On f-Biharmonic Curves

Fatma Karaca* Cihan Özgür

(Communicated by Uday Chand De)

Abstract

We study f-biharmonic curves in Sol spaces, Cartan-Vranceanu 3-dimensional spaces, homogeneous contact 3 -manifolds and we analyze non-geodesic f-biharmonic curves in these spaces.

Keywords: f-biharmonic curves; Sol spaces; Cartan-Vranceanu 3-dimensional spaces; homogeneous contact 3-manifolds. AMS Subject Classification (2010): Primary: 53C25 ; Secondary: 53C40; 53A04.

1. Introduction

Harmonic maps between Riemannian manifolds were first introduced by Eells and Sampson in [8]. Let (M, g) and (N, h) be two Riemannian manifolds. $\varphi: M \rightarrow N$ is called a harmonic map if it is a critical point of the energy functional

$$
E(\varphi)=\frac{1}{2} \int_{\Omega}\|d \varphi\|^{2} d \nu_{g}
$$

where Ω is a compact domain of M. Let $\left\{\varphi_{t}\right\}_{t \in I}$ be a differentiable variation of φ and $V=\left.\frac{\partial}{\partial t}\right|_{t=0}$, we have critical points of energy functional (see [8])

$$
\begin{aligned}
\left.\frac{\partial}{\partial t} E\left(\varphi_{t}\right)\right|_{t=0} & =\frac{1}{2} \int_{\Omega}\left\{\frac{\partial}{\partial t}\left\langle d \varphi_{t}, d \varphi_{t}\right\rangle\right\}_{t=0} d \nu_{g} \\
& =\int_{\Omega}\langle\operatorname{tr}(\nabla d \varphi), V\rangle d \nu_{g}
\end{aligned}
$$

Hence, the Euler-Lagrange equation of $E(\varphi)$ is

$$
\tau(\varphi)=\operatorname{tr}(\nabla d \varphi)=0
$$

where $\tau(\varphi)$ is the tension field of φ [8]. The map φ is said to be biharmonic if it is a critical point of the bienergy functional

$$
E_{2}(\varphi)=\frac{1}{2} \int_{\Omega}\|\tau(\varphi)\|^{2} d \nu_{g}
$$

where Ω is a compact domain of M. In [11], the Euler-Lagrange equation for the bienergy functional is obtained by

$$
\begin{equation*}
\tau_{2}(\varphi)=\operatorname{tr}\left(\nabla^{\varphi} \nabla^{\varphi}-\nabla_{\nabla}^{\varphi}\right) \tau(\varphi)-\operatorname{tr}\left(R^{N}(d \varphi, \tau(\varphi)) d \varphi\right)=0 \tag{1.1}
\end{equation*}
$$

where $\tau_{2}(\varphi)$ is the bitension field of φ and R^{N} is the curvature tensor of N.
The map φ is a f-harmonic map with a function $f: M \xrightarrow{C^{\infty}} \mathbb{R}$, if it is a critical point of f-energy

$$
E_{f}(\varphi)=\frac{1}{2} \int_{\Omega} f\|d \varphi\|^{2} d \nu_{g},
$$

[^0]where Ω is a compact domain of M. The Euler-Lagrange equation of $E_{f}(\varphi)$ is
$$
\tau_{f}(\varphi)=f \tau(\varphi)+d \varphi(\operatorname{grad} f)=0
$$
where $\tau_{f}(\varphi)$ is the f-tension field of φ (see [6] and [13]). The map φ is said to be f-biharmonic, if it is a critical point of the f-bienergy functional
$$
E_{2, f}(\varphi)=\frac{1}{2} \int_{\Omega} f\|\tau(\varphi)\|^{2} d \nu_{g}
$$
where Ω is a compact domain of M [12]. The Euler-Lagrange equation for the f-bienergy functional is given by
\[

$$
\begin{equation*}
\tau_{2, f}(\varphi)=f \tau_{2}(\varphi)+\Delta f \tau(\varphi)+2 \nabla_{\operatorname{grad} f}^{\varphi} \tau(\varphi)=0 \tag{1.2}
\end{equation*}
$$

\]

where $\tau_{2, f}(\varphi)$ is the f-bitension field of φ [12]. If an f-biharmonic map is neither harmonic nor biharmonic then we call it by proper f-biharmonic and if f is a constant, then an f-biharmonic map turns into a biharmonic map [12].

In [4], Caddeo, Montaldo and Piu considered biharmonic curves on a surface. In [2], Caddeo, Montaldo and Oniciuc classified biharmonic submanifolds in 3-sphere S^{3}. More generally, in [3], the same authors studied biharmonic submanifolds in spheres. In [7], Caddeo, Oniciuc and Piu considered the biharmonicity condition for maps and studied non-geodesic biharmonic curves in the Heisenberg group H_{3}. They proved that all of curves are helices in H_{3}. In [16], Ou and Wang studied linear biharmonic maps from Euclidean space into Sol, Nil, and Heisenberg spaces using the linear structure of the target manifolds. In [5], Caddeo, Montaldo, Oniciuc and Piu characterized all biharmonic curves of Cartan-Vranceanu 3-dimensional spaces and they gave their explicit parametrizations. In [10], Inoguchi considered biminimal submanifolds in contact 3-manifolds. In [14], Ou derived equations for f-biharmonic curves in a generic manifold and he gave characterization of f-biharmonic curves in n-dimensional space forms and a complete classification of f-biharmonic curves in 3 dimensional Euclidean space. In [9], Güvenç and the second author studied f-biharmonic Legendre curves in Sasakian space forms.

Motivated by the above studies, in the present paper, we consider f-biharmonicity condition for the Sol space, Cartan-Vranceanu 3-dimensional space and homogeneous contact 3-manifold. We find the necessary and sufficient conditions for the curves in these spaces to be f-biharmonic.

