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ABSTRACT

In a visionary short paper published in 1855, Ossian Bonnet derived a theorem relating prescribed
curvature conditions to the admissible maximal length of geodesics on a surface. Bonnet’s work
opened the pathway for the quest of further connections between curvature conditions and
other geometric properties of surfaces, hypersurfaces or Riemannian manifolds. The classical
Myers’ Theorem in Riemannian geometry provides sufficient conditions for the compactness
of a Riemannian manifold in terms of Ricci curvature. In the present work, we are proving a
theorem involving sufficient conditions for a smooth hypersurface in Euclidean ambient space
to be convex, and the argument relies on an application of Cauchy-Schwarz inequality. This
statement represents, in consequence, a geometric interpretation of Cauchy-Schwarz inequality.
The curvature conditions are prescribed in terms of Casorati curvature.
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It might be surprising that a fundamental application of Cauchy-Schwarz inequality yields a remarkable
property for smooth hypersurfaces, in which a quantitative piece of information determines a qualitative
assertion. We start our investigation by describing first the algebraic part of the result.

We start our note by stating the following.

Claim 1. If for any real numbers a1, a2, a3 we have

max

{√
2(a21 + a22),

√
2(a22 + a23),

√
2(a23 + a21)

}
≤ a1 + a2 + a3,

then a1 ≥ 0, a2 ≥ 0, and a3 ≥ 0.

To prove this Claim, solve the inequality
√

2(a21 + a22) ≤ a1 + a2 + a3, for a3. Then we convert a1 and a2
into polar coordinates. At r = 0 the property holds trivially. For r 6= 0, we have a1 = r cos θ, a2 = r sin θ. This
inequality becomes

a3 =
√

2(a21 + a22)− (a1 + a2) = r(
√
2− cosθ − sin θ) ≥ 0.

The equality holds at θ = π
4 or θ = 5π

4 . By repeating the argument twice, we see that equality holds only for
a1 = a2 = a3.

This assertion can be generalized as follows.

Claim 2. If for n ≥ 3 real numbers a1, a2, ..., an the following inequalities hold:√
(n− 1)(a21 + a22 + ...+ a2n−1) ≤ a1 + a2 + ...+ an,√

(n− 1)(a21 + a22 + ...+ a2n−2 + a2n) ≤ a1 + a2 + ...+ an,
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. . .√
(n− 1)(a22 + a23 + ...a2n) ≤ a1 + a2 + ...+ an.

Then we must have a1 ≥ 0, a2 ≥ 0, ... an ≥ 0.

For a proof, we solve in the first inequality for an, which appears only in the right hand side term:

an ≥
√

(n− 1)(a21 + a22 + ...+ a2n−1)− (a1 + a2 + ...+ an−1).

We need to prove this term is greater than or at least equal to zero. Then we have:

an ≥
√

(n− 1)(a21 + a22 + ...+ a2n−1)− (a1 + a2 + ...+ an−1).

We need to prove the right side of this inequality is greater than or at least equal to zero. This is just the
Cauchy-Schwarz inequality applied to the numbers a1, a2, ..., an−1, and then to (n− 1) copies of 1 :√

(12 + 12 + ...+ 12)(a21 + a22 + ...+ a2n−1) ≥ (1 · a1 + 1 · a2 + ...+ 1 · an−1).

This proves that an ≥ 0. Similarly one may prove all the other inequalities ai ≥ 0, i = 1, ..., n− 1. Equality holds
when all the n numbers ai, i = 1, ..., n take the same value.

This seems to be an elementary property of real numbers. However, there is more to this claim than it seems
at the first sight.

Pursuing the extension of an interesting theorem for surfaces originally stated and proved by O. Bonnet [1],
the classic S. B. Myers’ theorem [9] asserts that a complete Riemannian manifold M that satisfies at every point
p ∈M the condition Ricp(v, v) ≥ (n− 1)r−2 > 0, for any unit vector v ∈ TpM, is compact and its diameter must
be less than or at most equal to πr. The condition Ricp(v, v) ≥ 0 everywhere and a Ricci curvature condition
along geodesic rays from a point p0 ∈M has been studied by Calabi in [2]. An interesting classical application
to relativity appears in [8]. For some other references on the topic one may see e.g. [7].

