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ABSTRACT

In this paper, we establish two sharp inequalities, which involve the generalized normalized
δ−Casorati curvatures and the generalized normalized scalar curvature of any submanifold in
generalized Sasakian space forms with semi-symmetric metric connection by using T Oprea’s
technique. Afterwards, we examine that the equality holds if and only if the submanifold is
invariantly quasi-umbilical in both inequalities. We also develop these inequalities for invariant,
anti-invariant, CR, slant, semi-slant, hemi-slant and bi-slant submanifolds in the same ambient
space form with SSMC.
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1. Introduction

In 1993, B.-Y Chen [5] initiated the theory of δ−invariants. B.-Y. Chen established a sharp inequality for
a submanifold into the real space form using the scalar curvature and the sectional curvature, both being
intrinsic invariants, and squared mean curvature, the main extrinsic invariant. That is, he established in [4]
simple relationships between the main intrinsic invariants and the main extrinsic invariants of a submanifold
in real space forms with any codimension. Now it has become one of the most interesting research topics in
differential geometry of submanifolds. Instead of concentrating on the sectional curvature with the extrinsic
squared mean curvature, the Casorati curvature of a submanifold in a Riemannian manifold was considered
as an extrinsic invariant defined as the normalized square of the length of the second fundamental form.
The notion of Casorati curvature extends the concept of the principal direction of a hypersurface of a
Riemannian manifold. It was preferred by Casorati over the traditional Gauss curvature. Several geometers
in [7, 8, 13, 27, 28] found geometrical meaning and the importance of the Casorati curvature. Therefore, it
attracts the geometers to obtain optimal inequalities for the Casorati curvatures of submanifolds in different
ambient spaces. Decu, Haesen and Verstraelen introduced the normalized δ−Casorati curvatures δc(n− 1)

and δ̂c(n− 1) and established inequalities involving δc(n− 1) and δ̂c(n− 1) for submanifolds in real space
forms [7]. Moreover, the same authors proved in [8] an inequality in which the scalar curvature is estimated
from above by the normalized Casorati curvatures, while Ghisoiu obtained in [10] some inequalities for the
Casorati curvatures of slant submanifolds in complex space forms. Recently, Lee et al. in [16] obtained optimal
inequalities for submanifolds in real space forms, endowed with a semi-symmetric metric connection. Many
authors obtained the optimal inequalities for the Casorati curvatures of submanifolds in different ambient
spaces [14, 15, 17, 22, 23, 25, 32].

The idea of a semi-symmetric linear connection in a differentiable manifold was introduced by Friedmann
and Schouten in [9]. Later, Hayden [11] introduced the idea of a metric connection with torsion in a Riemannian
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manifold. Yano [31] studied semi-symmetric metric connection in a Riemannian manifold. Many other
geometers have used this idea of connection in different ambient spaces such as real space forms, complex
space forms, Sasakian space forms and so on (see [18, 19, 21]). On the other hand, Blair, Carriazo and Alegre
[1] introduced the notion of a generalized Sasakian space form and proved some of its basic properties. In
[22], Aliya and Shahid obtained some optimal inequalities involving the normalized Casorati curvatures and
the normalized scalar curvature of bi-slant submanifold in generalized Sasakian space form and also studied
these inequalities in different kinds of submanifolds and ambient space forms. So, in this paper we wish to
obtain these optimal Casorati inequalities on any submanifold of a generalized Sasakian space form with
semi-symmetric metric connection (SSMC). This paper can be considered as the next version of [22].

The paper is structured as follows: Section 2 is devoted to preliminaries. Section 3 deals with the study
of Casorati curvatures for any submanifold of (n+ 1)−dimension. In Section 4, we establish two sharp
inequalities that relate the normalized scalar curvature with generalized normalized δ-Casorati curvature
for any submanifold in a generalized Sasakian space form with semi-symmetric metric connection (SSMC)
with some immediate consequences. In Section 5, we give some applications as consequences of our derived
inequalities in Section 4.