2. f-Biharmonicity Conditions For Curves

2.1. f-Biharmonic curves of Sol space

Sol space can be seen as \mathbb{R}^{3} with respect to Riemannian metric

$$
g_{\text {sol }}=d s^{2}=e^{2 z} d x^{2}+e^{-2 z} d y^{2}+d z^{2}
$$

where (x, y, z) are standard coordinates in \mathbb{R}^{3} [16], [18]. In [16] and [18], the Levi-Civita connection ∇ of the metric $g_{\text {sol }}$ with respect to the orthonormal basis is given by

$$
e_{1}=e^{-z} \frac{\partial}{\partial x}, e_{2}=e^{z} \frac{\partial}{\partial y}, e_{3}=\frac{\partial}{\partial z}
$$

In terms of the basis $\left\{e_{1}, e_{2}, e_{3}\right\}$, they obtained as follows:

$$
\begin{array}{ccc}
\nabla_{e_{1}} e_{1}=-e_{3}, & \nabla_{e_{1}} e_{2}=0, & \nabla_{e_{1}} e_{3}=e_{1} \\
\nabla_{e_{2}} e_{1}=0, & \nabla_{e_{2}} e_{2}=e_{3}, & \nabla_{e_{2}} e_{3}=-e_{2} \\
\nabla_{e_{3}} e_{1}=0, & \nabla_{e_{3}} e_{2}=0, & \nabla_{e_{3}} e_{3}=0
\end{array}
$$

(see [18]). Now we assume that $\gamma: I \longrightarrow\left(\mathbb{R}^{3}, g_{\text {sol }}\right)$ be a curve in Sol space $\left(\mathbb{R}^{3}, g_{\text {sol }}\right)$ parametrized by arc length and let $\{T, N, B\}$ be orthonormal frame field tangent to Sol space along γ, where $T=T_{1} e_{1}+T_{2} e_{2}+T_{3} e_{3}$, $N=N_{1} e_{1}+N_{2} e_{2}+N_{3} e_{3}$ and $B=B_{1} e_{1}+B_{2} e_{2}+B_{3} e_{3}$.

Now, we state the f-biharmonicity condition for curves of Sol space $\left(\mathbb{R}^{3}, g_{\text {sol }}\right)$:

Theorem 2.1. Let $\gamma: I \longrightarrow\left(\mathbb{R}^{3}, g_{\text {sol }}\right)$ be a curve parametrized by arc length in Sol space $\left(\mathbb{R}^{3}, g_{\text {sol }}\right)$. Then γ is f biharmonic if and only if the following equations hold:

$$
\begin{gather*}
-3 f \kappa \kappa^{\prime}-2 f^{\prime} \kappa^{2}=0 \\
f \kappa^{\prime \prime}-f \kappa^{3}-f \kappa \tau^{2}+2 f \kappa B_{3}^{2}-f \kappa+2 f^{\prime} \kappa^{\prime}+f^{\prime \prime} \kappa=0 \\
2 f \kappa^{\prime} \tau+f \kappa \tau^{\prime}-2 f \kappa N_{3} B_{3}+2 f^{\prime} \kappa \tau=0 \tag{2.1}
\end{gather*}
$$

Proof. Let $\left\{e_{i}\right\}, 1 \leq i \leq 3$ be an orthonormal basis. Let $\gamma=\gamma(s)$ be a curve parametrized by arc length. Then we have

$$
\begin{gather*}
\tau(\gamma)=\operatorname{tr}(\nabla d \varphi)=\nabla_{\frac{\partial}{\partial s}}^{\gamma}\left(d \gamma\left(\frac{\partial}{\partial s}\right)\right)-d \gamma\left(\nabla_{\frac{\partial}{\partial s}} \frac{\partial}{\partial s}\right) \\
=\nabla_{\frac{\partial}{\partial s}}^{\gamma}\left(d \gamma\left(\frac{\partial}{\partial s}\right)\right)=\nabla_{\gamma^{\prime}} \gamma^{\prime}=\kappa N \tag{2.2}
\end{gather*}
$$

From [15] or [16], we know that

$$
\begin{gather*}
R(T, N, T, N)=2 B_{3}^{2}-1 \tag{2.3}\\
R(T, N, T, B)=-2 N_{3} B_{3} . \tag{2.4}
\end{gather*}
$$

Using the equation (2.2) in (1.1), we can write

$$
\begin{align*}
& \tau_{2}(\gamma)=\left(-3 \kappa \kappa^{\prime}\right) T+\left(\kappa^{\prime \prime}-\kappa^{3}-\kappa \tau^{2}\right) N \\
& \quad+\kappa R(T, N) T+\left(2 \kappa^{\prime} \tau+\kappa \tau^{\prime}\right) B \tag{2.5}
\end{align*}
$$

On the other hand, an easy calculation gives us

$$
\begin{equation*}
\nabla_{\operatorname{grad} f}^{\gamma} \tau(\gamma)=\nabla_{\operatorname{grad} f}^{\gamma} \kappa N=f^{\prime} \nabla_{T}(\kappa N)=f^{\prime}\left(-\kappa^{2} T+\kappa^{\prime} N+\kappa \tau B\right) \tag{2.6}
\end{equation*}
$$

In view of equations (2.2), (2.5) and (2.6) into equation (1.2), we have

$$
\begin{align*}
& \tau_{2, f}(\gamma)=\left(-3 f \kappa \kappa^{\prime}\right) T+\left(f \kappa^{\prime \prime}-f \kappa^{3}-f \kappa \tau^{2}\right) N+\left(2 f \kappa^{\prime} \tau+f \kappa \tau^{\prime}\right) B \\
& \quad+f \kappa R(T, N) T+f^{\prime \prime} \kappa N+2 f^{\prime}\left(-\kappa^{2} T+\kappa^{\prime} N+\kappa \tau B\right)=0 \tag{2.7}
\end{align*}
$$

Finally, taking the scalar product of equation (2.7) with T, N and B, respectively and using the equations (2.3) and (2.4) we obtain (2.1).

