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ABSTRACT

We study f -biharmonic curves in Sol spaces, Cartan-Vranceanu 3-dimensional spaces,
homogeneous contact 3-manifolds and we analyze non-geodesic f -biharmonic curves in these
spaces.
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1. Introduction

Harmonic maps between Riemannian manifolds were first introduced by Eells and Sampson in [8]. Let (M, g)
and (N,h) be two Riemannian manifolds. ϕ : M → N is called a harmonic map if it is a critical point of the energy
functional

E(ϕ) =
1

2

∫
Ω

‖dϕ‖2 dνg,

where Ω is a compact domain of M . Let {ϕt}t∈I be a differentiable variation of ϕ and V = ∂
∂t |t=0, we have

critical points of energy functional (see [8])

∂

∂t
E(ϕt) |t=0=

1

2

∫
Ω

{
∂

∂t
〈dϕt, dϕt〉

}
t=0

dνg

=

∫
Ω

〈tr(∇dϕ), V 〉 dνg

Hence, the Euler-Lagrange equation of E(ϕ) is

τ(ϕ) = tr(∇dϕ) = 0,

where τ(ϕ) is the tension field of ϕ [8]. The map ϕ is said to be biharmonic if it is a critical point of the bienergy
functional

E2(ϕ) =
1

2

∫
Ω

‖τ(ϕ)‖2 dνg,

where Ω is a compact domain ofM . In [11], the Euler-Lagrange equation for the bienergy functional is obtained
by

τ2(ϕ) = tr(∇ϕ∇ϕ −∇ϕ∇)τ(ϕ)− tr(RN (dϕ, τ(ϕ))dϕ) = 0, (1.1)

where τ2(ϕ) is the bitension field of ϕ and RN is the curvature tensor of N .
The map ϕ is a f -harmonic map with a function f : M

C∞→ R, if it is a critical point of f -energy

Ef (ϕ) =
1

2

∫
Ω

f ‖dϕ‖2 dνg,
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where Ω is a compact domain of M . The Euler-Lagrange equation of Ef (ϕ) is

τf (ϕ) = fτ(ϕ) + dϕ(grad f) = 0,

where τf (ϕ) is the f -tension field of ϕ (see [6] and [13]). The map ϕ is said to be f -biharmonic, if it is a critical

point of the f -bienergy functional

E2,f (ϕ) =
1

2

∫
Ω

f ‖τ(ϕ)‖2 dνg,

where Ω is a compact domain of M [12]. The Euler-Lagrange equation for the f -bienergy functional is given by

τ2,f (ϕ) = fτ2(ϕ) + ∆fτ(ϕ) + 2∇ϕgrad fτ(ϕ) = 0, (1.2)

where τ2,f (ϕ) is the f -bitension field of ϕ [12]. If an f -biharmonic map is neither harmonic nor biharmonic then
we call it by proper f -biharmonic and if f is a constant, then an f -biharmonic map turns into a biharmonic map
[12].

In [4], Caddeo, Montaldo and Piu considered biharmonic curves on a surface. In [2], Caddeo, Montaldo and
Oniciuc classified biharmonic submanifolds in 3-sphere S3. More generally, in [3], the same authors studied
biharmonic submanifolds in spheres. In [7], Caddeo, Oniciuc and Piu considered the biharmonicity condition
for maps and studied non-geodesic biharmonic curves in the Heisenberg group H3. They proved that all of
curves are helices in H3. In [16], Ou and Wang studied linear biharmonic maps from Euclidean space into
Sol, Nil, and Heisenberg spaces using the linear structure of the target manifolds. In [5], Caddeo, Montaldo,
Oniciuc and Piu characterized all biharmonic curves of Cartan-Vranceanu 3-dimensional spaces and they gave
their explicit parametrizations. In [10], Inoguchi considered biminimal submanifolds in contact 3-manifolds.
In [14], Ou derived equations for f -biharmonic curves in a generic manifold and he gave characterization of
f -biharmonic curves in n-dimensional space forms and a complete classification of f -biharmonic curves in 3-
dimensional Euclidean space. In [9], Güvenç and the second author studied f -biharmonic Legendre curves in
Sasakian space forms.