2. Preliminaries

A (2m + 1)-dimensional differentiable manifold M is said to have an almost contact structure (φ, ξ, η, g) if
there exists onM a tensor field φ of type (1, 1), a vector field ξ, a 1-form η and a Riemannian metric g such that
[30]

φ2 = −I + η ⊗ ξ, φξ = 0, η(ξ) = 1, η o φ = 0, η(X) = g(X, ξ) (2.1)

g(φX, φY ) = g(X,Y )− η(X)η(Y ), g(φX, Y ) + g(X,φY ) = 0 (2.2)

Here X,Y, Z denote arbitrary vector fields onM. The fundamental 2-form Φ onM is defined by

Φ(X,Y ) = g(φX, Y )

Alegre et al. [1] introduced and studied the generalized Sasakian space forms. An almost contact metric
manifold (M, φ, ξ, η, g) is said to be a generalized Sasakian space form if there exist differentiable functions f1, f2, f3
such that the curvature tensor R ofM is given by

R(X,Y )Z = f1
[
g(Y, Z)X − g(X,Z)Y

]
+ f2

[
g(X,φZ)φY − g(Y, φZ)φX

+2g(X,φY )φZ
]

+ f3
[
η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ

−g(Y, Z)η(X)ξ
]

(2.3)

for all vector fields X,Y, Z ∈ TM.
The generalized Sasakian space form generalizes the concept of Sasakian space form, Kenmotsu space form

and cosymplectic space form.

(i) A Sasakian space form is the generalized Sasakian space form with f1 = c+3
4 and f2 = f3 = c−1

4 .

(ii) A Kenmotsu space form is the generalized Sasakian space form with f1 = c−3
4 and f2 = f3 = c+1

4 .

(iii) A cosymplectic space form is the generalized Sasakian space form with f1 = f2 = f3 = c
4 .

Definition 2.1. A linear connection∇∗ on an n−dimensional Riemannian manifoldMwith Riemannian metric
g is called a semi-symmetric connection if the torsion tensor T of the connection ∇∗ satisfies [31]

T (X,Y ) = η(Y )X − η(X)Y,

where η is a 1−form associated with the vector field ξ on M defined by η(X) = g(X, ξ) and ∇∗ is called a
semi-symmetric metric connection if it satisfies ∇∗g = 0.
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Remark 2.1. A semi-symmetric metric connection ∇∗ onM is given by [31]

∇∗XY = ∇XY + η(Y )X − g(X,Y )ξ,

where ∇ is the Levi-Civita connection ofM.
Let R and R

∗
be curvature tensors of∇ and∇∗ of a Riemannian manifoldM, respectively. Then we have the

following relation [31]:

R
∗
(X,Y )Z = R(X,Y )Z − γ(Y, Z)X + γ(X,Z)Y

−g(Y,Z)FX + g(X,Z)FY (2.4)

for all vector fields X,Y, Z ∈ TM, where γ is the (0, 2)−tensor field defined by

γ(X,Y ) = (∇Xη)Y − η(X)η(Y ) +
1

2
η(ξ)g(X,Y )

and
g(FX, Y ) = γ(X,Y ).

In the following we consider M as a generalized Sasakian space form M(f1, f2, f3) of dimension (2m+ 1)
with a semi-symmetric metric connection and letM be an (n+ 1)−dimensional submanifold ofM(f1, f2, f3).
Let TM and T⊥M denote the Lie algebra of vector fields and set of all normal vector fields onM, respectively.
The operator of covariant differentiation with respect to the Levi-Civita connection in M and M is denoted
by ∇ and ∇, respectively. Let R and R be the curvature tensor ofM(f1, f2, f3) andM, respectively. The Gauss
equation is given by [30]

R(X,Y, Z,W ) = R(X,Y, Z,W )− g(h(X,W ), h(Y,Z))

+g(h(X,Z), h(Y,W )) (2.5)

for all vector fields X,Y, Z ∈ TM.
The curvature tensor R

∗
of a generalized Sasakian space form with a semi-symmetric metric connection is

given by

R
∗
(X,Y )Z = f1

[
g(Y,Z)X − g(X,Z)Y

]
+ f2

[
g(X,φZ)φY − g(Y, φZ)φX

+2g(X,φY )φZ
]

+ f3
[
η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ

−g(Y,Z)η(X)ξ
]
− γ(Y,Z)X + γ(X,Z)Y − g(Y,Z)FX

+g(X,Z)FY, (2.6)

where we have used equations (2.3), (2.4).
For any vector field X ∈ TM, we put [30]

φX = PX +QX, (2.7)

where PX and QX denote the tangential and normal components of φX , respectively. Then P is an
endomorphism of TM, and Q is the normal bundle valued 1-form on TM.