In the following four cases, we find necessary and sufficient conditions for curves of Sol space to be f biharmonic:
Case 2.1. If $\kappa=$ constant $\neq 0$, then we have the following corollary:
Corollary 2.1. Let $\gamma: I \longrightarrow\left(\mathbb{R}^{3}, g_{\text {sol }}\right)$ be a differentiable f-biharmonic curve parametrized by arc length in Sol space $\left(\mathbb{R}^{3}, g_{\text {sol }}\right)$. If $\kappa=$ constant $\neq 0$, then γ is biharmonic.
Proof. We assume that $\kappa=$ constant $\neq 0$. By the use of equations (2.1), we find

$$
f^{\prime}=0
$$

Hence, γ is a biharmonic curve.
Case 2.2. If $\tau=$ constant $\neq 0$, then we have the following corollaries:
Corollary 2.2. Let $\gamma: I \longrightarrow\left(\mathbb{R}^{3}, g_{\text {sol }}\right)$ be a differentiable f-biharmonic curve parametrized by arc length in Sol space $\left(\mathbb{R}^{3}, g_{\text {sol }}\right)$. If $\tau=$ constant $\neq 0$ and $N_{3} B_{3}=0$, then γ is biharmonic.
Proof. We assume that $\tau=$ constant $\neq 0$ and $N_{3} B_{3}=0$. By the use of equations (2.1), we have

$$
\begin{equation*}
\frac{\kappa^{\prime}}{\kappa}=-\frac{2 f^{\prime}}{3 f} \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\tau\left(\frac{\kappa^{\prime}}{\kappa}+\frac{f^{\prime}}{f}\right)=0 \tag{2.9}
\end{equation*}
$$

Then, substituting the equation (2.8) into (2.9), we obtain $f=$ constant and γ is a biharmonic curve.

Corollary 2.3. Let $\gamma: I \longrightarrow\left(\mathbb{R}^{3}, g_{\text {sol }}\right)$ be a differentiable f-biharmonic curve parametrized by arc length in Sol space $\left(\mathbb{R}^{3}, g_{\text {sol }}\right)$. If $\tau=$ constant $\neq 0$, then $f=e^{\int \frac{3 N_{3} B_{3}}{\tau}}$.
Proof. Using the equations (2.1), we obtain

$$
\begin{equation*}
\frac{\kappa^{\prime}}{\kappa}=-\frac{2 f^{\prime}}{3 f} \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
2 f \kappa^{\prime} \tau-2 f \kappa N_{3} B_{3}+2 f^{\prime} \kappa \tau=0 \tag{2.11}
\end{equation*}
$$

Then, putting the equation (2.10) into (2.11), we get the result.
Case 2.3. If $\tau=0$, then we have the following corollary:
Corollary 2.4. Let $\gamma: I \longrightarrow\left(\mathbb{R}^{3}, g_{\text {sol }}\right)$ be a differentiable non-geodesic curve parametrized by arc length in Sol space $\left(\mathbb{R}^{3}, g_{\text {sol }}\right)$. Then γ is f-biharmonic if and only if the following equations are satisfied:

$$
\begin{gather*}
f^{2} \kappa^{3}=c_{1}^{2} \tag{2.12}\\
(f \kappa)^{\prime \prime}=f \kappa\left(\kappa^{2}-2 B_{3}^{2}+1\right) \tag{2.13}
\end{gather*}
$$

and

$$
\begin{equation*}
N_{3} B_{3}=0 \tag{2.14}
\end{equation*}
$$

where $c_{1} \in \mathbb{R}$.
Proof. We assume that $\tau=0$. Then using the equations (2.1), integrating the first equation, we find the desired result.

Case 2.4. If $\kappa \neq$ constant $\neq 0$ and $\tau \neq$ constant $\neq 0$, then we have the following corollary:
Corollary 2.5. Let $\gamma: I \longrightarrow\left(\mathbb{R}^{3}, g_{\text {sol }}\right)$ be a differentiable non-geodesic curve parametrized by arc length in Sol space $\left(\mathbb{R}^{3}, g_{\text {sol }}\right)$. Then γ is f-biharmonic if and only if the following equations are hold:

$$
\begin{gather*}
f^{2} \kappa^{3}=c_{1}^{2} \tag{2.15}\\
(f \kappa)^{\prime \prime}=f \kappa\left(\kappa^{2}+\tau^{2}-2 B_{3}^{2}+1\right) \tag{2.16}
\end{gather*}
$$

and

$$
\begin{equation*}
f^{2} \kappa^{2} \tau=e^{\int \frac{2 N_{3} B_{3}}{\tau}} \tag{2.17}
\end{equation*}
$$

where $c_{1} \in \mathbb{R}$.
Proof. We suppose that $\kappa \neq$ constant $\neq 0$ and $\tau \neq$ constant $\neq 0$. Then using equations (2.1), integrating the first and third equations, the proof is completed.

From Corollary 2.4 and Corollary 2.5, we can state the following theorem:
Theorem 2.2. An arc length parametrized curve $\gamma: I \longrightarrow\left(\mathbb{R}^{3}, g_{\text {sol }}\right)$ in Sol space $\left(\mathbb{R}^{3}, g_{\text {sol }}\right)$ is proper f-biharmonic if and only if one of the following cases happens:
(i) $\tau=0, f=c_{1} \kappa^{-\frac{3}{2}}$ and the curvature κ solves the following equation

$$
3\left(\kappa^{\prime}\right)^{2}-2 \kappa \kappa^{\prime \prime}=4 \kappa^{2}\left(\kappa^{2}-2 B_{3}^{2}+1\right)
$$

(ii) $\tau \neq 0, \frac{\tau}{\kappa}=\frac{e^{\int \frac{2 N_{3} B_{3}}{\tau}}}{c_{1}^{2}}, f=c_{1} \kappa^{-\frac{3}{2}}$ and the curvature κ solves the following equation

$$
3\left(\kappa^{\prime}\right)^{2}-2 \kappa \kappa^{\prime \prime}=4 \kappa^{2}\left(\kappa^{2}\left(1+\frac{e^{\int \frac{4 N_{3} B_{3}}{\tau}}}{c_{1}^{4}}\right)-2 B_{3}^{2}+1\right)
$$

Proof. (i) Using the equation (2.12), we have

$$
\begin{equation*}
f=c_{1} \kappa^{-\frac{3}{2}} . \tag{2.18}
\end{equation*}
$$

