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Ricci tensor of Hopf hypersurfaces in a
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ABSTRACT

We classify Hopf hypersurfaces in a non-flat complex space form whose Ricci tensor S satisfies
9((VxS)X, &) =0 for any vector field X tangent to ¢, where ¢ is the structure vector field. We
also classify real hypersurfaces with transversal Killing Ricci tensor satisfying S¢ = 5¢ for some
function §5.
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1. Introduction

For real hypersurfaces in a complex space form M,, (4c) of constant holomorphic sectional curvature 4c # 0, it
is an interesting problem to determine real hypersurfaces satisfying an additional condition on the Ricci tensor.

Ki [3] showed that there are no real hypersurfaces with parallel Ricci tensor, VS = 0, in M, (4c), n > 3.
Several conditions that weaken the condition V.S = 0 are studied (cf., [4], [11]). On the other hand, when the
structure vector field ¢ is principal, then the real hypersurface is said to be Hopf. For Hopf hypersurfaces,
fundamental formulas are well-organized form, and it was considered to be a natural condition. So kinds of
classification theorems are given under this assumption (see, for example, [10]). If the Ricci tensor S satisfies
9((Vx8)Y,Z) = 0 for any vector field X, Y and Z orthogonal to £, then it is said to be np-parallel (Suh [11]). Suh
and Maeda classified Hopf hypersurfaces of M,, (4c) with n-parallel Ricci tensor ([11], [9]). In [8], Maeda gave a
classification of Hopf hypersurfaces in CP"™ with V¢S = 0.

When S satisfies g((Vx.S)X,§) = 0 for any X orthogonal to £, we call S the transversal n-Killing Ricci tensor.
In section 3, we classify Hopf hypersurfaces whose Ricci tensor S is transversal 7-Killing.

In [6] and [7], the author showed that If (VxS)Y is proportional (resp. perpendicular) to the structure
vector field ¢ for any vector fields X and Y orthogonal to &, then M is a Hopf hypersurface (resp. ruled real
hypersurface), under an assumption that S¢ = ¢, 3 being a function. On the other hand, for an almost contact
metric manifold (M, ¢,n,&, g), Cho [2] considered a condition that a (1,1)-tensor field T on M a transversal
Killing tensor field, that is, it satisfies (V xT") X = 0 for any vector fields X to &.

Combining these with the results in section 3, we classify real hypersurfaces of M, (4c) whose Ricci tensor S
is a transversal Killing tensor field and satisfies S§ = ¢ for some function 3, in section 4. We notice that any
Hopf hypersurfaces and ruled real hypersurfaces satisfy the condition that S¢§ = 3¢, 5 beging a function.

The author would like to express her sincere gratitude to the referee for valuable suggestions and comments.

2. Preliminaries

Let M, (4c) denote the complex space from of complex dimension n (real dimension 2n) of constant
holomorphic sectional curvature 4c. For the sake of simplicity, if ¢ > 0, we only use ¢ = +1 and call it the
complex projective space CP", and if ¢ < 0, we just consider ¢ = —1, so that we call it the complex hyperbolic
space CH™. Throughout this paper, we suppose that c # 0. We denote by J the almost complex structure of
M, (4c). The Hermitian metric of M, (4c) will be denoted by G.
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Let M be a real (2n — 1)-dimensional hypersurface immersed in M,,(4c). We denote by ¢ the Riemannian
metric induced on M from G. We take the unit normal vector field N of M in M, (4c). For any vector field X
tangent to M, we define ¢, n and ¢ by

JX = ¢X +n(X)N, JN = =¢,

where ¢ X is the tangential part of JX, ¢ is a tensor field of type (1,1), n is a 1-form, and £ is the unit vector field
on M. Then they satisfy

P*X =-X+nX)E, =0, n(pX)=0

for any vector field X tangent to M. Moreover, we have
9(@X,Y) +g(X,0Y) =0, n(X)=g(X,¢),
9(¢X,9Y) = g(X,Y) — n(X)n(Y).