In the same way, for any vector field V ∈ T⊥M, we put [30]

φV = BV + CV, (2.8)

where BV and CV denote tangential and normal components of φV , respectively.
It is easy to see that F and B are skew-symmetric and they are related by

g(QX,V ) = −g(X,BV ) (2.9)

for any vector fields X ∈ TM and V ∈ T⊥M.
The structural vector field ξ can be decomposed as

ξ = ξ1 + ξ2, (2.10)

where ξ1 and ξ2 are the tangential and the normal components of ξ, respectively.
A submanifoldM of an almost contact metric manifoldM is said to be invariant if Q ≡ 0, that is, φX ∈ TM,

and anti-invariant if P ≡ 0, that is, φX ∈ T⊥M, for any vector field X ∈ TM.
There are some other important classes of submanifolds which are determined by the behavior of tangent

bundle of the submanifold under the action of an almost contact metric structure φ ofM :
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(i) A submanifold M of M is called a contact CR-submanifold [29] of M if there exists a differentiable
distribution D onMwhose orthogonal complementary distribution D⊥ is anti-invariant.

(ii) A submanifold M of M is called a slant submanifold [3] of M if, the angle between φX and TxM is
constant for all X ∈ TM−{ξx} and x ∈M.

(iii) A submanifold M of M is called semi-slant submanifold [2] of M if there exists a pair of orthogonal
distributions D and Dθ such that D is invariant and Dθ is proper slant.

(iv) A submanifoldM ofM is called hemi-slant submanifold (or pseudo-slant) [12] ofM if there exists a pair of
orthogonal distributions D⊥ and Dθ such that D⊥ is anti-invariant and Dθ is proper slant.

Bi-slant submanifolds were first defined by A. Cariazo et al. in [2] as a generalization of CR and semi-slant
submanifolds. Such submanifolds generalize complex, totally real, slant and hemi-slant submanifolds as well.
Here we define a bi-slant submanifold of an almost contact metric manifold as follows:

Definition 2.2. A submanifoldM of an almost contact metric manifoldM is said to be a bi-slant submanifold if
there exists a pair of orthogonal distributions Dθ1 and Dθ2 ofM such that

(i) TM = Dθ1 ⊕Dθ2 ⊕ {ξ};

(ii) φDθ1 ⊥ Dθ2 and φDθ2 ⊥ Dθ1 ;

(iii) Each distribution Dθi is slant with the slant angle θi for i = 1, 2.

A bi-slant submanifold of an almost contact metric manifoldM is called proper if the slant distributions Dθ1

and Dθ2 are of the slant angles θ1, θ2 6= 0, π2 .

Remark 2.2. If we assume

(i) θ1 = 0 and θ2 = π
2 , thenM is a CR-submanifold.

(ii) θ1 = 0 and θ2 6= 0, π2 , thenM is a semi-slant submanifold.

(iii) θ1 = π
2 and θ2 6= 0, π2 , thenM is a hemi-slant submanifold.

Suppose thatM is a bi-slant submanifold of dimension n+ 1 = 2n1 + 2n2 + 1 inM(f1, f2, f3). Let us assume
the orthonormal basis ofM as follows [6, 26]:

E1, E2 = secθ1Pe1, . . . , E2n1−1, E2n1
= secθ1Pe2n1−1, E2n1+1, E2n1+2 =

secθ2Pe2n1+1, . . . , E2n1+2n2−1, E2n1+2n2
= secθ2Pe2n1+2n2−1, E2n1+2n2+1 = ξ.

