 , then α is a timelike rectifying slant helix if and only if the curvature and torsion of the curve
satisfy the equations below

κ(s) =
c3(

(c1s+ c2)
2 − 1

)3/2 , τ(s) = c3 (c1s+ c2)(
(c1s+ c2)

2 − 1
)3/2

where c1 6= 0, c2 ∈ R, and c3 ∈ R+.

Proof. Let α be a unit speed timelike rectifying slant helix with the pseudo arclength parameter s in E3
1 , then

the equations in Lemma 2.1, and Lemma 2.2 exists. If we combine them, we have

m =
κ2

(τ2 − κ2)3/2
( τ
κ

)′

=
c1

κ
(
(c1s+ c2)

2 − 1
)3/2

where m 6= 0 is a constant, we can write κ as follows

κ(s) =
c3(

(c1s+ c2)
2 − 1

)3/2 ,
then

τ(s) =
c3 (c1s+ c2)(

(c1s+ c2)
2 − 1

)3/2 ,
where c3 = |c1/m|.

Conversely, it can easily be seen that the curvature functions as mentioned above satisfy the equations at
Lemma 2.1 and Lemma 2.2. So, α is a timelike rectifying slant helix.

Theorem 3.2. Let α be a unit speed timelike curve which has timelike principal normal indicatrix with the pseudo
arclength parameter s in E3

1 , then α is a timelike rectifying slant helix if and only if the curvature and torsion of the curve
satisfy the equations below

κ(s) =
c3(

1− (c1s+ c2)
2
)3/2 , τ(s) = c3 (c1s+ c2)(

1− (c1s+ c2)
2
)3/2

where c1 6= 0, c2 ∈ R, and c3 ∈ R+.

Proof. Similar to the proof of the theorem 3.1.

Now, we give another theorem for a special case of the theorem 3.1 to determine c3. Some parts of this
theorem will be useful for us later on.

Theorem 3.3. Let α be a unit speed timelike rectifying slant helix whose principal normal vector field makes a constant
angle with a unit positive timelike vector v, then the curvature and torsion of α satisfy the equations below

κ(s) =
|c1 coth(θ)|(

(c1s+ c2)
2 − 1

)3/2 , τ(s) = |c1 coth(θ)| (c1s+ c2)(
(c1s+ c2)

2 − 1
)3/2

where c1 6= 0, c2 ∈ R.
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Proof. Let α be a unit speed timelike rectifying slant helix whose principal normal vector field makes a constant
angle with a unit positive timelike vector v. Then, from Definition 2.4

g(n, v) = sinh(θ)

where θ ∈ R+. If we differentiate this equation with respect to pseudo arclength parameter s, we have

g(κt+ τb, v) = 0.

If we divide both parts of the equation with κ, we get

g(t+ (c1s+ c2)b, v) = 0,

then

g(t, v) = (c1s+ c2)g(b, v).

While {t, n, b} is a orthonormal frame, we can write

v = λ1t+ λ2n+ λ3b

with −λ21 + λ22 + λ23 = −1. If we make the neccessary calculations, we have

λ1 = ± (c1s+ c2) cosh(θ)√
(c1s+ c2)2 − 1

, λ2 = sinh(θ), λ3 = ± cosh(θ)√
(c1s+ c2)2 − 1

.

So,

± c1 cosh(θ)

κ
√

(c1s+ c2)2 − 1
+ (1 + (c1s+ c2)

2) sinh(θ) = 0.

Therefore,

κ(s) =
|c1 coth(θ)|(

(c1s+ c2)
2 − 1

)3/2
and

τ(s) =
|c1 coth(θ)| (c1s+ c2)(
(c1s+ c2)

2 − 1
)3/2 .

Remark 3.1. For a unit speed timelike rectifying slant helix whose principal normal vector field makes a constant
angle with a unit vector v, we easily see

Case 1: If v is a spacelike unit vector and {n, v} spans a timelike subspace, then
c3 = |c1 tanh θ| .

Case 2: If v is a spacelike unit vector and {n, v} spans a spacelike subspace, then
c3 = |c1 tan θ| .

4. Position vector of timelike rectifying slant helices

For the position vector of the timelike rectifying slant helices, we have the following two theorems.