Thus (¢, €, 7, g) defines an almost contact metric structure on M.
We denote by V the operator of covariant differentiation in M, (4c), and by V the one in M determined by
the induced metric. Then the Gauss and Weingarten formulas are given respectively by

VxY =VxY +g(AX,Y)N, VxN =—AX

for any vector fields X and Y tangent to M. We call A the shape operator of M. If the shape operator A of M
satisfies A¢ = af for some functions «, then M is said to be Hopf. We use the following (cf. [10])

Lemma 2.1. Let M be a Hopf hypersurface of M,,(4c), n > 2, ¢ # 0. If a vector field X is orthogonal to { and AX = A\X,
then
(2N — @) ApX = (Aa+ 20)¢ X,

where o = g(AE, €), and « is constant.
For the almost contact metric structure on M, we have
Vx§ = 9AX, (Vx@)Y =n(Y)AX — g(AX,Y)S.
We denote by R the Riemannian curvature tensor field of M. Then the equation of Gauss is given by

RX,Y)VZ = gV, 2)X —g(X,2)Y + g(¢Y, Z)pX

—9(¢X, 2)9Y —29(¢X,Y)pZ}
+9(AY, Z)AX — g(AX, Z)AY,

and the equation of Codazzi by
(VxA)Y = (Vy A)X = e{n(X)oY —n(Y)oX —29(6X,Y)E}-
From the equation of Gauss, the Ricci tensor S of M satisfies

g(SX,)Y) = (2n+1)cg(X,Y) —3en(X)n(Y) (2.1)
+TrAg(AX,Y) — g(AX, AY),

where TrA is the trace of A. By (2.1), we have

(VxS)Y = —3cg(dAX,Y)E —3en(Y)pAX
H(X Tr A)AY + TrA(Vx A)Y — A(VxA)Y 2.2)
—(VxA)AY.

We use the following results to prove our theorem (see [1], [5], [10], [12], [13]).

Theorem A. Let M be a real hypersurface of M, (4c). Then the principal curvatures of M are constant and £ is
principal, if and only if, M is an open subset of a homogeneous hypersurfaces.

Theorem B. Let M be a homogeneous real hypersurface of CP™. Then M is congruent to one of the following:
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1) a geodesic sphere of radius r, where 0 < r < /2,
o) a tube of radius r over a totally geodesic CP* (1 < k <n —2), where 0 <r < 7/2,

(A1)
Az)
) A tube of radius r around a complex hyperquadric CQ™~*, where 0 < r < /4.
)
)
)

(

a tube of radius r over a CP' x CP"z, where 0 < r < w/4and n(>5) is odd,
a tube of radius r over a complex Grassmann G 5(C), where 0 < r < w/4andn =9,
a tube of radius r over a Hermitian symmetric space SO(10)/U(5), where 0 < r < w/4 and n = 15.

(
(
(
(

The principal curvatures are as follows.

B
C
D
E

(A1> (AQ) (B) (Cv D7 E)
A1 cotr cotr cot(r — w/4) | cot(r —m/4)
A2 —tanr | cot(r 4+ mw/4) | cot(r + w/4)
A3 cotr
A4 —tanr
a | 2cot(2r) | 2cot(2r) 2 cot(2r) 2 cot(2r)

The multiplicity m(u) of each principal curvature i of a homogeneous real hypersurface is as follows.

(A1) (A2) (B) | (©) [ (D) ]| (E)
M| 2n—2 | 2n—2k—2 | n—1 2 4 6
Ao 2k n—1 2 4 6
)\3 n — 3 4 8
)\4 n—3 4 8
« 1 1 1 1 1 1

Theorem C. Let M be a Hopf hypersurface of CH", n > 2. If all principal curvatures are constant, then M is locally
congruent to one of the following:

(Ao) A horosphere,

(A1,0) A geodesic sphere of radius r (0 < r < c0),

(A11) A tube of radius r around a totally geodesic CH™ ' (c), where 0 < r < oo,
(As) A tube of radius r around a totally geodesic CH'(c) (1 <1< n —2), where 0 < r < oo,
(B) A tube of radius r around a totally real totally geodesic RH"(c/4), where 0 < r < oo.