Also,

g2(φEi+1, Ei) =

{
cos2θ1 for i = 1, . . . , 2n1 − 1
cos2θ2 for i = 2n1 + 1, . . . , 2n1 + 2n2 − 1

(2.11)

Hence, we have

n+1∑
i,j=1

g2(φEj , Ei) = 2{n1cos2θ1 + n2cos
2θ2}.
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3. Casorati Curvatures

In this section, we study the Casorati curvature of any submanifold M of dimension (n+ 1) in a (2m+
1)−dimensional generalized Sasakian space form M(f1, f2, f3) with SSMC. Consider a local orthonormal
tangent frame {E1, . . . , En+1} of the tangent bundle TM of M and a local orthonormal normal frame
{En+2, . . . , E2m+1} of the normal bundle T⊥M of M in M(f1, f2, f3). At any p ∈M, the scalar curvature τ
at that point is given by

τ =
∑

1≤i<j≤n+1

R(Ei, Ej , Ej , Ei)

and the normalized scalar curvature ρ of M is defined as

ρ =
2τ

n(n+ 1)
.

The mean curvature vector denoted by H ofM is given by

H =

n+1∑
i=1

1

n+ 1
σ(Ei, Ei).

Conveniently, let us put

hrij = g(h(Ei, Ej), Er)

for i, j = {1, . . . , n+ 1} and r = {n+ 2, . . . , 2m+ 1}. Then the squared norm of mean curvature vector ofM is
defined as

||H||2 =
1

(n+ 1)2

2m+1∑
r=n+2

{ n+1∑
i=1

hrii

}2

.

and the squared norm of second fundamental form h is denoted by

C =
1

n+ 1
||h||2, (3.1)

where

||h||2 =

2m+1∑
r=n+2

n+1∑
i,j=1

(
hrij
)2
.

It is known as the Casorati curvature C ofM.
If we suppose that L is an s-dimensional subspace of TM, s ≥ 2, and {E1, . . . , Es} is an orthonormal basis of
L, then the scalar curvature of the s−plane section L is given by

τ(L) =
∑

1≤i<j≤s

R(Ei, Ej , Ej , Ei)

and the Casorati curvature of the subspace L is as follows

C(L) =
1

s

2m+1∑
r=n+2

s∑
i,j=1

(
hrij
)2
.

The normalized δ-Casorati curvatures δc(n) and δ̂c(n) are defined as

[δc(n)]p =
1

2
Cp +

n+ 2

2(n+ 1)
inf{C(L)|L : a hyperplane of TpM}

and

[δ̂c(n)]p = 2Cp −
2n+ 1

2(n+ 1)
sup{C(L)|L : a hyperplane of TpM}.

Now we define the generalized normalized δ-Casorati curvatures δC(t;n− 1) and δ̂C(t;n− 1) as follows:
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1. For 0 < t < n2 − n

[δC(t;n)]x = tCp + b(t) inf{C(L)|L : a hyperplane of TxM}

2. For t > n2 − n

[δ̂C(t;n)]x = tCp − b(t) sup{C(L)|L : a hyperplane of TxM}

where

b(t) =
1

t(n+ 1)
(n)(n+ 1 + t)((n+ 1)2 − n− 1− t), t 6= n(n− 1).

Throughout this paper, we use the above notations.
A point p ∈M is said to be an invariantly quasi-umbilical point if there exist 2m− n orthogonal unit normal

vector {En+2, . . . , E2m+1} such that the shape operator with respect to all directions Er have an eigenvalue of
multiplicity n and that for each Er the distinguished eigendirection is the same. The submanifoldM is said to
be an invariantly quasi-umbilical submanifold if each of its points is an invariantly quasi-umbilical point.

4. T Oprea’s Optimization Method

Here we construct some optimal inequalities consisting of the normalized scalar curvature and the
normalized δ−Casorati curvatures for bi-slant submanifolds M in a generalized Sasakian space form
M(f1, f2, f3) with SSMC.

The following lemmas play a key role in the proof of our theorem:

Lemma 4.1. [25] Let ϑ = {(x1, x2, . . . , xn) ∈ Rn : x1 + x2 + · · ·+ xn = k} be a hyperplane of Rn and f : Rn → R a
quadratic form given by

f(x1, x2, . . . , xn) = α

n−1∑
i=1

(xi)
2 + β(xn)2 − 2

∑
1≤i<j≤n

xixj , α > 0, β > 0.

Then, by the constrained extremum problem, f has a global solution as follows,

x1 = x2 = · · · = xn−1 =
k

α+ 1
,

xn =
k

β + 1
=
k(n− 1)

(α+ 1)β
= (α− n+ 2)

k

α+ 1
,

provided that

β =
n− 1

α− n+ 2
.

