INTERNATIONAL ELECTRONIC ]OURNAL OF GEOMETRY
VOLUME 11 NO. 2 PAGE 18-27 (2018)

On f-Biharmonic Curves

Fatma Karaca* Cihan Ozgiir

(Communicated by Uday Chand De)

ABSTRACT

We study f-biharmonic curves in Sol spaces, Cartan-Vranceanu 3-dimensional spaces,
homogeneous contact 3-manifolds and we analyze non-geodesic f-biharmonic curves in these
spaces.
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1. Introduction

Harmonic maps between Riemannian manifolds were first introduced by Eells and Sampson in [8]. Let (M, g)
and (NN, h) be two Riemannian manifolds. ¢ : M — N is called a harmonic map if it is a critical point of the energy
functional

1
B(e) = 5 [ el dv,

where () is a compact domain of M. Let {¢:},.; be a differentiable variation of ¢ and V' = % lt=0, we have
critical points of energy functional (see [8])

0 1 0
st o5 [ {2 oo} i

= / (tr(Vdy), V) dv,
Q
Hence, the Euler-Lagrange equation of E(yp) is
7(p) = tr(Vdp) =0,

where 7(y) is the tension field of ¢ [8]. The map ¢ is said to be biharmonic if it is a critical point of the bienergy
functional

Bae) = 5 [ o) dv,

where Q2 is a compact domain of M. In [11], the Euler-Lagrange equation for the bienergy functional is obtained
by
7a(ip) = tr(VEV? = V)7 () — tr(R" (dip, 7(i0))dp) = 0, (L.1)
where 73(¢) is the bitension field of p and R is the curvature tensor of N.
The map ¢ is a f-harmonic map with a function f : M <Y R, if itis a critical point of f-energy

1
Bie) =5 [ 1ol v,
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where ) is a compact domain of M. The Euler-Lagrange equation of E(y) is

71(p) = f1(p) + dp(grad f) =0,

where 74(yp) is the f-tension field of ¢ (see [6] and [13]). The map ¢ is said to be f-biharmonic, if it is a critical

point of the f-bienergy functional
1
Bayle) =5 [ £l v,
Q

where 2 is a compact domain of M [12]. The Euler-Lagrange equation for the f-bienergy functional is given by

72,1 () = fra(p) + Af7(p) +2VE 4 ;7() = 0, (1.2)

where 7, ¢(¢) is the f-bitension field of ¢ [12]. If an f-biharmonic map is neither harmonic nor biharmonic then
we call it by proper f-biharmonic and if f is a constant, then an f-biharmonic map turns into a biharmonic map
[12].

In [4], Caddeo, Montaldo and Piu considered biharmonic curves on a surface. In [2], Caddeo, Montaldo and
Oniciuc classified biharmonic submanifolds in 3-sphere S®. More generally, in [3], the same authors studied
biharmonic submanifolds in spheres. In [7], Caddeo, Oniciuc and Piu considered the biharmonicity condition
for maps and studied non-geodesic biharmonic curves in the Heisenberg group H3. They proved that all of
curves are helices in Hs. In [16], Ou and Wang studied linear biharmonic maps from Euclidean space into
Sol, Nil, and Heisenberg spaces using the linear structure of the target manifolds. In [5], Caddeo, Montaldo,
Oniciuc and Piu characterized all biharmonic curves of Cartan-Vranceanu 3-dimensional spaces and they gave
their explicit parametrizations. In [10], Inoguchi considered biminimal submanifolds in contact 3-manifolds.
In [14], Ou derived equations for f-biharmonic curves in a generic manifold and he gave characterization of
f-biharmonic curves in n-dimensional space forms and a complete classification of f-biharmonic curves in 3-
dimensional Euclidean space. In [9], Gliveng and the second author studied f-biharmonic Legendre curves in
Sasakian space forms.

Motivated by the above studies, in the present paper, we consider f-biharmonicity condition for the Sol
space, Cartan-Vranceanu 3-dimensional space and homogeneous contact 3-manifold. We find the necessary
and sufficient conditions for the curves in these spaces to be f-biharmonic.

2. f-Biharmonicity Conditions For Curves

2.1. f-Biharmonic curves of Sol space

Sol space can be seen as R* with respect to Riemannian metric
Gsot = ds* = €2 da® + e~ dy? + d2?,

where (z,y, z) are standard coordinates in R® [16], [18]. In [16] and [18], the Levi-Civita connection V of the
metric gso; with respect to the orthonormal basis is given by

In terms of the basis {e1, €2, e3}, they obtained as follows:

Ve,e1=—e3, Ve ea =0, Vgez=e,
vegel == 07 V€262 = 633 V€263 = 7627
ve361 = 0, ve362 = 0, Veseg = 07

(see [18]). Now we assume that v: I — (R®, g,,) be a curve in Sol space (R?,g,,) parametrized by arc
length and let {T', N, B} be orthonormal frame field tangent to Sol space along v, where T' = T’ e; + Thes + Ties,
N = Nje; + Nayey + Nzes and B = Byej + Byey + Bses.

