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ABSTRACT

Starting from an inequality involving the invariant δ(D) for an anti-holomorphic submanifold of
a complex space form [1] and using optimization methods on Riemannian manifolds, we establish
a corresponding inequality for the invariant δ(D⊥) defined on QR-submanifolds in quaternion
space forms, in terms of the squared mean curvature. We obtain a relationship between intrinsic
and extrinsic invariants for QR-submanifolds of quaternion space forms.

Keywords: QR-submanifolds, quaternion space forms, δ-invariants.

AMS Subject Classification (2010): Primary: 53C40; Secondary: 53C25.

1. Introduction

The fact that every Riemannian manifold can be regarded as a Riemannian submanifold isometrically
embedded in some Euclidean space with sufficiently high codimension (according to the embedding theorem
of J.F. Nash [6]) gives the opportunity to use the extrinsic help in Riemannian geometry. One of the most
fundamental problems in the theory of submanifold is to find simple relationships between intrinsic and
extrinsic invariants of a submanifold.

In this paper, we consider δ-invariants of QR-submanifolds of a quaternion space forms; they are very
important among intrinsic invariants, being different in nature from the classical Ricci and scalar curvature.
The non-trivial δ-invariants are obtained from scalar curvature by substracting a certain amount of sectional
curvatures.

Let M̃ be a Kaehler manifold with complex structure J and let N be a Riemannian manifold isometrically
immersed in M̃ . One denotes byDx, x ∈ N , the maximal complex subspace TxN ∩ J(TxN) of the tangent space
TxN of N . If the dimension of Dx is constant for all x ∈ N , then D : x→ Dx defines a holomorphic distribution D
on N . A subspace ν of TxN, x ∈ N , is called totally real if J(ν) is a subspace of the normal space T⊥x N at x. If
each tangent space of N is totally real, then N is called a totally real submanifold of the Kaehler manifold M̃ .

If the orthogonal complementary distribution D⊥ of the holomorphic distribution D is totally real, i.e.,
TN = D ⊕D⊥, JD⊥x ⊂ T⊥x N , x ∈ N , then the submanifold N is called a CR-submanifold.

The totally real distribution D⊥ of every CR-submanifold of a Kaehler manifold is an integrable distribution
([3]).

In order to give some answers to an open question concerning minimal immersions proposed by S. S. Chern
in the 1960’s and to provide some applications of the Nash embedding theorem, B.-Y. Chen introduced in early
1990’s the notion of δ-invariants. In the case of a CR-submanifold N of a Kaehler manifold, Chen introduced
two δ-invariants δ(D) and δ(D⊥), called CR δ-invariants, defined by Chen in [4]:

δ(D)(x) = τ(x)− τ(Dx),

δ(D⊥)(x) = τ(x)− τ(D⊥x ),

where τ is the scalar curvature of N and τ(Dx) and τ(D⊥) are the scalar curvature of the holomorphic
distribution D and totally real distribution D⊥ of N , respectively.
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In [1], Al-Solamy, Chen and Deshmukh proved an inequality involving the δ-invariant δ(D), for an anti-
holomorphic submanifold in a complex space form, in terms of the squared mean curvature.

In 1986, A. Bejancu [2] introduced the notion of QR-submanifolds as a generalization of real hypersurfaces
of a quaternion Kaehler manifold (see also [8]).

Let M̃ be a quaternion Kaehler manifold and N be a real submanifold of M̃ . N is called a QR-submanifold if
there exists a vector subbundle ν of the normal bundle such that we have

Jα(νx) = νx and Jα(ν⊥x ) ⊂ TxN, x ∈ N, α = 1, 3,

where ν⊥ is the complementary orthogonal bundle.
Taking into account the research done until now ([5]), we remark that quaternion CR-submanifolds and

QR-submanifolds have very little in common (see also section 2).
In the present paper, we give a corresponding inequality to the inequality given in [1], for δ(D⊥) in the case

of a QR-submanifold of a quaternion space form with minimal codimension, i.e., dim νx = 0.

2. Basics on quaternion manifolds and submanifolds

Let M̃ be a Riemannian manifold andN ⊂ M̃ a Riemannian submanifold of M̃ with the induced Riemannian
metric. We denote by TN and T⊥N the tangent bundle, respectively the normal bundle of N , and by ∇ and ∇̃
the Levi-Civita connections of N and M̃ , respectively.