Lemma 4.2. [20] Let N be a Riemannian submanifold of Riemannian manifold (M,G), where g is the metric induced
on N by G and f : N → R be a differentiable function. If x0 ∈ N is the solution of the constrained extremum problem
minx∈N f(x), then

(i) (gradf)(x0) ∈ T⊥x0
N ;

(ii) the bilinear form A : Tx0
N × Tx0

N → R;
A(X,Y ) = Hessf (X,Y ) +G(h(X,Y ), (gradf)(x0))

is positive semidefinite, where h is the second fundamental form of N in M .

Now we prove our main result:
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Theorem 4.1. LetM be an (n+ 1)−dimensional submanifold in a (2m+ 1)−dimensional generalized Sasakian space
formM(f1, f2, f3) with SSMC. Then the generalized normalized δ-Casorati curvatures δc(t;n) and δ̂c(t;n) satisfy

(i)

ρ ≤ δc(t;n) + f1 −
2f3
n+ 1

||ξ1||2 +
6f2

n(n+ 1)
(||P ||2)− 2

n
trace(γ) (4.1)

for any t ∈ R with 0 < t < n(n− 1), and

(ii)

ρ ≤ δ̂c(t;n) + f1 −
2f3
n+ 1

||ξ1||2 +
6f2

n(n+ 1)
(||P ||2)− 2

n
trace(γ) (4.2)

for any t ∈ R with t > n(n− 1),

respectively. Moreover, the equality case holds in (i) and (ii) if and only if M is an invariantly quasi-umbilical
submanifold.

Proof. Let {E1, . . . , En+1} and {En+2, . . . , E2m+1} be the orthonormal basis of TM and and T⊥M, respectively,
at any point p ∈M . Putting X = W = Ei, Y = Z = Ej into (2.6) and considering i 6= j, then we have

n+1∑
i,j=1

R(Ei, Ej , Ej , Ei) =

n+1∑
i,j=1

{
f1
{
g(Ej , Ej)g(Ei, Ei)− g(Ei, Ej)g(Ej , Ei)

}
+f2

{
g(Ei, φEj)g(φEj , Ei)− g(φEi, Ei)g(Ej , φEj)

+2g(Ei, φEj)g(Ei, φEj)
}

+ f3
{
η(Ei)η(Ej)g(Ei, Ei)

−η(Ej)η(Ej)g(Ei, Ei) + η(Ei)η(Ej)g(Ei, Ej)

−η(Ei)η(Ei)g(Ej , Ej)
}}
− γ(Ej , Ej)g(Ei, Ei)

+γ(Ei, Ej)g(Ej , Ei)− g(Ej , Ej)g(FEi, Ei) + g(Ei, Ej)g(FEj , Ei).

From this and together with Gauss equation, we have

2τ(p) = n(n+ 1)f1 + 6f2(||P ||2)− 2nf3||ξ1||2

+(n+ 1)2||H||2 − (n+ 1)C − 2(n+ 1)trace(γ), (4.3)

where we have used (3.1).
We define now the following function, denoted by Λ, which is a quadratic polynomial in the components of

the second fundamental form:

Λ = tC + b(t)C(L)− 2τ(p) + n(n+ 1)f1

+6f2(||P ||2)− 2nf3||ξ1||2 − 2(n+ 1)trace(γ), (4.4)

where L is a hyperplane of TpM. We can assume without loss of generality that L is spanned by {E1, . . . , En}.
Then we have

Λ =
n+ 1 + t

n+ 1

2m+1∑
r=n+2

n+1∑
i,j=1

(hrij)
2 +

b(t)

n

2m+1∑
r=n+2

n∑
i,j=1

(hrij)
2 − 2τ(p) + n(n+ 1)f1

+6f2(||P ||2)− 2nf3||ξ1||2 − 2(n+ 1)trace(γ). (4.5)

From (4.3) and (4.5), we obtain

Λ =
n+ 1 + t

n+ 1

2m+1∑
r=n+2

n+1∑
i,j=1

(hrij)
2 +

b(t)

n

2m+1∑
r=n+2

n∑
i,j=1

(hrij)
2

−
2m+1∑
r=n+2

( n+1∑
i,j=1

hrij
)2
.
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Now we can easily derive that

Λ =

2m+1∑
r=n+2

n∑
i=1

[
a(hrii)

2 +
2(n+ 1 + t)

n+ 1
(hrin+1)2

]
+

2m+1∑
r=n+2

[
2(a+ 1)

n∑
i<j=1

(hrij)
2 − 2

n+1∑
i<j=1

hriih
r
jj

+
t

n+ 1
(hrn+1n+1)2

]
≥

n∑
i=1

a(hrii)
2 − 2

∑
1≤i 6=j≤n+1

hriih
r
jj +

t

n+ 1
(hrn+1n+1)2, (4.6)

where

a =

(
t

n+ 1
+
b(t)

n

)
.