Motivated by the above studies, in the present paper, we consider f -biharmonicity condition for the Sol
space, Cartan-Vranceanu 3-dimensional space and homogeneous contact 3-manifold. We find the necessary
and sufficient conditions for the curves in these spaces to be f -biharmonic.

2. f -Biharmonicity Conditions For Curves

2.1. f -Biharmonic curves of Sol space

Sol space can be seen as R3 with respect to Riemannian metric

gsol = ds2 = e2zdx2 + e−2zdy2 + dz2,

where (x, y, z) are standard coordinates in R3 [16], [18]. In [16] and [18], the Levi-Civita connection ∇ of the
metric gsol with respect to the orthonormal basis is given by

e1 = e−z
∂

∂x
, e2 = ez

∂

∂y
, e3 =

∂

∂z
.

In terms of the basis {e1, e2, e3}, they obtained as follows:

∇e1e1 = −e3, ∇e1e2 = 0, ∇e1e3 = e1,
∇e2e1 = 0, ∇e2e2 = e3, ∇e2e3 = −e2,
∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0,

(see [18]). Now we assume that γ : I −→
(
R3, gsol

)
be a curve in Sol space

(
R3, gsol

)
parametrized by arc

length and let {T,N,B} be orthonormal frame field tangent to Sol space along γ, where T = T1e1 + T2e2 + T3e3,
N = N1e1 +N2e2 +N3e3 and B = B1e1 +B2e2 +B3e3.

Now, we state the f -biharmonicity condition for curves of Sol space
(
R3, gsol

)
:
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Theorem 2.1. Let γ : I −→
(
R3, gsol

)
be a curve parametrized by arc length in Sol space

(
R3, gsol

)
. Then γ is f -

biharmonic if and only if the following equations hold:

−3fκκ′ − 2f ′κ2 = 0,

fκ′′ − fκ3 − fκτ2 + 2fκB2
3 − fκ+ 2f ′κ′ + f ′′κ = 0,

2fκ′τ + fκτ ′ − 2fκN3B3 + 2f ′κτ = 0. (2.1)

Proof. Let {ei}, 1 ≤ i ≤ 3 be an orthonormal basis. Let γ = γ (s) be a curve parametrized by arc length. Then we
have

τ(γ) = tr(∇dϕ) = ∇γ∂
∂s

(
dγ

(
∂

∂s

))
− dγ

(
∇ ∂

∂s

∂

∂s

)
= ∇γ∂

∂s

(
dγ

(
∂

∂s

))
= ∇γ′γ′ = κN. (2.2)

From [15] or [16], we know that
R (T,N, T,N) = 2B2

3 − 1 (2.3)

R (T,N, T,B) = −2N3B3. (2.4)

Using the equation (2.2) in (1.1), we can write

τ2(γ) = (−3κκ′)T +
(
κ′′ − κ3 − κτ2

)
N

+ κR (T,N)T + (2κ′τ + κτ ′)B. (2.5)

On the other hand, an easy calculation gives us

∇γgrad fτ(γ) = ∇γgrad fκN = f ′∇T (κN) = f ′
(
−κ2T + κ′N + κτB

)
(2.6)

In view of equations (2.2), (2.5) and (2.6) into equation (1.2), we have

τ2,f (γ) = (−3fκκ′)T +
(
fκ′′ − fκ3 − fκτ2

)
N + (2fκ′τ + fκτ ′)B

+ fκR (T,N)T + f ′′κN + 2f ′
(
−κ2T + κ′N + κτB

)
= 0. (2.7)

Finally, taking the scalar product of equation (2.7) with T,N and B, respectively and using the equations (2.3)
and (2.4) we obtain (2.1).

In the following four cases, we find necessary and sufficient conditions for curves of Sol space to be f -
biharmonic:

Case 2.1. If κ = constant 6= 0, then we have the following corollary:

Corollary 2.1. Let γ : I −→
(
R3, gsol

)
be a differentiable f -biharmonic curve parametrized by arc length in Sol space(

R3, gsol
)
. If κ = constant 6= 0, then γ is biharmonic.

Proof. We assume that κ = constant 6= 0. By the use of equations (2.1), we find

f ′ = 0.

Hence, γ is a biharmonic curve.