Putting the equation (2.18) into (2.13), we get the result.
(ii) Solving the equation (2.15), we get

$$
\begin{equation*}
f=c_{1} \kappa^{-\frac{3}{2}} \tag{2.19}
\end{equation*}
$$

Putting the equation (2.19) into (2.17), we have

$$
\begin{equation*}
\frac{\tau}{\kappa}=\frac{e^{\int \frac{2 N_{3} B_{3}}{\tau}}}{c_{1}^{2}} \tag{2.20}
\end{equation*}
$$

Finally, substituting the equations (2.19) and (2.20) into (2.16), we obtain

$$
3\left(\kappa^{\prime}\right)^{2}-2 \kappa \kappa^{\prime \prime}=4 \kappa^{2}\left(\kappa^{2}\left(1+\frac{e^{\int \frac{4 N_{3} B_{3}}{\tau}}}{c_{1}^{4}}\right)-2 B_{3}^{2}+1\right)
$$

This completes the proof of the theorem.
As an immediate consequence of the above theorem, we have:
Corollary 2.6. An arc length parametrized f-biharmonic curve $\gamma: I \longrightarrow\left(\mathbb{R}^{3}, g_{\text {sol }}\right)$ in Sol space $\left(\mathbb{R}^{3}, g_{\text {sol }}\right)$ with constant geodesic curvature is biharmonic.

2.2. f-Biharmonic curves of Cartan-Vranceanu 3-dimensional space

The Cartan-Vranceanu metric is the following two parameter family of Riemannian metrics

$$
d s_{\ell, m}^{2}=\frac{d x^{2}+d y^{2}}{\left[1+m\left(x^{2}+y^{2}\right)\right]^{2}}+\left(d z+\frac{\ell}{2} \frac{y d_{x}-x d_{y}}{\left[1+m\left(x^{2}+y^{2}\right)\right]}\right),
$$

where $\ell, m \in \mathbb{R}$ defined on $M=\mathbb{R}^{3}$ if $m \geq 0$ and on $M=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}<-\frac{1}{m}\right\}$ [5]. The Levi-Civita connection ∇ of the metric $d s_{\ell, m}^{2}$ with respect to the orthonormal basis

$$
e_{1}=\left[1+m\left(x^{2}+y^{2}\right)\right] \frac{\partial}{\partial x}-\frac{\ell y}{2} \frac{\partial}{\partial z}, e_{2}=\left[1+m\left(x^{2}+y^{2}\right)\right] \frac{\partial}{\partial y}+\frac{\ell x}{2} \frac{\partial}{\partial z}, e_{3}=\frac{\partial}{\partial z}
$$

is

$$
\begin{array}{ccc}
\nabla_{e_{1}} e_{1}=2 m y e_{2}, & \nabla_{e_{1}} e_{2}=-2 m y e_{1}+\frac{\ell}{2} e_{3}, & \nabla_{e_{1}} e_{3}=-\frac{\ell}{2} e_{2}, \\
\nabla_{e_{2}} e_{1}=-2 m x e_{2}-\frac{\ell}{2} e_{3}, & \nabla_{e_{2}} e_{2}=2 m x e_{1}, & \nabla_{e_{2}} e_{3}=\frac{\ell}{2} e_{1}, \\
\nabla_{e_{3}} e_{1}=-\frac{\ell}{2} e_{2}, & \nabla_{e_{3}} e_{2}=\frac{\ell}{2} e_{1}, & \nabla_{e_{3}} e_{3}=0
\end{array}
$$

(see [5]).
Now assume that $\gamma: I \longrightarrow\left(M, d s_{\ell, m}^{2}\right)$ be a curve on Cartan-Vranceanu 3-dimensional space $\left(M, d s_{\ell, m}^{2}\right)$ parametrized by arc length and let $\{T, N, B\}$ be orthonormal frame field tangent to Cartan-Vranceanu 3dimensional space along γ, where $T=T_{1} e_{1}+T_{2} e_{2}+T_{3} e_{3}, N=N_{1} e_{1}+N_{2} e_{2}+N_{3} e_{3}$ and $B=B_{1} e_{1}+B_{2} e_{2}+$ $B_{3} e_{3}$.

In this part, we investigate f-biharmonic curves of Cartan-Vranceanu 3-dimensional space. Firstly, we have the following theorem:

Theorem 2.3. Let $\gamma: I \longrightarrow\left(M, d s_{\ell, m}^{2}\right)$ be a curve parametrized by arc length in Cartan-Vranceanu 3-dimensional space $\left(M, d s_{\ell, m}^{2}\right)$. Then γ is f-biharmonic if and only if the following equations are satisfied:

$$
\begin{gather*}
-3 f \kappa \kappa^{\prime}-2 f^{\prime} \kappa^{2}=0 \\
f \kappa^{\prime \prime}-f \kappa^{3}-f \kappa \tau^{2}-\left(\ell^{2}-4 m\right) f \kappa B_{3}^{2}+\frac{\ell^{2}}{4} f \kappa+2 f^{\prime} \kappa^{\prime}+f^{\prime \prime} \kappa=0 \\
2 f \kappa^{\prime} \tau+f \kappa \tau^{\prime}+\left(\ell^{2}-4 m\right) f \kappa N_{3} B_{3}+2 f^{\prime} \kappa \tau=0 \tag{2.21}
\end{gather*}
$$

Proof. From [5], we have

$$
\begin{gather*}
R(T, N, T, N)=\frac{\ell^{2}}{4}-\left(\ell^{2}-4 m\right) B_{3}^{2}, \tag{2.22}\\
R(T, N, T, B)=\left(\ell^{2}-4 m\right) N_{3} B_{3} . \tag{2.23}
\end{gather*}
$$

Using the bitension field from [5], we can write

$$
\begin{align*}
\tau_{2}(\gamma) & =\left(-3 \kappa \kappa^{\prime}\right) T+\left(\kappa^{\prime \prime}-\kappa^{3}-\kappa \tau^{2}\right) N \\
& +\kappa R(T, N) T+\left(2 \kappa^{\prime} \tau+\kappa \tau^{\prime}\right) B . \tag{2.24}
\end{align*}
$$