The principal curvatures of these real hypersurfaces are given as follows:

(Ag) | (A1) (A1) (A2) (B)
A1 1 cothr tanh r cothr cothr
A2 tanhr tanh r
« 2 | 2coth(2r) | 2coth(2r) | 2coth(2r) | 2tanh(2r)

3. The covariant derivative of the Ricci tensor

Let M be Hopf hypersurface of a complex space form M, (4c), ¢ # 0. Then the shape operator A satisfies
Ae; = aze;, 1 < i < 2n — 2, with respect to a suitable orthonormal frame {e;,-- ,e2,—2,£}. We remark that if
Aiei = a;€;, then

(2a; — a)Ade; = (a;a + 2¢) ey, (3.1)
by Lemma 2.1. In the following, we put A¢e; = d;pe;. Then we have
2a;@; — a;o — @y — 2¢ = 0. (3.2)
Lemma 3.1. Let M be a Hopf hypersurface of M,,(4c). The Ricci tensor S of M is transversal n-Killing if and only if
(ai —a;)(=3c+aTr A —a® — a;a;)g(de;,e;) =0 (3.3)
fori,j=1,---,2n—2.
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Proof. By (2.2), when M is a Hopf hypersurface of M, (4c), we obtain
g((veis>ej7§)
= —3ca;g(¢eiej) + (TrA—a—a;)g((ViA)e;, &)
= —3ca;g(¢e;, ej) + a;(Tr A — o —a;)(a — a;)g(de;, e;5)
=a;i(-3c+aTrA—a; TrA—ao®+ a?)g((bei, €;).

So we have

0 = g((VQiS)ejﬂg)+g((v€js)ei7€)
= (a; —a;)(=3c+aTr A —a® — a;a;)g(¢e;, e;).

First we suppose that g((VxS)X, &) = 0 for any X orthogonal to &. Since g((Vx4+yvS)(X +Y),£) = 0 for any
X and Y orthogonal to ¢, we have
9(Vx9Y. &) +9((VyS)X, &) =0.
So we have (3.3).

Next we suppose that the Ricci tensor S satisfies (3.3). Then we obtain

g((VEiS)ej7E) +g((v€js)ei)§)
= (a; — a;)(=3c+aTr A — o® — a;a;)g(¢e;, e;) =0
for any ¢ and j. Thus we get g((V,5)e;, &) = 0. Any vector field X orthogonal to ¢ is represented as X =
> Xiei. Using g((Ve,S)e;, &) = —g((Ve, S)es, §), we have
=Y XiX;9((Ve,S)e;.€)
i

=D X0(Ve S)ein€) = 0.

(2
So we have our result. O

Lemma 3.2. Let M be a Hopf hypersurface of M, (4c). If the Ricci tensor S of M is transversal n-Killing, then M has at
most 5 distinct constant principal curvatures.

Proof. From Lemma 3.1, putting e; = ¢e; in (3.3), we have a; = @, or
—3c+aTrA—a®—aa; =0. (3.4)
If a; = a;, by (3.2), we see that q; is a solution of the equation
2> —ax —c=0. (3.5)

Since « is constant, a; is also constant.
When a; # a;, from (3.1), we have 2a; = a or a; = % If 2a; = o for some «;, again from (3.1), we have
aja + 2¢ = 0, from which we see that a? = —4c and ¢ < 0. Then M has 2 constant principal curvatures (see [1]).
In the following, we suppose 2a; # o for any i. From (3.4) and a; = 42+2¢, we see that q; is a solution of the

20@
following

2?a —2(—4c+aTrA— o)z +a(-3c+aTrA—ao?) =0. (3.6)

We remark that g; is also the solution of the above equation since (3.2) and (3.4) is symmetric with respect to a;
and a;.

Therefore, we see that the shape operator A has at most 5 distinct principal curvatures. We put \; and
A2 = A1 are solutions of (3.6), whose multiplicity is k, respectively. We suppose A3, A4 are solutions of (3.5) with
multiplicity / and m, respectively. Then we have

Tr A= k()\l + Xl) + I3 +mAg + .
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When «a # 0, since A\; and \; are solutions of (3.6), we have

- 2(—4 Tr A — a?
Ao — ( c+o¢ar oz).

From these equations, we obtain
a(l —2k)Tr A = (X3 + mAy)a — 8ke — 2ka® + .

Since a(1 — 2k) # 0, we see that Tr A is constant. By (3.6), A\; and A; are also constant. Hence all principal
curvatures are constant.

Finally we consider the case that a = 0. If a; # a;, then a, and a; are solutions of (3.6). So we have a; = a; = 0.
This is a contradiction. So we have a; = @; for all ;. Then the principal curvatures are /c and 0 with
multiplicities 2n — 2 and 1, respectively.