The Gauss and Weingarten formulae are given by:

∇̃XY = ∇XY + h(X,Y ),

∇̃XV = −AVX +∇⊥XV,

∀X,Y ∈ Γ(TN), V ∈ Γ(T⊥N), where ∇⊥ is the normal connection on T⊥N .
One has g(h(X,Y ), V ) = g(AVX,Y ).
If M̃ is a 4n-dimensional manifold with the Riemannian metric g, then M̃ is called a quaternion Kaehler manifold

if there exists a 3-dimensional vector bundle σ of local basis of almost Hermitian structures J1, J2, J3 such that

Jα ◦ Jα+1 = −Jα+1 ◦ Jα = Jα+2, J
2
α = − Id,

where α, α+ 1, α+ 2 are taken modulo 3.
In this case, σ is called an almost quaternion structure on M̃ , {J1, J2, J3} is the canonical local basis of σ and

(M̃, σ) is called an almost quaternion manifold, with dim M̃ = 4m, m ≥ 1.

A Riemannian metric g̃ on M̃ is said to be adapted to the almost quaternion structure σ if it satisfies

g̃(JαX, JαY ) = g̃(X,Y ), ∀α = 1, 3.

Then (M̃, σ, g̃) is called an almost quaternion Hermitian manifold.
If σ is parallel with respect to ∇̃, then (M̃, σ, g̃) is called a quaternion Kaehler manifold. Equivalently, there

exist locally defined 1-forms ω1, ω2, ω3 such that ∀α = 1, 3, (∇̃XJα)(X) = ωα+2(X)Jα+1 − ωα+1Jα+2, where
α, α+ 1, α+ 2 are taken modulo 3.

Remark 2.1. Any quaternion Kaehler manifold is an Einstein manifold (for dim M̃ ≥ 4).

Let (M̃, σ, g̃) be a quaternion Kaehler manifold and X be a non-null vector on M̃ . Then the 4-plane spanned
by {X, J1X,J2X, J3X}, denoted by Q(X), is called a quaternion 4-plane. Any 2-plane in Q(X) is called a
quaternion plane. The sectional curvature of a quaternion plane is called a quaternion sectional curvature.

A quaternion Kaehler manifold is called a quaternion space form if its quaternion sectional curvature is
constant, say c. So, (M̃, σ, g̃) is a quaternion space form if and only if

R̃(X,Y )Z =
c

4
{g̃(Y, Z)X − g̃(X,Z)Y+

+

3∑
α=1

[g̃(Z, JαY )JαX − g̃(Z, JαX)JαY + 2g̃(X, JαY )JαZ]},
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∀X,Y, Z ∈ Γ(TM̃).
For a submanifold N of M̃ , if {e1, . . . , en} is an orthonormal basis of TpN and {en+1, . . . , e4m} an orthonormal

basis of T⊥p N, p ∈ N, the mean curvature vector is given by

H(p) =
1

n

n∑
i=1

h(ei, ei).

One denotes by

‖h‖2(p) =

n∑
i,j=1

g(h(ei, ej), h(ei, ej)).

For a quaternion Kaehler manifold, we have

(∇̃XJα)(X) =

3∑
β=1

Qαβ(X)Jβ , α = 1, 3, ∀X ∈ Γ(TM̃),

where Qαβ are certain 1-forms locally defined on M̃ such that Qαβ +Qβα = 0.

Let M̃ be a quaternion Kaehler manifold and N be a real submanifold of M̃ . N is called a QR-submanifold if
there exists a vector subbundle ν of the normal bundle such that

Jα(νx) = νx and Jα(ν⊥x ) ⊂ TxN, x ∈ N, α = 1, 3,

where ν⊥ is the complementary orthogonal bundle.
LetDαx = Jα(ν⊥x ), D⊥x = D1x ⊕D2x ⊕D3x a 3q-dimensional distributionD⊥ : x→ D⊥x globally defined onN ,

where q = dim ν⊥x . One has
Jα(Dαx) = ν⊥x , Jα(Dβx) = Dγx, ∀x ∈ N,

where (α, β, γ) is a cyclic permutation of (1, 2, 3).
D is the orthogonal complementary distribution of D⊥ in TN and Jα(Dx) = Dx. D is called the quaternion

distribution.
So

TM̃ = TN ⊕ T⊥N, TN = D ⊕D⊥,

T⊥N = ν ⊕ ν⊥, ν, ν⊥ ⊂ T⊥N, D⊥x = D1x ⊕D2x ⊕D3x.