Substituting equations (2.2), (2.24) and (2.6) into equation (1.2), we obtain

$$
\begin{align*}
& \tau_{2, f}(\gamma)=\left(-3 f \kappa \kappa^{\prime}\right) T+\left(f \kappa^{\prime \prime}-f \kappa^{3}-f \kappa \tau^{2}\right) N+\left(2 f \kappa^{\prime} \tau+f \kappa \tau^{\prime}\right) B \\
& \quad+f \kappa R(T, N) T+f^{\prime \prime} \kappa N+2 f^{\prime}\left(-\kappa^{2} T+\kappa^{\prime} N+\kappa \tau B\right)=0 \tag{2.25}
\end{align*}
$$

Finally, taking the scalar product of equation (2.25) with T, N and B, respectively and using equations (2.22) and (2.23) we have the desired result.
Remark 2.1. - If $\ell=m=0,\left(M, d s_{\ell, m}^{2}\right)$ is the Euclidean space and γ is a f-biharmonic curve [14].

- If $\ell^{2}=4 m$ and $\ell \neq 0,\left(M, d s_{\ell, m}^{2}\right)$ is locally the 3 -dimensional sphere with sectional curvature $\frac{\ell^{2}}{4}$ and γ is a proper f-biharmonic curve.
- If $m=0$ and $\ell \neq 0,\left(M, d s_{\ell, m}^{2}\right)$ is the Heisenberg space H_{3} endowed with a left invariant metric and γ is a f-biharmonic curve in H_{3}.
- If $\ell=1,\left(M, d s_{\ell, m}^{2}\right)$ is a 3 -dimensional Sasakian space form [5] and γ is a f-biharmonic curve in a 3dimensional Sasakian space form.
Now, we shall assume that $\ell^{2} \neq 4 m$ and $m \neq 0$. As in the following cases we have f-biharmonicity conditions:
Case 2.5. If $\kappa=$ constant $\neq 0$, then we have the following corollary:
Corollary 2.7. Let $\gamma: I \longrightarrow\left(M, d s_{\ell, m}^{2}\right)$ be a differentiable f-biharmonic curve parametrized by arc length in CartanVranceanu 3-dimensional space $\left(M, d s_{\ell, m}^{2}\right)$. If $\kappa=$ constant $\neq 0$, then γ is biharmonic.
Proof. Putting $\kappa=$ constant $\neq 0$ into the equations (2.21), γ is biharmonic.
Case 2.6. If $\tau=$ constant $\neq 0$, then we have the following corollaries:
Corollary 2.8. Let $\gamma: I \longrightarrow\left(M, d s_{\ell, m}^{2}\right)$ be a differentiable f-biharmonic curve parametrized by arc length in CartanVranceanu 3 -dimensional space $\left(M, d s_{\ell, m}^{2}\right)$. If $\tau=$ constant $\neq 0$ and $N_{3} B_{3}=0$, then γ is a biharmonic curve.
Proof. Using the same method in the proof of Corollary 2.2, we obtain $f=$ constant and γ is a biharmonic curve.
Corollary 2.9. Let $\gamma: I \longrightarrow\left(M, d s_{\ell, m}^{2}\right)$ be a differentiable f-biharmonic curve parametrized by arc length in CartanVranceanu 3 -dimensional space $\left(M, d s_{\ell, m}^{2}\right)$. If $\tau=$ constant $\neq 0$, then $f=e^{\int \frac{3\left(\ell^{2}-4 m\right) N_{3} B_{3}}{2 \tau}}$.
Proof. By the same method in the proof of Corollary 2.3 , we get the result.
Case 2.7. If $\tau=0$, then we have the following corollary:
Corollary 2.10. Let $\gamma: I \longrightarrow\left(M, d s_{\ell, m}^{2}\right)$ be a differentiable non-geodesic curve parametrized by arc length in CartanVranceanu 3 -dimensional space $\left(M, d s_{\ell, m}^{2}\right)$. Then γ is f-biharmonic if and only if the following equations are satisfied:

$$
\begin{gather*}
f^{2} \kappa^{3}=c_{1}^{2}, \tag{2.26}\\
(f \kappa)^{\prime \prime}=f \kappa\left(\kappa^{2}+\left(\ell^{2}-4 m\right) B_{3}^{2}-\frac{\ell^{2}}{4}\right) \tag{2.27}
\end{gather*}
$$

and

$$
\begin{equation*}
N_{3} B_{3}=0, \tag{2.28}
\end{equation*}
$$

where $c_{1} \in \mathbb{R}$.

Proof. Suppose that $\tau=0$. By the use of equations (2.21) and integrating the first equation, we find the desired result.

Case 2.8. If $\kappa \neq$ constant $\neq 0$ and $\tau \neq$ constant $\neq 0$, then we have the following corollary:
Corollary 2.11. Let $\gamma: I \longrightarrow\left(M, d s_{\ell, m}^{2}\right)$ be a differentiable non-geodesic curve parametrized by arc length in CartanVranceanu 3-dimensional space $\left(M, d s_{\ell, m}^{2}\right)$. Then γ is f-biharmonic if and only if the following equations are fulfilled:

$$
\begin{gather*}
f^{2} \kappa^{3}=c_{1}^{2} \tag{2.29}\\
(f \kappa)^{\prime \prime}=f \kappa\left(\kappa^{2}+\tau^{2}+\left(\ell^{2}-4 m\right) B_{3}^{2}-\frac{\ell^{2}}{4}\right) \tag{2.30}
\end{gather*}
$$

and

$$
\begin{equation*}
f^{2} \kappa^{2} \tau=e^{\int \frac{-\left(\ell^{2}-4 m\right) N_{3} B_{3}}{\tau}} \tag{2.31}
\end{equation*}
$$

where $c_{1} \in \mathbb{R}$.
Proof. We suppose that $\kappa \neq$ constant $\neq 0$ and $\tau \neq$ constant $\neq 0$. Then using the equations (2.21) and integrating the first and third equations, the proof is completed.