Case 2.2. If τ = constant 6= 0, then we have the following corollaries:

Corollary 2.2. Let γ : I −→
(
R3, gsol

)
be a differentiable f -biharmonic curve parametrized by arc length in Sol space(

R3, gsol
)
. If τ = constant 6= 0 and N3B3 = 0, then γ is biharmonic.

Proof. We assume that τ = constant 6= 0 and N3B3 = 0. By the use of equations (2.1), we have

κ′

κ
= −2f ′

3f
(2.8)

and

τ

(
κ′

κ
+
f ′

f

)
= 0. (2.9)

Then, substituting the equation (2.8) into (2.9), we obtain f = constant and γ is a biharmonic curve.
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Corollary 2.3. Let γ : I −→
(
R3, gsol

)
be a differentiable f -biharmonic curve parametrized by arc length in Sol space(

R3, gsol
)
. If τ = constant 6= 0, then f = e

∫ 3N3B3
τ .

Proof. Using the equations (2.1), we obtain
κ′

κ
= −2f ′

3f
(2.10)

and
2fκ′τ − 2fκN3B3 + 2f ′κτ = 0. (2.11)

Then, putting the equation (2.10) into (2.11), we get the result.

Case 2.3. If τ = 0, then we have the following corollary:

Corollary 2.4. Let γ : I −→
(
R3, gsol

)
be a differentiable non-geodesic curve parametrized by arc length in Sol space(

R3, gsol
)
. Then γ is f -biharmonic if and only if the following equations are satisfied:

f2κ3 = c21, (2.12)

(fκ)
′′

= fκ
(
κ2 − 2B2

3 + 1
)

(2.13)

and
N3B3 = 0, (2.14)

where c1 ∈ R.

Proof. We assume that τ = 0. Then using the equations (2.1), integrating the first equation, we find the desired
result.

Case 2.4. If κ 6= constant 6= 0 and τ 6= constant 6= 0, then we have the following corollary:

Corollary 2.5. Let γ : I −→
(
R3, gsol

)
be a differentiable non-geodesic curve parametrized by arc length in Sol space(

R3, gsol
)
. Then γ is f -biharmonic if and only if the following equations are hold:

f2κ3 = c21, (2.15)

(fκ)
′′

= fκ
(
κ2 + τ2 − 2B2

3 + 1
)

(2.16)

and
f2κ2τ = e

∫ 2N3B3
τ , (2.17)

where c1 ∈ R.

Proof. We suppose that κ 6= constant 6= 0 and τ 6= constant 6= 0. Then using equations (2.1), integrating the first
and third equations, the proof is completed.

From Corollary 2.4 and Corollary 2.5, we can state the following theorem:

Theorem 2.2. An arc length parametrized curve γ : I −→
(
R3, gsol

)
in Sol space

(
R3, gsol

)
is proper f -biharmonic if

and only if one of the following cases happens:

(i) τ = 0, f = c1κ
− 3

2 and the curvature κ solves the following equation

3 (κ′)
2 − 2κκ′′ = 4κ2

(
κ2 − 2B2

3 + 1
)
.

(ii) τ 6= 0, τκ = e
∫ 2N3B3

τ

c21
, f = c1κ

− 3
2 and the curvature κ solves the following equation

3 (κ′)
2 − 2κκ′′ = 4κ2

(
κ2

(
1 +

e
∫ 4N3B3

τ

c41

)
− 2B2

3 + 1

)
.
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Proof. (i) Using the equation (2.12), we have
f = c1κ

− 3
2 . (2.18)

Putting the equation (2.18) into (2.13), we get the result.
(ii) Solving the equation (2.15), we get

f = c1κ
− 3

2 . (2.19)

Putting the equation (2.19) into (2.17), we have

τ

κ
=
e
∫ 2N3B3

τ

c21
. (2.20)

Finally, substituting the equations (2.19) and (2.20) into (2.16), we obtain

3 (κ′)
2 − 2κκ′′ = 4κ2

(
κ2

(
1 +

e
∫ 4N3B3

τ

c41

)
− 2B2

3 + 1

)
.

This completes the proof of the theorem.

As an immediate consequence of the above theorem, we have:

Corollary 2.6. An arc length parametrized f -biharmonic curve γ : I −→
(
R3, gsol

)
in Sol space

(
R3, gsol

)
with constant

geodesic curvature is biharmonic.