For r = n+ 2, . . . , 2m+ 1, let us take the quadratic form φr : Rn+1 → R, defined by

φr(h
r
11, . . . , h

r
n+1n+1) =

n∑
i=1

[
a(hrii)

2
]
− 2

n+1∑
i<j=1

hriih
r
jj

+
t

n+ 1
(hrn+1n+1)2 (4.7)

and the constrained extremum problem minφr subject to the component of trace H,

θ : hr11 + · · ·+ hrn+1n+1 = kr,

where kr is a real constant.
Comparing (4.7) with the quadratic function in Lemma 4.1, we find that

α = a =

(
t

n+ 1
+
b(t)

n

)
, β =

t

n+ 1
.

Therefore, we can find the critical point (hr11, . . . , h
r
n+1n+1):

hr11 = hr22 = · · · = hrnn =
kr

a+ 1
,

hrn+1n+1 =
(n+ 1)kr

n+ 1 + t
. (4.8)

Now here we use Lemma 4.2 and for this, we fix an arbitrary point x0 ∈ θ. The bilinear form

A : Tx0
θ × Tx0

θ → R

is defined by

A(X,Y ) = Hessφr
(X,Y ) +

〈
~(X,Y ), (gradφr)(x0)

〉
,

where ~ is the second fundamental form of θ in Rn+1 and
〈
,
〉

is the standard inner product on Rn+1. So, we
have the following:

A(X,X) = (X1, . . . , Xn, Xn+1)



2a −2 −2 . . . −2 −2
−2 2a −2 . . . −2 −2
−2 −2 2a . . . −2 −2
...

...
...

. . .
...

...
−2 −2 −2 . . . 2a −2
−2 −2 −2 . . . −2 2t

n+1





X1

X2

...

...
Xn

Xn+1


≥ 0.
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Thus, the point (hr11, . . . , h
r
n+1n+1) (see (4.8)) is a global minimum point. From relation (4.6) and (4.8), we get

Λ ≥ 0 and hence we have

2τ(p) ≤ tC + b(t)C(L) + n(n+ 1)f1

+6f2(||P ||2)− 2nf3||ξ1||2 − 2(n+ 1)trace(γ),

whereby, we obtain

ρ ≤ t

n(n+ 1)
C +

b(t)

n(n+ 1)
C(L) + f1 −

2f3
n+ 1

||ξ1||2

+
6f2

n(n+ 1)
(||P ||2)− 2

n
trace(γ).

By the definition of δC(n), we can obtain our desired inequality (4.1). Moreover, the equality sign holds if and
only if

hrij = 0, ∀ i, j ∈ {1, . . . , n+ 1}, i 6= j, r ∈ {n+ 2, . . . , 2m+ 1} (4.9)

and

hn+1n+1 = 2hr11 = · · · = 2hrnn, ∀ r ∈ {n+ 2, . . . , 2m+ 1}. (4.10)

From (4.9) and (4.10), we conclude that the equality sign holds in the inequality (4.1) if and only if the
submanifoldM is invariantly quasi-umbilical submanifold.

In the same manner, we can establish the inequality (4.2) as a second part of the theorem.

Following is an immediate consequence of Theorem 4.1:

Corollary 4.1. Let M be an (n+ 1)−dimensional submanifold M in a (2m+ 1)−dimensional generalized Sasakian
space formM(f1, f2, f3) with SSMC. Then the normalized δ-Casorati curvature δc(n) and δ̂c(n) satisfy

(i)

ρ ≤ δc(n) + f1 +
6f2

n(n+ 1)
(||P ||2)− 2f3

n+ 1
||ξ1||2 −

2

n
trace(γ) (4.11)

and

(ii)

ρ ≤ δ̂c(n) + f1 +
6f2

n(n+ 1)
(||P ||2)− 2f3

n+ 1
||ξ1||2 −

2

n
trace(γ), (4.12)

respectively. Moreover, the equality sign holds in (i) and (ii) if and only if M is an invariantly quasi-umbilical
submanifold.