Recall that N is a quaternion CR-submanifold (see [5]) if it admits a differential quaternion distribution D such
that its orthogonal complementary distributionD⊥ is totally real, i.e. Jα(D⊥x ) ⊂ T⊥x N , for α = 1, 2, 3 and ∀x ∈ N.

Figure 1. Quaternion CR-submanifolds
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Figure 2. QR-submanifolds

The differences between the quaternion CR-submanifolds and QR-submanifolds in quaternion space forms
can be represented in the Figure 1 and Figure 2.

For Y ∈ Γ(TN) we consider the decomposition JαY = ΦαY + FαY, α = 1, 3; ΦαY, FαY are the tangential and
normal components of JαY , respectively.

For V ∈ Γ(T⊥N) we consider the decomposition JαV = tαV + fαV, α = 1, 3; tαV, fαV are the tangential and
normal components of JαV , respectively.

N is called mixed geodesic if h(X,Y ) = 0, ∀X ∈ Γ(D), Y ∈ Γ(D⊥).

Let π = sp{X,Y } be a tangent plane to M̃ at a point p ∈ M̃ . The sectional curvature of π is

K̃(π) =
R̃(X,Y,X, Y )

g̃(X,X)g̃(Y, Y )− g̃2(X,Y )
.

From
R̃(X,Y )Z =

c

4
{g̃(Z, Y )X − g̃(X,Z)Y+

+

3∑
α=1

[g̃(Z, JαY )JαX − g̃(Z, JαX)JαY + 2g̃(X, JαY )JαZ]},

we obtain

K̃(X ∧ Y ) =
c

4

[
1 + 3

3∑
α=1

g̃2(JαX,Y )

]
,

∀X,Y ∈ Γ(TpM̃), p ∈ M̃ , unit vector fields.
By the Gauss equation, we have

K(X ∧ Y ) =
c

4

[
1 + 3

3∑
α=1

g̃2(JαX,Y )

]
+ g̃(h(X,X), h(Y, Y ))− g̃(h(X,Y ), h(X,Y )).

We recall the following result.

Let (N, g) be a Riemannian submanifold of a Riemannian manifold (M̃, g̃) and f ∈ C∞(M̃). We attach the
following Optimum Problem:

(2.1) min
x∈N

f(x).
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Theorem 2.1. [7] If x0 ∈ N is a solution of the problem (2.1), then
a) (grad f)(x0) ∈ T⊥x0

N ;
b) the bilinear form β : Tx0

N × Tx0
N → R ,

β(X,Y ) = Hessf (X,Y ) + g̃(h(X,Y ), (grad f)(x0))

is positive semidefinite, where h is the second fundamental form of the submanifold N in M̃ .

Remark 2.2. If β is negative semidefinite, then we have a solution of maxx∈N f(x).

3. An inequality for a new δ-invariant

If N ⊂ M̃ is a QR-submanifold of minimal codimension, i.e., dim νx = 0 for x ∈M , we consider the following
orthonormal bases:

{e1, . . . , en} ⊂ Dx;

{J1en+1, . . . , J1en+q; J2en+1, . . . , J2en+q; J3en+1, . . . , J3en+q} ⊂ D⊥x ;

{ en+1, . . . , en+q} ⊂ T⊥x N.

For x ∈ N , we have
dimDx = n; dimD⊥x = 3q; dimTxN = n+ 3q;

dim νx = 0, dimT⊥x N = q = dim ν⊥x .

We define the following QR δ-invariant δ(D⊥) by

δ(D⊥)(x) = τ(x)− τ(D⊥x ), x ∈ M̃,

where τ and τ(D⊥) denote the scalar curvature of N and the scalar curvature of the distribution D⊥ ⊂ TN ,
respectively.

In the following, we will use the convention on range of indices, unless mentioned otherwise:

i, j, k = 1, n ; α, β, γ = 1, 3 ; r, s, t = n+ 1, n+ q ; A,B,C = 1, n+ q.