2.2. f -Biharmonic curves of Cartan-Vranceanu 3-dimensional space

The Cartan-Vranceanu metric is the following two parameter family of Riemannian metrics

ds2
`,m =

dx2 + dy2

[1 +m(x2 + y2)]2
+

(
dz +

`

2

ydx − xdy
[1 +m(x2 + y2)]

)
,

where `,m ∈ R defined on M = R3 if m ≥ 0 and on M =
{

(x, y, z) ∈ R3 : x2 + y2 < − 1
m

}
[5]. The Levi-Civita

connection ∇ of the metric ds2
`,m with respect to the orthonormal basis

e1 = [1 +m(x2 + y2)]
∂

∂x
− `y

2

∂

∂z
, e2 = [1 +m(x2 + y2)]

∂

∂y
+
`x

2

∂

∂z
, e3 =

∂

∂z

is
∇e1e1 = 2mye2, ∇e1e2 = −2mye1 + `

2e3, ∇e1e3 = − `
2e2,

∇e2e1 = −2mxe2 − `
2e3, ∇e2e2 = 2mxe1, ∇e2e3 = `

2e1,
∇e3e1 = − `

2e2, ∇e3e2 = `
2e1, ∇e3e3 = 0,

(see [5]).
Now assume that γ : I −→

(
M,ds2

`,m

)
be a curve on Cartan-Vranceanu 3-dimensional space

(
M,ds2

`,m

)
parametrized by arc length and let {T,N,B} be orthonormal frame field tangent to Cartan-Vranceanu 3-
dimensional space along γ, where T = T1e1 + T2e2 + T3e3, N = N1e1 +N2e2 +N3e3 and B = B1e1 +B2e2 +
B3e3.

In this part, we investigate f -biharmonic curves of Cartan-Vranceanu 3-dimensional space. Firstly, we have
the following theorem:

Theorem 2.3. Let γ : I −→
(
M,ds2

`,m

)
be a curve parametrized by arc length in Cartan-Vranceanu 3-dimensional space(

M,ds2
`,m

)
. Then γ is f -biharmonic if and only if the following equations are satisfied:

−3fκκ′ − 2f ′κ2 = 0,

fκ′′ − fκ3 − fκτ2 − (`2 − 4m)fκB2
3 +

`2

4
fκ+ 2f ′κ′ + f ′′κ = 0,

2fκ′τ + fκτ ′ + (`2 − 4m)fκN3B3 + 2f ′κτ = 0. (2.21)
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Proof. From [5], we have

R (T,N, T,N) =
`2

4
− (`2 − 4m)B2

3 , (2.22)

R (T,N, T,B) = (`2 − 4m)N3B3. (2.23)

Using the bitension field from [5], we can write

τ2(γ) = (−3κκ′)T +
(
κ′′ − κ3 − κτ2

)
N

+ κR (T,N)T + (2κ′τ + κτ ′)B. (2.24)

Substituting equations (2.2), (2.24) and (2.6) into equation (1.2), we obtain

τ2,f (γ) = (−3fκκ′)T +
(
fκ′′ − fκ3 − fκτ2

)
N + (2fκ′τ + fκτ ′)B

+ fκR (T,N)T + f ′′κN + 2f ′
(
−κ2T + κ′N + κτB

)
= 0. (2.25)

Finally, taking the scalar product of equation (2.25) with T,N and B, respectively and using equations (2.22)
and (2.23) we have the desired result.

Remark 2.1. • If ` = m = 0,
(
M,ds2

`,m

)
is the Euclidean space and γ is a f -biharmonic curve [14].

• If `2 = 4m and ` 6= 0,
(
M,ds2

`,m

)
is locally the 3-dimensional sphere with sectional curvature `2

4 and γ is a
proper f -biharmonic curve.
• If m = 0 and ` 6= 0,

(
M,ds2

`,m

)
is the Heisenberg space H3 endowed with a left invariant metric and γ is a

f -biharmonic curve in H3.
• If ` = 1,

(
M,ds2

`,m

)
is a 3-dimensional Sasakian space form [5] and γ is a f -biharmonic curve in a 3-

dimensional Sasakian space form.
Now, we shall assume that `2 6= 4m andm 6= 0.As in the following cases we have f -biharmonicity conditions:

Case 2.5. If κ = constant 6= 0, then we have the following corollary:

Corollary 2.7. Let γ : I −→
(
M,ds2

`,m

)
be a differentiable f -biharmonic curve parametrized by arc length in Cartan-

Vranceanu 3-dimensional space
(
M,ds2

`,m

)
. If κ = constant 6= 0, then γ is biharmonic.