Theorem 4.1. Let α be a unit speed timelike rectifying slant helix which has spacelike principal normal indicatrix with
the pseudo arclength parameter s in E3

1 . Then, the vector h satisfies the linear vector differential equation of second order
as follows

h′′(s) +
c23(

(c1s+ c2)
2 − 1

)2h(s) = 0 (4.1)

where h = n′

κ .
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Proof. Let α be a unit speed timelike rectifying slant helix, then we can write Frenet equations as follows

t
′
= κn,

n
′
= κt+ fκb,

b
′
= −fκn

(4.2)

where f(s) = c1s+ c2. If we divide the second equation by κ, we have

n′

κ
= t+ fb. (4.3)

By differentiating (4.3), we have

c1b =

(
n′

κ

)′

+ κ(f2 − 1)n. (4.4)

By differentiating (4.4) and using (4.2), we have(
n′

κ

)′′

+ κ(f2 − 1)n′ +
[(
κ(f2 − 1)

)′
+ c1fκ

]
n = 0, (4.5)

we know
κ(s) =

c3(
(c1s+ c2)

2 − 1
)3/2 .

With the necessary calculations, we easily see(
κ(f2 − 1)

)′
+ c1fκ = 0.

So, (4.5) becomes (
n′

κ

)′′

+ κ(f2 − 1)n′ = 0. (4.6)

Let us denote n′

κ = h. Then, (6) becomes to

h′′(s) +
c23(

(c1s+ c2)
2 − 1

)2h(s) = 0.

This completes the proof.

Theorem 4.2. Let α be a unit speed timelike rectifying slant helix which has timelike principal normal indicatrix with
the pseudo arclength parameter s in E3

1 . Then, the vector h satisfies the linear vector differential equation of second order
as follows

h′′(s)− c23(
(c1s+ c2)

2 − 1
)2h(s) = 0 (4.7)

where h = n′

κ .

Proof. Similar to the proof of the theorem 4.1.

As we know, every component of vector h = (h1, h2, h3) must satisfy (4.1) or (4.7). Therefore, if we take

h1(s) =

√(
(c1s+ c2)

2 − 1
)
sin [csch(θ) arccoth (c1s+ c2)] ,

h2(s) =

√(
(c1s+ c2)

2 − 1
)
cos [csch(θ) arccoth (c1s+ c2)] ,

h3(s) = 0.

(4.8)

We can show h satisfies (4.1).
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On the other hand, if α is a unit speed timelike rectifying slant helix which has spacelike principal normal
indicatrix with its principal normal vector field makes a constant angle θ with e3. Then; from Definition 2.4, we
can write

g(n, e3) = sinh(θ).

From (4.8), we can write

n1(s) =
∫
κ(s)h1(s)ds = cosh(θ) cos [csch(θ) arccoth (c1s+ c2)] ,

n2(s) =
∫
κ(s)h2(s)ds = − cosh(θ) sin [csch(θ) arccoth (c1s+ c2)] ,

n3(s) = − sinh(θ)

with

g(n′, n′) =
c21 coth

2(θ)

(c1s+ c2 − 1)2(c1s+ c2 + 1)2
> 0.

While α is a unit speed timelike curve, we have

α1(s) =
∫
(
∫
κ(s)n1(s)ds)ds,

α2(s) =
∫
(
∫
κ(s)n2(s)ds)ds,

α3(s) =
∫
(
∫
κ(s)n3(s)ds)ds

and so

α1(s) =−
sinh (θ)

c1

√
(c1s+ c2)

2 − 1 cos [csch(θ) arccoth (c1s+ c2)] ,

α2(s) =
sinh (θ)

c1

√
(c1s+ c2)

2 − 1 sin [csch(θ) arccoth (c1s+ c2)] ,

α3(s) =
cosh (θ)

c1

√
(c1s+ c2)

2 − 1

where α = (α1, α2, α3).

Remark 4.1. For a unit speed timelike rectifying slant helix whose principal normal vector field makes a constant
angle with a unit vector v, we have

Case 1: If v = e2 and g(n′, n′) > 0, then

β1(s) =
cosh (θ)

c1

√
(c1s+ c2)

2 − 1 sinh [sech(θ) arccoth (c1s+ c2)] ,

β2(s) =−
sinh (θ)

c1

√
(c1s+ c2)

2 − 1,

β3(s) =−
cosh (θ)

c1

√
(c1s+ c2)

2 − 1 cosh [sech(θ) arccoth (c1s+ c2)]

where β = (β1, β2, β3).
Case 2: If v = e1 and g(n′, n′) < 0, then

γ1(s) =−
1

c1

√
1− (c1s+ c2)

2
sin (θ),

γ2(s) =
cos (θ)

c1

√
1− (c1s+ c2)

2
cosh [sec (θ) arctanh (c1s+ c2)],

γ3(s) =
cos (θ)

c1

√
1− (c1s+ c2)

2
sinh [sec (θ) arctanh (c1s+ c2)]

where γ = (γ1, γ2, γ3). Now, we can write new lemmas.