Using Corollary 2.10 and Corollary 2.11, we find the following theorem:
Theorem 2.4. An arc length parametrized curve $\gamma: I \longrightarrow\left(M, d s_{\ell, m}^{2}\right)$ in Cartan-Vranceanu 3-dimensional space is proper f-biharmonic if and only if one of the following cases happens:
(i) $\tau=0, f=c_{1} \kappa^{-\frac{3}{2}}$ and the curvature κ solves the following equation

$$
3\left(\kappa^{\prime}\right)^{2}-2 \kappa \kappa^{\prime \prime}=4 \kappa^{2}\left(\kappa^{2}+\left(\ell^{2}-4 m\right) B_{3}^{2}-\frac{\ell^{2}}{4}\right)
$$

(ii) $\tau \neq 0, \frac{\tau}{\kappa}=\frac{e^{\int \frac{-\left(\ell^{2}-4 m\right) N_{3} B_{3}}{\tau}}}{c_{1}^{2}}, f=c_{1} \kappa^{-\frac{3}{2}}$ and the curvature κ solves the following equation

$$
3\left(\kappa^{\prime}\right)^{2}-2 \kappa \kappa^{\prime \prime}=4 \kappa^{2}\left(\kappa^{2}\left(1+\frac{e^{\int \frac{-2\left(\ell^{2}-4 m\right) N_{3} B_{3}}{\tau}}}{c_{1}^{4}}\right)+\left(\ell^{2}-4 m\right) B_{3}^{2}-\frac{\ell^{2}}{4}\right)
$$

Proof. (i) From the equation (2.26), we can write

$$
\begin{equation*}
f=c_{1} \kappa^{-\frac{3}{2}} \tag{2.32}
\end{equation*}
$$

Then, putting equation (2.32) into (2.27), we obtain the result.
(ii) From the equation (2.29), we have

$$
\begin{equation*}
f=c_{1} \kappa^{-\frac{3}{2}} . \tag{2.33}
\end{equation*}
$$

Putting the equation (2.33) into (2.31), we find

$$
\begin{equation*}
\frac{\tau}{\kappa}=\frac{e^{\int \frac{-\left(\ell^{2}-4 m\right) N_{3} B_{3}}{\tau}}}{c_{1}^{2}} \tag{2.34}
\end{equation*}
$$

Then substituting the equations (2.33) and (2.34) into (2.30), we get

$$
3\left(\kappa^{\prime}\right)^{2}-2 \kappa \kappa^{\prime \prime}=4 \kappa^{2}\left(\kappa^{2}\left(1+\frac{e^{\int \frac{-2\left(\ell^{2}-4 m\right) N_{3} B_{3}}{\tau}}}{c_{1}^{4}}\right)+\left(\ell^{2}-4 m\right) B_{3}^{2}-\frac{\ell^{2}}{4}\right)
$$

This completes the proof of the theorem.
From the above theorem, we have the following corollary:
Corollary 2.12. An arc length parametrized f-biharmonic curve $\gamma: I \longrightarrow\left(M, d s_{\ell, m}^{2}\right)$ in Cartan-Vranceanu 3dimensional space $\left(M, d s_{\ell, m}^{2}\right)$ with constant geodesic curvature is biharmonic.

2.3. f-Biharmonic curves of homogeneous contact 3-manifolds

A contact Riemannian 3-manifold is said to be homogeneus if there is a connected Lie group G acting transitively as a group of isometries on it which preserve the contact form, (see [10] and [17]). The simply connected homogeneous contact Riemannian 3-manifolds are Lie groups together with a left invariant contact Riemannian structure [17].

Let $(M, \varphi, \xi, \eta, g)$ be a 3 -dimensional unimodular Lie group with left invariant Riemannian metric g. Then M admits its compatible left-invariant contact Riemannian structure if and only if there exists an orthonormal basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ such that

$$
\left[e_{1}, e_{2}\right]=2 e_{3}, \quad\left[e_{2}, e_{3}\right]=c_{2} e_{1}, \quad\left[e_{3}, e_{1}\right]=c_{3} e_{2}
$$

[17]. Let φ be the (1,1)-tensor field defined by $\varphi\left(e_{1}\right)=e_{2}, \varphi\left(e_{2}\right)=-e_{1}$ and $\varphi\left(e_{3}\right)=0$. Then using the linearity of φ and g we have

$$
\eta\left(e_{3}\right)=1, \quad \varphi^{2}(X)=-X+\eta(X) e_{3}, \quad g(\varphi X, \varphi Y)=g(X, Y)-\eta(X) \eta(Y)
$$

In [17], Perrone calculated the Levi-Civita connection of homogeneous contact 3-manifolds as follows:

$$
\begin{aligned}
& \begin{array}{c}
\nabla_{e_{1}} e_{1}=0, \\
\nabla_{e_{2}} e_{1}=\frac{1}{2}\left(c_{3}-c_{2}-2\right) e_{3}, \\
\nabla_{e_{3}} e_{1}=\frac{1}{2}\left(c_{3}+c_{2}-2\right) e_{2},
\end{array} \\
& \begin{array}{cc}
\nabla_{e_{1}} e_{2}=\frac{1}{2}\left(c_{3}-c_{2}+2\right) e_{3}, & \nabla_{e_{1}} e_{3}=-\frac{1}{2}\left(c_{3}-c_{2}+2\right) e_{2}, \\
\nabla_{e_{2}} e_{2}=0, & \nabla_{e_{2}} e_{3}=-\frac{1}{2}\left(c_{3}-c_{2}-2\right) e_{1}, \\
\nabla_{e_{3}} e_{2}=-\frac{1}{2}\left(c_{3}+c_{2}-2\right) e_{1}, & \nabla_{e_{3}} e_{3}=0 .
\end{array}
\end{aligned}
$$

A 1-dimensional integral submanifold of a homogeneous contact Riemannian manifold M is called a Legendre curve of M [1].