Proof. Putting κ = constant 6= 0 into the equations (2.21), γ is biharmonic.

Case 2.6. If τ = constant 6= 0, then we have the following corollaries:

Corollary 2.8. Let γ : I −→
(
M,ds2

`,m

)
be a differentiable f -biharmonic curve parametrized by arc length in Cartan-

Vranceanu 3-dimensional space
(
M,ds2

`,m

)
. If τ = constant 6= 0 and N3B3 = 0, then γ is a biharmonic curve.

Proof. Using the same method in the proof of Corollary 2.2, we obtain f = constant and γ is a biharmonic
curve.

Corollary 2.9. Let γ : I −→
(
M,ds2

`,m

)
be a differentiable f -biharmonic curve parametrized by arc length in Cartan-

Vranceanu 3-dimensional space
(
M,ds2

`,m

)
. If τ = constant 6= 0, then f = e

∫ 3(`2−4m)N3B3
2τ .

Proof. By the same method in the proof of Corollary 2.3, we get the result.

Case 2.7. If τ = 0, then we have the following corollary:

Corollary 2.10. Let γ : I −→
(
M,ds2

`,m

)
be a differentiable non-geodesic curve parametrized by arc length in Cartan-

Vranceanu 3-dimensional space
(
M,ds2

`,m

)
. Then γ is f -biharmonic if and only if the following equations are satisfied:

f2κ3 = c21, (2.26)

(fκ)
′′

= fκ

(
κ2 + (`2 − 4m)B2

3 −
`2

4

)
(2.27)

and
N3B3 = 0, (2.28)

where c1 ∈ R.
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Proof. Suppose that τ = 0. By the use of equations (2.21) and integrating the first equation, we find the desired
result.

Case 2.8. If κ 6= constant 6= 0 and τ 6= constant 6= 0, then we have the following corollary:

Corollary 2.11. Let γ : I −→
(
M,ds2

`,m

)
be a differentiable non-geodesic curve parametrized by arc length in Cartan-

Vranceanu 3-dimensional space
(
M,ds2

`,m

)
. Then γ is f -biharmonic if and only if the following equations are fulfilled:

f2κ3 = c21, (2.29)

(fκ)
′′

= fκ

(
κ2 + τ2 + (`2 − 4m)B2

3 −
`2

4

)
(2.30)

and
f2κ2τ = e

∫ −(`2−4m)N3B3
τ , (2.31)

where c1 ∈ R.

Proof. We suppose that κ 6= constant 6= 0 and τ 6= constant 6= 0. Then using the equations (2.21) and integrating
the first and third equations, the proof is completed.

Using Corollary 2.10 and Corollary 2.11, we find the following theorem:

Theorem 2.4. An arc length parametrized curve γ : I −→
(
M,ds2

`,m

)
in Cartan-Vranceanu 3-dimensional space is

proper f -biharmonic if and only if one of the following cases happens:

(i) τ = 0, f = c1κ
− 3

2 and the curvature κ solves the following equation

3 (κ′)
2 − 2κκ′′ = 4κ2

(
κ2 + (`2 − 4m)B2

3 −
`2

4

)
.

(ii) τ 6= 0, τκ = e
∫ −(`2−4m)N3B3

τ

c21
, f = c1κ

− 3
2 and the curvature κ solves the following equation

3 (κ′)
2 − 2κκ′′ = 4κ2

(
κ2

(
1 +

e
∫ −2(`2−4m)N3B3

τ

c41

)
+ (`2 − 4m)B2

3 −
`2

4

)
.