5. Applications of Theorem 4.1

In this section, we see the developed optimal Casorati inequalities for bi-slant, hemi-slant, semi-slant, slant,
CR, anti-invariant and invariant submanifolds in the same ambient space, that is, a generalized Sasakian space
form with SSMC. We assume that dimensions of Dθ1 and Dθ2 are 2n1 and 2n2, respectively. This is as follows:
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Submanifolds Two Optimal Casorati Inequalities

bi-slant (i) ρ ≤ δc(t;n) + f1 − 2f3
n+1 ||ξ1||

2 + 6f2
n(n+1) (n1cos

2θ1 + n2cos
2θ2)− 2

n trace(γ)

(ii) ρ ≤ δ̂c(t;n) + f1 − 2f3
n+1 ||ξ1||

2 + 6f2
n(n+1) (n1cos

2θ1 + n2cos
2θ2)− 2

n trace(γ)

hemi-slant (i) ρ ≤ δc(t;n) + f1 − 2f3
n+1 ||ξ1||

2 + 6f2
n(n+1) (n1cos

2θ1)− 2
n trace(γ)

(ii) ρ ≤ δ̂c(t;n) + f1 − 2f3
n+1 ||ξ1||

2 + 6f2
n(n+1) (n1cos

2θ1)− 2
n trace(γ)

semi-slant (i) ρ ≤ δc(t;n) + f1 − 2f3
n+1 ||ξ1||

2 + 6f2
n(n+1) (n1 + n2cos

2θ2)− 2
n trace(γ)

(ii) ρ ≤ δ̂c(t;n) + f1 − 2f3
n+1 ||ξ1||

2 + 6f2
n(n+1) (n1 + n2cos

2θ2)− 2
n trace(γ)

slant (i) ρ ≤ δc(t;n) + f1 − 2f3
n+1 ||ξ1||

2 + 6f2
n(n+1)cos

2θ − 2
n trace(γ)

(ii) ρ ≤ δ̂c(t;n) + f1 − 2f3
n+1 ||ξ1||

2 + 6f2
n(n+1)cos

2θ − 2
n trace(γ)

CR (i) ρ ≤ δc(t;n) + f1 + 6f2
n(n+1)n1 −

2f3
n+1 ||ξ1||

2 − 2
n trace(γ)

(ii) ρ ≤ δ̂c(t;n) + f1 + 6f2
n(n+1)n1 −

2f3
n+1 ||ξ1||

2 − 2
n trace(γ)

anti-invariant (i) ρ ≤ δc(t;n) + f1 − 2f3
n+1 ||ξ1||

2 − 2
n trace(γ)

(ii) ρ ≤ δ̂c(t;n) + f1 − 2f3
n+1 ||ξ1||

2 − 2
n trace(γ)

invariant (i) ρ ≤ δc(t;n) + f1 + 6f2
n(n+1) −

2f3
n+1 ||ξ1||

2 − 2
n trace(γ)

(ii) ρ ≤ δ̂c(t;n) + f1 + 6f2
n(n+1) −

2f3
n+1 ||ξ1||

2 − 2
n trace(γ)

Remark 5.1. Theorem 4.1 shows that the normalized scalar curvature for any submanifold of dimension (n+ 1)
in a generalized Sasakian space form with SSMC is bounded above by the generalized normalized Casorati
curvatures δc(t;n) and δ̂c(t;n).

Remark 5.2. With similar proof of Theorem 4.1, we can show that the normalized scalar curvature is bounded
above by the generalized normalized Casorati curvatures δc(t;n) and δ̂c(t;n) when ambient space form is,
respectively,

(i) Sasakian space form with SSMC
(ii) Kenmotsu space form with SSMC

(iii) cosymplectic space form with SSMC

Remark 5.3. The present paper can be considered as the next version of [22].

Acknowledgment. The author wishes to express her sincere thanks to the referees for valuable comments
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