In [1], the authors proved an inequality for δ(D) for an anti-holomorphic submanifold of a complex space
form:

Theorem 3.1. [1] Let N be an anti-holomorphic submanifold of a complex space form M̃h+p(c) with h = rankCD ≥ 1
and p = rankD⊥ ≥ 2. Then we have

δ(D) ≤ (p− 1)(2h+ p)2

2(p+ 2)
· ‖H‖2 +

p

2
(4h+ p− 1) · c

4
.

The equality sign holds identically if and only if the following three conditions are satisfied:
(a) N is D-minimal,
(b) N is mixed geodesic, and
(c) there exists an orthonormal frame {e2h+1, . . . , en} of D⊥ such that the second fundamental form σ of N satisfies
σrrr = 3σrss, for 2h+ 1 ≤ r 6= s ≤ 2h+ p, and
σtrs = 0 for distinct r, s, t ∈ {2h+ 1, . . . , 2h+ p}.

The main result of our study is the following inequality involving δ(D⊥) for a QR-submanifold of a
quaternion space form.

Theorem 3.2. Let N be a QR-submanifold of minimal codimension of a quaternion space form M̃(c), dimDx =
n, dimD⊥x = 3q,dim νx = 0, dim ν⊥x = q, x ∈ N . Then we have:

(∗) δ(D⊥) ≤ n(n+ 3q)2

2(n+ 1)
· ‖H‖2 +

n(n+ 6q + 8)

2
· c

4
.
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The equality sign holds identically if and only if the following three conditions are satisfied:
(a) N is mixed geodesic,
(b) the distribution D is totally umbilical, and
(c) there exists an orthonormal frame

{J1en+1, . . . , J1en+q; J2en+1, . . . , J2en+q; J3en+1, . . . , J3en+q}

of D⊥x such that the second fundamental form σ of N satisfies

hrij = 0, i, j = 1, n, i 6= j, r = n+ 1, n+ q.

Proof. With the above notations, for x ∈ N we have

τ(x) =
∑

1≤i<j≤n

K(ei ∧ ej) +

3∑
α,β=1

n+q∑
r,s=n+1

K(Jαer ∧ Jβes) +

3∑
α=1

n∑
i=1

n+q∑
r=n+1

K(ei ∧ Jαer).

τ(D⊥x ) =

3∑
α,β=1

n+q∑
r,s=n+1

K(Jαer ∧ Jβes).

From these two relations, we obtain

(3.1) δ(D⊥)(x) =
∑

1≤i<j≤n

K(ei ∧ ej) +

3∑
α=1

n∑
i=1

n+q∑
r=n+1

K(ei ∧ Jαer).

Applying the Gauss equation for X = ei, Y = ej , i, j = 1, n, i 6= j, we get

(3.2) K(ei ∧ ej) =
c

4

[
1 + 3

3∑
α=1

g̃2(Jαei, ej)

]
+ g̃(h(ei, ei), h(ej , ej))− g̃(h(ei, ej), h(ei, ej)).

Because Jαei ∈ D and Jαer ∈ D⊥, by applying the Gauss equation for X = ei and Y = Jαer, i = 1, n, r =
n+ 1, n+ q, α = 1, 3, we have

(3.3) K(ei ∧ Jαer) =
c

4
+ g̃(h(ei, ei), h(Jαer, Jαer))− g̃(h(ei, Jαer), h(ei, Jαer)).

Using the relations (3.2) and (3.3) in (3.1), it follows that

δ(D⊥)(x) =
∑

1≤i<j≤n

{
c

4

[
1 + 3

3∑
α=1

g̃2(Jαei, ej)

]
+ g̃(h(ei, ei), h(ej , ej))− g̃(h(ei, ej), h(ei, ej))

}
+

+

3∑
α=1

n∑
i=1

n+q∑
r=n+1

[ c
4

+ g̃(h(ei, ei), h(Jαer, Jαer))− g̃(h(ei, Jαer), h(ei, Jαer))
]

=

=
n(n− 1)

2
· c

4
+

3c

4

3∑
α=1

∑
1≤i<j≤n

g̃2(Jαei, ej)+

+
∑

1≤i<j≤n

[g̃(h(ei, ei), h(ej , ej))− g̃(h(ei, ej), h(ei, ej))] +

+3nq · c
4

+

3∑
α=1

n∑
i=1

n+q∑
r=n+1

[g̃(h(ei, ei), h(Jαer, Jαer))− g̃(h(ei, Jαer), h(ei, Jαer))] ;

thus we obtain

(3.4) δ(D⊥)(x) =
n(n+ 6q − 1)