Proof. (i) From the equation (2.26), we can write

f = c1κ
− 3

2 . (2.32)

Then, putting equation (2.32) into (2.27), we obtain the result.
(ii) From the equation (2.29), we have

f = c1κ
− 3

2 . (2.33)

Putting the equation (2.33) into (2.31), we find

τ

κ
=
e
∫ −(`2−4m)N3B3

τ

c21
. (2.34)

Then substituting the equations (2.33) and (2.34) into (2.30), we get

3 (κ′)
2 − 2κκ′′ = 4κ2

(
κ2

(
1 +

e
∫ −2(`2−4m)N3B3

τ

c41

)
+ (`2 − 4m)B2

3 −
`2

4

)
.

This completes the proof of the theorem.

From the above theorem, we have the following corollary:

Corollary 2.12. An arc length parametrized f -biharmonic curve γ : I −→
(
M,ds2

`,m

)
in Cartan-Vranceanu 3-

dimensional space
(
M,ds2

`,m

)
with constant geodesic curvature is biharmonic.
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2.3. f -Biharmonic curves of homogeneous contact 3-manifolds

A contact Riemannian 3-manifold is said to be homogeneus if there is a connected Lie group G acting
transitively as a group of isometries on it which preserve the contact form, (see [10] and [17]). The simply
connected homogeneous contact Riemannian 3-manifolds are Lie groups together with a left invariant contact
Riemannian structure [17].

Let (M,ϕ, ξ, η, g) be a 3-dimensional unimodular Lie group with left invariant Riemannian metric g. Then
M admits its compatible left-invariant contact Riemannian structure if and only if there exists an orthonormal
basis {e1, e2, e3} such that

[e1, e2] = 2e3, [e2, e3] = c2e1, [e3, e1] = c3e2

[17]. Let ϕ be the (1, 1)-tensor field defined by ϕ(e1) = e2, ϕ(e2) = −e1 and ϕ(e3) = 0. Then using the linearity
of ϕ and g we have

η(e3) = 1, ϕ2(X) = −X + η(X)e3, g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ).

In [17], Perrone calculated the Levi-Civita connection of homogeneous contact 3-manifolds as follows:

∇e1e1 = 0,
∇e2e1 = 1

2 (c3 − c2 − 2)e3,
∇e3e1 = 1

2 (c3 + c2 − 2)e2,

∇e1e2 = 1
2 (c3 − c2 + 2)e3, ∇e1e3 = − 1

2 (c3 − c2 + 2)e2,
∇e2e2 = 0, ∇e2e3 = − 1

2 (c3 − c2 − 2)e1,
∇e3e2 = − 1

2 (c3 + c2 − 2)e1, ∇e3e3 = 0.

A 1-dimensional integral submanifold of a homogeneous contact Riemannian manifold M is called a Legendre
curve of M [1].

Let γ : I −→M be a Legendre curve on homogeneous contact 3-manifold parametrized by arc length
and let {T,N,B} be orthonormal frame field tangent to homogeneous contact 3-manifold along γ where
T = T1e1 + T2e2 + T3e3, N = N1e1 +N2e2 +N3e3 and B = B1e1 +B2e2 +B3e3.

Now, we obtain the f -biharmonicity condition for Legendre curves of homogeneous contact 3-manifold:

Theorem 2.5. Let γ : I −→M be a Legendre curve parametrized by arc length in a homogeneous contact 3-manifold M .
Then γ is f -biharmonic if and only if the following equations are satisfied:

−3fκκ′ − 2f ′κ2 = 0,

fκ′′ − fκ3 − fκτ2 + fk(
1

4
(c3 − c2)2 − 3 + c2 + c3) + 2f ′κ′ + f ′′κ = 0,

2fκ′τ + fκτ ′ + 2f ′κτ = 0, (2.35)

where ci ∈ R, 1 ≤ i ≤ 3.

Proof. From [10], we have

R (T,N, T,N) =
1

4
(c3 − c2)2 − 3 + c2 + c3, (2.36)

R (T,N, T,B) = 0. (2.37)

Using the bitension field from [10], we can write

τ2(γ) = (−3κκ′)T +
(
κ′′ − κ3 − κτ2

)
N

+ κR (T,N)T + (2κ′τ + κτ ′)B. (2.38)

In view of equations (2.2), (2.38) and (2.6) into equation (1.2), we calculate

τ2,f (γ) = (−3fκκ′)T +
(
fκ′′ − fκ3 − fκτ2

)
N + (2fκ′τ + fκτ ′)B

+ fκR (T,N)T + f ′′κN + 2f ′
(
−κ2T + κ′N + κτB

)
= 0. (2.39)

Finally, taking the scalar product of equation (2.39) with T,N andB, respectively and using the equations (2.36)
and (2.37) we obtain the result.
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From the above theorem, we have the following cases:

Case 2.9. If κ = constant 6= 0, then we have the following corollary:

Corollary 2.13. Let γ : I −→M be a differentiable f -biharmonic Legendre curve parametrized by arc length in a
homogeneous contact 3-manifold M . If κ = constant 6= 0, then γ is biharmonic.