This long history of the investigations of all connections between curvature and topology inspire the
following

Question 1. Given certain curvature restrictions, do they have any geometric consequences for a given class of
geometric objects?

Additionally, Casorati introduced in 1890 what is today called the Casorati curvature [3]. LetMn be a smooth
hypersurface in the Euclidean ambient space Rn+1. Our aim is to show that actually the Claim investigated
above and which reduces to a straightforward application of Cauchy-Schwarz inequality, represents a Bonnet-
Myers type theorem with Casorati curvatures, in the sense that prescribed curvature conditions imply a
geometric property of a hypersurface.

To recall a few concepts in the geometry of differential hypersurfaces or smooth hypersurfaces, let σ : U ⊂
Rn → Rn+1 be a smooth hypersurface given by the smooth map σ. Let p be a point on the hypersurface. Denote
σk(p) =

∂σ
∂xk

, for all k from 1 to n. Consider {σ1(p), σ2(p), ..., σn(p), N(p)}, the Gauss frame of the hypersurface,
where N denotes the normal vector field. We denote by gij(p) the coefficients of the first fundamental form and
by hij(p) the coefficients of the second fundamental form. Then

gij(p) = 〈σi(p), σj(p)〉, hij(p) = 〈N(p), σij(p)〉.

The Weingarten map Lp = −dNp ◦ dσ−1
p : Tσ(p)σ → Tσ(p)σ is linear. Denote by (hij(p))1≤i,j≤n the matrix

associated to Weingarten’s map, that is:

Lp(σi(p) = hki (p)σk(p),

where the repeated index and upper script above indicates Einstein’s summation convention. Weingerten’s
operator is self-adjoint, which implies that the roots of the algebraic equation

det(hij(p)− λ(p)δij) = 0

are real. The eigenvalues of Weingarten’s linear map are called principal curvatures of the hypersurface. They
are the roots k1(p), k2(p), ..., kn(p) of this algebraic equation. The mean curvature at the point p is

H(p) =
1

n
[k1(p) + ...+ kn(p)],
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and the Gauss-Kronecker curvature is

K(p) = k1(p)k2(p)...kn(p).

If all the principal curvature of a smooth regular hypersurface are ≥ 0, then the hypersurface is convex.
In order to pursue our investigation, we let the principal curvatures play the part of the variables a1, ..., an in

Claim 2 above.
One may define the Casorati curvature in the direction of the k−dimensional planar section Vp ⊂ TpM, or

the Casorati curvature of order k, by

Ck(e1, e2, ..., ek) = a21 + ...+ a2k,

for k ≤ n, where a1, ..., ak are the principal curvatures at point p ∈M. Casorati curvatures are related to the
geometry of submanifolds [4, 5, 6], and any information that relates curvature invariants to the topology of the
submanifolds is of interest.

In this context, we state the following.

Question 2. Are there any prescribed conditions in terms of Casorati curvature that yield global conclusions about the
geometry of a surface or of a hypersurface?

The following two propositions are inspired by Questions 1 and 2.

Proposition 0.1. Let σ : U ⊂ R3 → R4 be a regular smooth hypersurface, Im σ =M3. Let a1, a2, a3 be the principal
curvatures at p ∈M. If all the Casorati curvatures of order 2 satisfy with respect to the mean curvature H(p) =
1
3 (a1 + a2 + a3) the inequality √

2C2(p) ≤ 3H(p),

for every p in M, then the hypersurface must be convex.

Proof: The proof is a straightforward application of Claim 1.

Proposition 0.2. Let σ : U ⊂ Rn → Rn+1 be a regular smooth hypersurface, Im σ =Mn. Let a1, a2, ..., an be the
principal curvatures at p ∈M. If all the Casorati curvatures of order 2 satisfy the inequality√

(n− 1)Cn−1(p) ≤ nH(p),

for every p in M, then the hypersurface must be convex.

Proof: The proof is directly Claim 2.
The above two Propositions provide a geometric interpretation of the algebraic statements investigated in

the first two Claims in this paper.
Note that the classical Myers’ Theorem [9] asserts the sufficient conditions to determine the compactness of

the Riemannian manifold. In the geometric interpretation developed in our note, the statement yields just the
convexity of the hypersurface.
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