Let $\gamma: I \longrightarrow M$ be a Legendre curve on homogeneous contact 3-manifold parametrized by arc length and let $\{T, N, B\}$ be orthonormal frame field tangent to homogeneous contact 3-manifold along γ where $T=T_{1} e_{1}+T_{2} e_{2}+T_{3} e_{3}, N=N_{1} e_{1}+N_{2} e_{2}+N_{3} e_{3}$ and $B=B_{1} e_{1}+B_{2} e_{2}+B_{3} e_{3}$.

Now, we obtain the f-biharmonicity condition for Legendre curves of homogeneous contact 3-manifold:
Theorem 2.5. Let $\gamma: I \longrightarrow M$ be a Legendre curve parametrized by arc length in a homogeneous contact 3-manifold M. Then γ is f-biharmonic if and only if the following equations are satisfied:

$$
\begin{gather*}
-3 f \kappa \kappa^{\prime}-2 f^{\prime} \kappa^{2}=0 \\
f \kappa^{\prime \prime}-f \kappa^{3}-f \kappa \tau^{2}+f k\left(\frac{1}{4}\left(c_{3}-c_{2}\right)^{2}-3+c_{2}+c_{3}\right)+2 f^{\prime} \kappa^{\prime}+f^{\prime \prime} \kappa=0 \\
2 f \kappa^{\prime} \tau+f \kappa \tau^{\prime}+2 f^{\prime} \kappa \tau=0 \tag{2.35}
\end{gather*}
$$

where $c_{i} \in \mathbb{R}, 1 \leq i \leq 3$.
Proof. From [10], we have

$$
\begin{gather*}
R(T, N, T, N)=\frac{1}{4}\left(c_{3}-c_{2}\right)^{2}-3+c_{2}+c_{3} \tag{2.36}\\
R(T, N, T, B)=0 \tag{2.37}
\end{gather*}
$$

Using the bitension field from [10], we can write

$$
\begin{align*}
& \tau_{2}(\gamma)=\left(-3 \kappa \kappa^{\prime}\right) T+\left(\kappa^{\prime \prime}-\kappa^{3}-\kappa \tau^{2}\right) N \\
& \quad+\kappa R(T, N) T+\left(2 \kappa^{\prime} \tau+\kappa \tau^{\prime}\right) B \tag{2.38}
\end{align*}
$$

In view of equations (2.2), (2.38) and (2.6) into equation (1.2), we calculate

$$
\begin{align*}
& \tau_{2, f}(\gamma)=\left(-3 f \kappa \kappa^{\prime}\right) T+\left(f \kappa^{\prime \prime}-f \kappa^{3}-f \kappa \tau^{2}\right) N+\left(2 f \kappa^{\prime} \tau+f \kappa \tau^{\prime}\right) B \\
& \quad+f \kappa R(T, N) T+f^{\prime \prime} \kappa N+2 f^{\prime}\left(-\kappa^{2} T+\kappa^{\prime} N+\kappa \tau B\right)=0 \tag{2.39}
\end{align*}
$$

Finally, taking the scalar product of equation (2.39) with T, N and B, respectively and using the equations (2.36) and (2.37) we obtain the result.

From the above theorem, we have the following cases:
Case 2.9. If $\kappa=$ constant $\neq 0$, then we have the following corollary:
Corollary 2.13. Let $\gamma: I \longrightarrow M$ be a differentiable f-biharmonic Legendre curve parametrized by arc length in a homogeneous contact 3 -manifold M. If $\kappa=$ constant $\neq 0$, then γ is biharmonic.

Proof. Putting the curvature $\kappa=$ constant $\neq 0$ into the equations (2.35), it is clear that γ is a biharmonic curve.

Case 2.10. If $\tau=$ constant $\neq 0$, then we have the following corollary:
Corollary 2.14. Let $\gamma: I \longrightarrow M$ be a differentiable f-biharmonic Legendre curve parametrized by arc length in a homogeneous contact 3 -manifold M. If $\tau=$ constant $\neq 0$, then γ is biharmonic.

Proof. Putting the curvature $\tau=$ constant $\neq 0$ into the equations (2.35), it is clear that γ is a biharmonic curve.

Case 2.11. If $\tau=0$, then we have the following corollary:
Corollary 2.15. Let $\gamma: I \longrightarrow M$ be a differentiable non-geodesic Legendre curve parametrized by arc length in a homogeneous contact 3 -manifold M. Then γ is f-biharmonic if and only if the following equations are satisfied:

$$
\begin{equation*}
f^{2} \kappa^{3}=c_{1}^{2} \tag{2.40}
\end{equation*}
$$

and

$$
\begin{equation*}
(f \kappa)^{\prime \prime}=f \kappa\left(\kappa^{2}-\frac{1}{4}\left(c_{3}-c_{2}\right)^{2}+3-c_{2}-c_{3}\right) \tag{2.41}
\end{equation*}
$$

where $c_{i} \in \mathbb{R}, 1 \leq i \leq 3$.
Proof. Suppose that $\tau=0$. Then using the equations (2.35), we find the desired result.
Case 2.12. If $\kappa \neq$ constant $\neq 0$ and $\tau \neq$ constant $\neq 0$, then we have the following corollary:
Corollary 2.16. Let $\gamma: I \longrightarrow M$ be a differentiable non-geodesic Legendre curve parametrized by arc length in a homogeneous contact 3-manifold M. Then γ is f-biharmonic if and only if the following equations are satisfied:

$$
\begin{gather*}
f^{2} \kappa^{3}=c_{1}^{2} \tag{2.42}\\
(f \kappa)^{\prime \prime}=f \kappa\left(\kappa^{2}+\tau^{2}-\frac{1}{4}\left(c_{3}-c_{2}\right)^{2}+3-c_{2}-c_{3}\right) \tag{2.43}
\end{gather*}
$$

and

$$
\begin{equation*}
f^{2} \kappa^{2} \tau=c_{4} \tag{2.44}
\end{equation*}
$$

where $c_{i} \in \mathbb{R}, 1 \leq i \leq 4$.
Proof. Assume that $\kappa \neq$ constant $\neq 0$ and $\tau \neq$ constant $\neq 0$. Then using the equations (2.35) and integrating the first and third equations, we have the result.