2
· c

4
+

3c

4

3∑
α=1

∑
1≤i<j≤n

g̃2(Jαei, ej)+
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+
∑

1≤i<j≤n

g̃(h(ei, ei), h(ej , ej)) +

3∑
α=1

n∑
i=1

n+q∑
r=n+1

g̃(h(ei, ei), h(Jαer, Jαer))−

−
∑

1≤i<j≤n

g̃(h(ei, ej), h(ei, ej))−
3∑

α=1

n∑
i=1

n+q∑
r=n+1

g̃(h(ei, Jαer), h(ei, Jαer)).

Obviously

(3.5) ‖Pα‖2 =

n∑
i,j=1

g̃2(Jαei, ej) = n.

Taking into account that the term
∑3

α=1

∑n
i=1

∑n+q
r=n+1 g̃(h(ei, Jαer), h(ei, Jαer)) is positive (being a sum of

squares), the relations (3.4) and (3.5) imply

(3.6) δ(D⊥)(x) ≤ n(n+ 6q − 1)

2
· c

4
+ 9n

c

8
+

∑
1≤i<j≤n

g̃(h(ei, ei), h(ej , ej))+

+

3∑
α=1

n∑
i=1

n+q∑
r=n+1

g̃(h(ei, ei), h(Jαer, Jαer))−
∑

1≤i<j≤n

g̃(h(ei, ej), h(ei, ej)) =

=
n(n+ 6q + 8)

2
· c

4
+

∑
1≤i<j≤n

n+q∑
r=n+1

hriih
r
jj+

+

n∑
i=1

n+q∑
r,s=n+1

hsii

[
h̃srr +

˜̃
hsrr +

˜̃̃
hsrr

]
−

∑
1≤i<j≤n

n+q∑
r=n+1

(
hrij
)2
,

where

(3.7.1) hrij = g̃(h(ei, ej), er),

(3.7.2) h̃trs = g̃(h(J1er, J1es), et),

(3.7.3)
˜̃
htrs = g̃(h(J2er, J2es), et),

(3.7.4)
˜̃̃
htrs = g̃(h(J3er, J3es), et),

with i, j = 1, n, r, s, t = n+ 1, n+ q.

Using the fact that
∑

1≤i<j≤n
∑n+q

r=n+1

(
hrij
)2 is positive as a sum of squares, from (3.6), we get

(3.8) δ(D⊥)(x) ≤ n(n+ 6q + 8)

2
· c

4
+

+
∑

1≤i<j≤n

n+q∑
r=n+1

hriih
r
jj +

n∑
i=1

n+q∑
r,s=n+1

hrii

[
h̃rss +

˜̃
hrss +

˜̃̃
hrss

]
.

We consider the following quadratic forms ft : Rn+3q → R,

(3.9) ft(h
t
11, . . . , h

t
nn; h̃tn+1;n+1, . . . , h̃

t
n+q;n+q;

˜̃
htn+1;n+1, . . . ,

˜̃
htn+q;n+q;

˜̃̃
htn+1;n+1, . . . ,

˜̃̃
htn+q;n+q) =

=
∑

1≤i<j≤n

htiih
t
jj +

n∑
i=1

n+q∑
r=n+1

htii

[
h̃trr +

˜̃
htrr +

˜̃̃
htrr

]
, t = n+ 1, n+ q.
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For ft(ht11, . . . ,
˜̃̃
htn+q;n+q) we must find an upper bound, subject to

(3.10) P : ht11 + . . .+ htnn + h̃tn+1;n+1 + . . .+ h̃tn+q;n+q +
˜̃
htn+1;n+1 + . . .+

˜̃
htn+q;n+q+

+
˜̃̃
htn+1;n+1 + . . .+

˜̃̃
htn+q;n+q = ct,

where ct is a real constant.
For this, we calculate the partial derivatives of ft:

(3.11.1)
∂ft
∂htii

=

j 6=i∑
1≤j≤n

htjj +

n+q∑
r=n+1

(h̃trr +
˜̃
htrr +

˜̃̃
htrr), i = 1, n,

(3.11.2)
∂ft

∂h̃tss
=

∂ft

∂
˜̃
htss

=
∂ft

∂
˜̃̃
htss

=

n∑
i=1

htii, s = n+ 1, n+ q.