Lemma 4.1. Let α be a space curve in E3
1 below,

α(s) =

√
(c1s+ c2)

2 − 1

c1

(
− sinh(θ) cos [csch(θ) arccoth (c1s+ c2)] ,

sinh(θ) sin [csch(θ) arccoth (c1s+ c2)] ,

cosh(θ)
) (4.9)

www.iejgeo.com 22

http://www.iej.geo.com


B. Altunkaya and L. Kula

where θ ∈ R+, c1 6= 0, and c2 ∈ R. Then, α is a unit speed timelike rectifying slant helix which lies on the cone

z2 = coth2(θ)
(
x2 + y2

)
.

Proof. With direct calculations, we have g(α′, α′) = −1, g(n, n) = 1, g(n′, n′) > 0, and the curvature functions of
α as

κ(s) =
|c1 coth(θ)|

((c1s+ c2)2 − 1)
3/2

, τ(s) =
|c1 coth(θ)| (c1s+ c2)

((c1s+ c2)2 − 1)
3/2

with
κ2(s)

(κ2(s) + τ2(s))
3/2

(
τ(s)

κ(s)

)′

= tanh(θ)

and
τ(s)

κ(s)
= c1s+ c2.

So, α is a unit speed timelike rectifying slant helix. We have

coth2 (θ)
(
α1

2(s) + α2
2(s)

)
− α3

2(s) = 0,

then α lies on the cone above.

Lemma 4.2. Let β be a space curve in E3
1 with the equation below,

β(s) =

√
(c1s+ c2)

2 − 1

c1

(
cosh(θ) sinh [sech(θ) arccoth (c1s+ c2)] ,

− sinh(θ),

− cosh(θ) cosh [sech(θ) arccoth (c1s+ c2)]
) (4.10)

where θ ∈ R+, c1 6= 0, and c2 ∈ R. Then, β is a unit speed timelike rectifying slant helix which lies on the cone

z2 = coth2(θ)y2 + x2.

Lemma 4.3. Let γ be a space curve in E3
1 below,

γ(s) =

√
1− (c1s+ c2)

2

c1

(
− sin(θ),

cos(θ) cosh [sec(θ) arctanh (c1s+ c2)] ,

cos(θ) sinh [sec(θ) arctanh (c1s+ c2)]
) (4.11)

where θ ∈ R+, c1 6= 0, and c2 ∈ R. Then, γ is a unit speed timelike rectifying slant helix which lies on cone

y2 = cot2(θ)x2 + z2.

Example 4.1. If we take c1 = 1, c2 = 0, and θ = 1/2 in (4.9); then, we have

α(s) =
√
s2 − 1

(
− sinh

(
1

2

)
cos

[
csch

(
1

2

)
arccoth (s)

]
,

sinh

(
1

2

)
sin

[
csch

(
1

2

)
arccoth (s)

]
,

cosh

(
1

2

))
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Figure 1. Timelike rectifying slant helix α lies on the cone; coth2( 1
2 )

(
x2 + y2

)
= z2

with the curvatures

κ(s) =
coth

(
1
2

)
(s2 − 1)

3/2
, τ(s) =

s coth
(
1
2

)
(s2 − 1)

3/2

that lies on the cone (see Fig. 1)

coth2(
1

2
)
(
x2 + y2

)
= z2.

We plot the spherical indicatrices of the curve α in Fig. 2.

Figure 2. Tangent, Normal, and Binormal indicatrices of α

Example 4.2. If we take c1 = 1, c2 = 0, and θ = 3 in (4.10); then, we have

β(s) =
√
s2 − 1

(
cosh(3) sinh [sech(3) arccoth (s)] ,

− sinh(3),

− cosh(3) cosh [sech(3) arccoth (s)]
)

with the curvatures
κ(s) =

tanh (3)

(s2 − 1)
3/2

, τ(s) =
s tanh (3)

(s2 − 1)
3/2

that lies on the cone
z2 = coth2(3)y2 + x2.

Example 4.3. If we take c1 = 1, c2 = 0, and θ = π/3 in (4.11); then, we have

γ(s) =

√
1− s2
2

(
−
√
3, cosh [2 arctanh (s)] , sinh [2 arctanh (s)]

)
with the curvatures

κ(s) =

√
3

(1− s2)3/2
, τ(s) =

s
√
3

(1− s2)3/2

that lies on the cone

y2 =
x2

3
+ z2.
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