Proof. Putting the curvature κ = constant 6= 0 into the equations (2.35), it is clear that γ is a biharmonic
curve.

Case 2.10. If τ = constant 6= 0, then we have the following corollary:

Corollary 2.14. Let γ : I −→M be a differentiable f -biharmonic Legendre curve parametrized by arc length in a
homogeneous contact 3-manifold M . If τ = constant 6= 0, then γ is biharmonic.

Proof. Putting the curvature τ = constant 6= 0 into the equations (2.35), it is clear that γ is a biharmonic
curve.

Case 2.11. If τ = 0, then we have the following corollary:

Corollary 2.15. Let γ : I −→M be a differentiable non-geodesic Legendre curve parametrized by arc length in a
homogeneous contact 3-manifold M . Then γ is f -biharmonic if and only if the following equations are satisfied:

f2κ3 = c21, (2.40)

and
(fκ)

′′
= fκ

(
κ2 − 1

4
(c3 − c2)2 + 3− c2 − c3

)
(2.41)

where ci ∈ R, 1 ≤ i ≤ 3.

Proof. Suppose that τ = 0. Then using the equations (2.35), we find the desired result.

Case 2.12. If κ 6= constant 6= 0 and τ 6= constant 6= 0, then we have the following corollary:

Corollary 2.16. Let γ : I −→M be a differentiable non-geodesic Legendre curve parametrized by arc length in a
homogeneous contact 3-manifold M . Then γ is f -biharmonic if and only if the following equations are satisfied:

f2κ3 = c21, (2.42)

(fκ)
′′

= fκ

(
κ2 + τ2 − 1

4
(c3 − c2)2 + 3− c2 − c3

)
(2.43)

and
f2κ2τ = c4. (2.44)

where ci ∈ R, 1 ≤ i ≤ 4.

Proof. Assume that κ 6= constant 6= 0 and τ 6= constant 6= 0. Then using the equations (2.35) and integrating the
first and third equations, we have the result.

By the use of Corollary 2.15 and Corollary 2.16, we obtain the following theorem:

Theorem 2.6. An arc length parametrized Legendre curve γ : I −→M in a homogeneous contact 3-manifold M is
proper f -biharmonic if and only if one of the following cases happens:

(i) τ = 0, f = c1κ
− 3

2 and the curvature κ solves the following equation

3 (κ′)
2 − 2κκ′′ = 4κ2

(
κ2 − 1

4
(c3 − c2)2 + 3− c2 − c3

)
.

(ii) τ 6= 0, τκ = c5, f = c1κ
− 3

2 and the curvature κ solves the following equation

3 (κ′)
2 − 2κκ′′ = 4κ2

(
κ2
(
1 + c25

)
− 1

4
(c3 − c2)2 + 3− c2 − c3

)
,

where ci ∈ R, 1 ≤ i ≤ 5.
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Proof. (i) Using the equation (2.40), we can write

f = c1κ
− 3

2 . (2.45)

Then, substituting the equation (2.45) into (2.41), we find the result.
(ii) From the equation (2.42), we have

f = c1κ
− 3

2 . (2.46)

Putting the equation (2.46) into (2.44), we find
τ

κ
= c5. (2.47)

Then substituting the equations (2.46) and (2.47) into (2.43), we get

3 (κ′)
2 − 2κκ′′ = 4κ2

(
κ2
(
1 + c25

)
− 1

4
(c3 − c2)2 + 3− c2 − c3

)
.

From the above theorem, we have the following corollary:

Corollary 2.17. An arc length parametrized f -biharmonic Legendre curve γ : I −→M in a homogeneous contact 3-
manifold M with constant geodesic curvature is biharmonic.
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