In the standard frame of Rn+3q, the Hessian of ft has the matrix:(
A B
Bt C

)
,

where B ∈Mn,3q(R), with all the elements equal to 1, C ∈M3q(R), with all the elements equals to 0 and A is
the matrix :

A =

0 1 1 . . . 1
1 0 1 . . . 1
. . . . . . . . . . . . . . . .
1 1 1 . . . 0

 , A ∈Mn(R).

We obtain

β(X,X) = 2
∑

1≤i<j≤n

XiXj + 2

n∑
i=1

n+q∑
r=n+1

Xi(X̃r + ˜̃Xr +
˜̃̃
Xr) =

=

[
n∑
i=1

Xi +

n+q∑
r=n+1

(X̃r + ˜̃Xr +
˜̃̃
Xr)

]2
−

n∑
i+1

(Xi)
2 −

n+q∑
r=n+1

[
(X̃r)

2 + ( ˜̃Xr)
2 + (

˜̃̃
Xr)

2

]
−

−2

n+q∑
r,s=n+1

(
X̃r

˜̃Xs + X̃r

˜̃̃
Xs + ˜̃Xr

˜̃̃
Xs

)
=

=

[
n∑
i=1

Xi +

n+q∑
r=n+1

(X̃r + ˜̃Xr +
˜̃̃
Xr)

]2
−

n∑
i+1

(Xi)
2 −

[
n+q∑
n+1

(X̃r + ˜̃Xr +
˜̃̃
Xr)

]2
=

= −
n∑
i+1

(Xi)
2 −

[
n+q∑
n+1

(X̃r + ˜̃Xr +
˜̃̃
Xr)

]2
< 0,

because
[∑n

i=1Xi +
∑n+q

r=n+1(X̃r + ˜̃Xr +
˜̃̃
Xr)

]2
= 0, P being totally geodesic in Rn+3q. Then the Hessian of ft is

negative semidefinite, so ft reaches its maximum (see Remark 2.2.).

Searching for the critical points (ht11, . . . ,
˜̃̃
htn+q;n+q) of ft, we find:

∂ft
∂ht11

=
∂ft
∂ht22

=⇒

n∑
j=2

htjj +

n+q∑
r=n+1

(h̃trr +
˜̃
htrr +

˜̃̃
htrr)) =

j 6=2∑
1≤j≤n

htjj +

n+q∑
r=n+1

(h̃trr +
˜̃
htrr +

˜̃̃
htrr),
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which gives

(3.12) ht11 = ht22 = . . . = htnn = λ.

Also
∂ft
∂ht11

=
∂ft

∂h̃tn+1;n+1

=⇒

(3.13) ht11 =

n+q∑
r=n+1

(h̃trr +
˜̃
htrr +

˜̃̃
htrr) = λ.

From (3.10), (3.12) and (3.13) we obtain

nλ+ λ = ct =⇒ λ =
ct

n+ 1
,

which gives

(3.14) ht11 = ht22 = . . . = htnn =

n+q∑
r=n+1

(h̃trr +
˜̃
htrr +

˜̃̃
htrr) =

ct

n+ 1
.

Using the relations (3.14) in the expression of ft from (3.9) we have

ft(h
t
11, . . . ,

˜̃̃
htn+q;n+q) ≤

n(n− 1)

2
·
(

ct

n+ 1

)2

+ n ·
(

ct

n+ 1

)2

=

=

(
ct

n+ 1

)2

·
[
n(n− 1)

2
+ n

]
=

(
ct

n+ 1

)2

·
[
n2 − n+ 2n

2

]
=

=

(
ct

n+ 1

)2

·
(
n2 + n

2

)
=

(
ct

n+ 1

)2

· n(n+ 1)

2
=

(ct)2

2
· n

n+ 1
,

and then

(3.15) ft ≤
n

2(n+ 1)
· (n+ 3q)2 · ‖Ht‖2,

where

Ht =
1

n+ 3q
·

[
n∑
i=1

htii +

n+q∑
r=n+1

(h̃trr +
˜̃
htrr +

˜̃̃
htrr)

]
.

From (3.8) and (3.15) we obtain the relation (*).
The relations (3.4), (3.6) and (3.12) imply the conditions for the equality case.
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