O

Using these lemmas, we prove the following theorem.

Theorem 3.1. Let M be a Hopf hypersurface of a complex projective space CP™. If the Ricci tensor S of M satisfies
9((VxS)X, &) = 0 for any X orthogonal to &, then M is locally congruent to one of the following:

(A1) a geodesic sphere of radius r, where 0 < r < 7/2,
(As) a tube of radius r over a totally geodesic CP* (1 < k <n —2), where 0 < r < /2,

(C) a tube of radius r over a CP! x CP"z, where cot? 2r = 5/(2n — 6) and n(> 5) is odd,

(D) a tube of radius r over a complex Grassmann G 5(C), where cot? 2r = 9/8 and n = 9,
(E) a tube of radius r over a Hermitian symmetric space SO(10)/U (5), where cot? 2r = 13/16 and n = 15.

Proof. By Lemma 3.2, when M is a Hopf hypersurface in CP" with at most 5 distinct principal curvatures.
Therefore M is locally congruent to one of the list in Theorem B.

When M is locally congruent to type (A;), then A; = cotr satisfies A1 = 1. Thus all principal curvatures
satisfy (3.5). From Lemma 3.1, the Ricci operator S of all type (A1) hypersurfaces satisfy g((VxS)X,§) =0 for
X orthogonal to ¢. Similarly, since A; = A\; and A2 = Ao, type (A2) hypersurfaces also satisfy that condition.

Next we consider the case that M is locally type (B). The principal curvatures \; = cot(r — 7) and Ay =
cot(r + %) satisfies A\; = Ay. If A\; and A, are solutions of (3.6), then A\ = -3 +aTr A — o? = —1. Since we
have

TrTA=(n-1) (cot(r - %) + cot(r + %)) + a,
we see that

1 = (n—1)cot2r (cot(r — %) + cot(r + %))

= —2n+42.

This is a contradiction. So type (B) hypersurfaces do not satisfy g((Vx5)X,&) =0, X L &
Next we consider the case that M has 5 distinct constant principal curvatures. We put
A1 = cot(r — %), A2 = cot(r + %), A3 = cotr,

Ay = —tanr, a = 2cot(2r),

and their multiplicities are represented by m(A1) = m(A2) = k, m(A3) = m(A4) = . Since A\, and X, are solutions
of (3.6), similar computation as the case of type (B) shows that Tr 4 - « — a? = 2. On the other hand, we obtain

TrA—a = k(A +X2)+1(As+ Ag)
4k tan?r — I(1 — tan?7)?
(tan?r — 1) tanr

Since oo = 2 cot 2r, we have

1—tan2r\?
a(TrA—a) = -4k +1 (tanr) =2,
tanr

www.iejgeo.com


http://www.iej.geo.com

Ricci tensor of Hopf hypersurfaces

from which we see that
1+ 2k
cot? 2r = * .
21

When M is locally congruent to type (C), then k = 2 and | = n — 3. Thus we have cot? 2r = ﬁ Next, when

M is locally congruent to (D), we obtain cot?2r = 2. Finally, if M is locally congruent to (E), then we have
cot? 2r = 12. O
Theorem 3.2. Let M be a Hopf hypersurface of a complex hyperbolic space CH". If the Ricci tensor S of M satisfies
9((Vx8)X,&) =0 for any X orthogonal to &, then M is locally congruent to one of the following:

(Ao) A horosphere,
(A1,0) A geodesic sphere of radius r (0 < r < 00),
(A11) A tube of radius r around a totally geodesic CH™ ! (c), where 0 < r < oo,
(Az) A tube of radius r around a totally geodesic CH'(c) (1 <1 < n —2), where 0 < r < 00,

Proof. Similar argument as the proof of Theorem 3.1 shows that all type (Ao), (A1,0) and (A;,1) and (As)
hypersurface satisfies the condition ¢g((Vx 5)X, &) = 0 for any X orthogonal to &.

Suppose M is locally congruent to type (B). Then A; = cothr and Ay = tanhr are solutions of (3.6). Then we
have a Tr A — o? = —2. So we have

tanh 2r(n — 1)(cothr + tanhr) = —1.