By the use of Corollary 2.15 and Corollary 2.16, we obtain the following theorem:
Theorem 2.6. An arc length parametrized Legendre curve $\gamma: I \longrightarrow M$ in a homogeneous contact 3-manifold M is proper f-biharmonic if and only if one of the following cases happens:
(i) $\tau=0, f=c_{1} \kappa^{-\frac{3}{2}}$ and the curvature κ solves the following equation

$$
3\left(\kappa^{\prime}\right)^{2}-2 \kappa \kappa^{\prime \prime}=4 \kappa^{2}\left(\kappa^{2}-\frac{1}{4}\left(c_{3}-c_{2}\right)^{2}+3-c_{2}-c_{3}\right)
$$

(ii) $\tau \neq 0, \frac{\tau}{\kappa}=c_{5}, f=c_{1} \kappa^{-\frac{3}{2}}$ and the curvature κ solves the following equation

$$
3\left(\kappa^{\prime}\right)^{2}-2 \kappa \kappa^{\prime \prime}=4 \kappa^{2}\left(\kappa^{2}\left(1+c_{5}^{2}\right)-\frac{1}{4}\left(c_{3}-c_{2}\right)^{2}+3-c_{2}-c_{3}\right)
$$

where $c_{i} \in \mathbb{R}, 1 \leq i \leq 5$.

Proof. (i) Using the equation (2.40), we can write

$$
\begin{equation*}
f=c_{1} \kappa^{-\frac{3}{2}} . \tag{2.45}
\end{equation*}
$$

Then, substituting the equation (2.45) into (2.41), we find the result.
(ii) From the equation (2.42), we have

$$
\begin{equation*}
f=c_{1} \kappa^{-\frac{3}{2}} . \tag{2.46}
\end{equation*}
$$

Putting the equation (2.46) into (2.44), we find

$$
\begin{equation*}
\frac{\tau}{\kappa}=c_{5} . \tag{2.47}
\end{equation*}
$$

Then substituting the equations (2.46) and (2.47) into (2.43), we get

$$
3\left(\kappa^{\prime}\right)^{2}-2 \kappa \kappa^{\prime \prime}=4 \kappa^{2}\left(\kappa^{2}\left(1+c_{5}^{2}\right)-\frac{1}{4}\left(c_{3}-c_{2}\right)^{2}+3-c_{2}-c_{3}\right)
$$

From the above theorem, we have the following corollary:
Corollary 2.17. An arc length parametrized f-biharmonic Legendre curve $\gamma: I \longrightarrow M$ in a homogeneous contact 3manifold M with constant geodesic curvature is biharmonic.

References

[1] Blair, D. E., Riemannian Geometry of Contact and Symplectic Manifolds. Boston. Birkhauser 2002.
[2] Caddeo, R., Montaldo, S. and Oniciuc, C., Biharmonic submanifolds of S^{3}. Internat. J. Math. 12 (2001), 867-876.
[3] Caddeo, R., Montaldo, S. and Oniciuc, C., Biharmonic submanifolds in spheres. Israel J. Math. 130 (2002), 109-123.
[4] Caddeo, R., Montaldo, S. and Piu, P., Biharmonic curves on a surface. Rend. Mat. Appl. 21 (2001), 143-157.
[5] Caddeo, R., Montaldo, S., Oniciuc, C. and Piu, P., The classification of biharmonic curves of Cartan-Vranceanu 3-dimensional spaces. The 7th Int. Workshop on Dif. Geo. and its Appl. 121-131, Cluj Univ. Press, Cluj-Napoca, 2006.
[6] Course, N., f-harmonic maps. Ph.D thesis, University of Warwick, Coventry, (2004) CV4 7AL, UK.
[7] Caddeo, R., Oniciuc, C. and Piu, P., Explicit formulas for non-geodesic biharmonic curves of the Heisenberg group. Rend. Sem. Mat. Univ. Politec. Torino. 62 (2004), 265-277.
[8] Eells, J. Jr. and Sampson, J. H., Harmonic mappings of Riemannian manifolds. Amer. J. Math. 86 (1964), 109-160.
[9] Güvenç, Ş. and Özgür, C., On the characterizations of f-biharmonic Legendre curves in Sasakian space forms. Filomat. 31 (2017), 639-648.
[10] Inoguchi, J., Biminimal submanifolds in contact 3-manifolds. Balkan J. Geom. Appl. 12 (2007), 56-67.
[11] Jiang, G. Y., 2-Harmonic maps and their first and second variational formulas. Chinese Ann. Math. Ser. A. 7 (1986), 389-402.
[12] Lu,W-J., On f-Biharmonic maps and bi- f-harmonic maps between Riemannian manifolds. Sci. China Math. 58 (2015), 1483 -1498.
[13] Ouakkas, S., Nasri,R. and Djaa, M., On the f-harmonic and f-biharmonic maps. JP Journal of Geom. and Top. 10 (2010), 11-27.
[14] Ou, Y-L., On f-biharmonic maps and f-biharmonic submanifolds. Pacific J. Math. 271 (2014), 461-477.
[15] Ou, Y-L. and Wang, Z-P., Biharmonic maps into Sol and Nil spaces. arXiv preprint math/0612329 (2006).
[16] Ou, Y-L. and Wang, Z-P., Linear biharmonic maps into Sol, Nil and Heisenberg spaces. Mediterr. J. Math. 5 (2008), 379-394.
[17] Perrone, D., Homogeneous contact Riemannian three-manifolds. Illinois J. Math. 42 (1998), 243-256.
[18] Troyanov-EPFL, M., L'horizon de SOL. Exposition. Math. 16 (1998).

Affiliations

Fatma Karaca
Address: Asisa Educational Institutions, 41000, Kocaeli-Turkey.
E-MAIL: fatmagurlerr@gmail.com
ORCID ID : 0000-0002-0382-8028

Cihan Özgür

AdDress: Balıkesir University, Dept. of Mathematics, 10145, Balıkesir-Turkey. E-MAIL: cozgur@balikesir.edu.tr

ORCID ID : 0000-0002-4579-7151

[^0]: Received : 25-June-2018, Accepted : 21-July-2018

 * Corresponding author