By the straightforward computation, we have 2(n — 1) = —1. This is a contradiction. O

4. Transversal Killing tensor

For a Riemannian manifold with Riemannian connection V, a (1,1)-tensor field T is called a Killing tensor
field if it satisfies (VxT)X =0 or (VxT)Y + (VyT)X = 0 for any vector fields X and Y. If T is symmetric,
then we easily see that T is parallel. For an almost contact metric manifold (M, ¢,7,&,g), we call a (1,1)-
tensor field T on M a transversal Killing tensor field if it satisfies (VxT)X =0 or (VxT)Y + (VyT)X =0 for
any vector fields X and Y orthogonal to ¢ (see Cho[2]). Cho [2] studied a real hypersurfaces in a non-flat
complex space form whose shape operator is a transversal Killing tensor field. In this section, we study a real
hypersurface M whose Ricci tensor S is a transversal Killing tensor field. We summarize theorems for later use.

Theorem D ([7]). Let M be a connected real hypersurface of M, (4c), n > 3, and suppose that the Ricci tensor S
of M satisfies S¢ = ¢ for some function 3.

(1) If (VxS)Y is proportional to the structure vector field ¢ for any vector fields X and Y orthogonal to &,
then M is a Hopf hypersurface.

(2) If (VxS)Y is perpendicular to the structure vector field £ for any vector fields X and Y orthogonal to the
structure vector field &, then M is a ruled real hypersurface.

When n = 2, the author gave a corresponding result in [6].
We use the following theorems for hypersurfaces with n-parallel Ricci tensor (see [9], [11]).

Theorem E. Let M be a Hopf hypersurface of CP", n > 2 with n-parallel Ricci tensor. Then M is congruent to
one of real hypersurfaces of types (A1), (A2) and (B) or a non-homogeneous real hypersurface with A = 0 in CP2.

Theorem F. Let M be a Hopf hypersurface of CH", n > 2 with n-parallel Ricci tensor. Then M is congruent to
one of real hypersurfaces of types (Ao), (A1,0), (A1,1), (A2) and (B) or a non-homogeneous real hypersurface with
A¢ =0in CH?.

First, we prove the following lemma.

Lemma 4.1. Let M be a connected real hypersurface of M, (4c), n > 2, and suppose that the Ricci tensor S of M is
transversal Killing tensor field and satisfies S§¢ = ¢ for some function (3, then M is a Hopf hypersurface with n-parallel
Ricci tensor.
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Proof. By the assumption we have (VxS)X = 0 for any X orthogonal to &, which is equivalent to (VxS)Y +
(VyS)X = 0 for any vector fields X and Y orthogonal to £. Since S is symmetric, it follows that

0=g((VxS)X,Y)=—g((VyS)X, X).

This implies that g((VxS)Y, Z) = 0 for any vector fields X, Y and Z orthogonat to £. Hence, the Ricci tensor S
is n-parallel. Combining this to Theorem D (1), M is a Hopf hypersurface.
U

If the Ricci tensor S of M is transversal Killing tensor field, then S is transversal n-Killing. Therefore, if
a real hypersurface of M,(c) with A¢ = 0 satisfies the condition that the Ricci tensor S of M is transversal
Killing tensor field and S¢ = 3¢ for some function 3, then Lemma 2.1 and Lemma 3.1 imply that ajas = ¢ # 0
and (a1 — az)(a1a2 — 3¢) = 0. Thus M is a totally n-umbilical real hypesurface. Thus a non-homogeneous real
hypersurface with A¢ = 0 in M,,(4c¢) does not satisfy the condition that the Ricci tensor S of M is transversal
Killing tensor field and S¢ = ¢ for some function .

From Theorems 3.1, 3.2 we also see that real hypersurfaces of type (B) do not satisfy the condition that
S is transversal Killing tensor field and S¢ = 3¢ for some function (. Therefore we have the following theorems.

Theorem 4.1. Let M be a real hypersurface of CP™, n > 2. If the Ricci tensor S of M is transversal Killing tensor field
and satisfies S§ = BE for some function 3, then M is locally congruent to one of the types (A1) and (As).

Theorem 4.2. Let M be a real hypersurface of CH", n > 2. If the Ricci tensor S of M is transversal Killing tensor field
and satisfies S§ = BE for some function 3, then M is locally congruent to one of the types (Ao), (A1,0), (A1,1) and (As).
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