Now, we state the f-biharmonicity condition for curves of Sol space (R3, gsol):
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Theorem 2.1. Let v: I — (R®, gso1) be a curve parametrized by arc length in Sol space (R?,gsor). Then ~ is f-
biharmonic if and only if the following equations hold:

—3frK —2f'K* =0,
K" — fr® — frr? +2fkB3 — fr+2f's + f'k =0,
2fk'T + frt’ — 2fxN3Bs + 2f'kT = 0. (2.1)

Proof. Let {e;}, 1 <i < 3 be an orthonormal basis. Let v = 7 (s) be a curve parametrized by arc length. Then we

have ) )
— — Y . _ v
o) =tr(Vae) =0 (ar (2 ) ) = (T 57

o (dv <883>) =V, =EN. (2.2)

R(T,N,T,N) =2B3; — 1 (2.3)
R(T,N,T,B) = —2N3Bs. (2.4)

Using the equation (2.2) in (1.1), we can write

From [15] or [16], we know that

72(y) = (=3kk) T + (K" — k* — kT?) N

+kR(T,N)T + (2k'T + s7") B. (2.5)
On the other hand, an easy calculation gives us
Ve ;T(V) = Via siN = 'V (kN) = f' (=K*T + &'N + x7B) (2.6)

In view of equations (2.2), (2.5) and (2.6) into equation (1.2), we have
2. r(v) = (=3fkr")T + (fli” — fr3— ffm'z) N+ (2fs'T+ frt') B

+ fER(T,N)T + f"kN +2f' (=k°T + 'N + k7B) = 0. (2.7)
Finally, taking the scalar product of equation (2.7) with 7', N and B, respectively and using the equations (2.3)
and (2.4) we obtain (2.1). O

In the following four cases, we find necessary and sufficient conditions for curves of Sol space to be f-
biharmonic:

Case 2.1. If k = constant # 0, then we have the following corollary:

Corollary 2.1. Let v: I — (]R3, gsol) be a differentiable f-biharmonic curve parametrized by arc length in Sol space
(R3, gsol). If k = constant # 0, then ~ is biharmonic.

Proof. We assume that x = constant # 0. By the use of equations (2.1), we find

[ =o.
Hence, v is a biharmonic curve. O
Case 2.2. If T = constant # 0, then we have the following corollaries:

Corollary 2.2. Let v : I — (R®, gyo1) be a differentiable f-biharmonic curve parametrized by arc length in Sol space
(R3, gsor). If T = constant # 0 and N3Bs = 0, then ~y is biharmonic.

Proof. We assume that 7 = constant # 0 and N3 Bs = 0. By the use of equations (2.1), we have

K/ 2f
= —% (2.8)
and oo
T (K + f> =0. (2.9)
Then, substituting the equation (2.8) into (2.9), we obtain f = constant and v is a biharmonic curve. O
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Corollary 2.3. Let v : I — (R®, gs01) be a differentiable f-biharmonic curve parametrized by arc length in Sol space
(R‘?’ gsol)- If T = constant # 0, then f = o afe

Proof. Using the equations (2.1), we obtain

& 2f
=3 (2.10)
and
2fK'T — 2fkN3Bs + 2f kT = 0. (2.11)
Then, putting the equation (2.10) into (2.11), we get the result. O

Case 2.3. If 7 = 0, then we have the following corollary:

Corollary 2.4. Let v:1 — (R3, gsol) be a differentiable non-geodesic curve parametrized by arc length in Sol space
(R®, gsot). Then ~ is f-biharmonic if and only if the following equations are satisfied:

2R3 =i, (2.12)
(fr)" = fr (k* —2B3 +1) (2.13)

and
N3Bs =0, (2.14)

where ¢ € R.

Proof. We assume that 7 = 0. Then using the equations (2.1), integrating the first equation, we find the desired
result. O

Case 2.4. If k # constant # 0 and T # constant # 0, then we have the following corollary:

Corollary 2.5. Let v : 1 — (R3, g.o1) be a differentiable non-geodesic curve parametrized by arc length in Sol space
(R3, gsor). Then v is f-biharmonic if and only if the following equations are hold:

2R3 =¢2, (2.15)
(fr)" = fr (k> + 7% —2B3 +1) (2.16)

and .
Prir=el 750 2.17)

where ¢c; € R.

Proof. We suppose that x # constant # 0 and 7 # constant # 0. Then using equations (2.1), integrating the first
and third equations, the proof is completed. O

From Corollary 2.4 and Corollary 2.5, we can state the following theorem:

Theorem 2.2. An arc length parametrized curve v : I — (R3, goo;) in Sol space (R®, gso1) is proper f-biharmonic if
and only if one of the following cases happens:

(i) T =0, f = c1x~ 7 and the curvature  solves the following equation
3 (k) = 2kK" = 4K> (k* —2B3 +1).

2N3 B3
(i) T #0, L = efci{, f = ¢k~ 2 and the curvature x solves the following equation

f 4N3 B3
3 (k)2 — 26K" = 4> (xﬂ (1 + ) — 9B + 1) .
€1
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Proof. (i) Using the equation (2.12), we have

f=cih 3. (2.18)

Putting the equation (2.18) into (2.13), we get the result.
(i7) Solving the equation (2.15), we get

f = e, (219)

Putting the equation (2.19) into (2.17), we have
f 2N3 B3
T el T
Finally, substituting the equations (2.19) and (2.20) into (2.16), we obtain
"2 7 2 2 e 4N§B$ 2
3(k')" —2kK" =4r" [ K° [ 14+ ——F— | —2B3 +1|.
€

This completes the proof of the theorem. O

As an immediate consequence of the above theorem, we have:
Corollary 2.6. An arc length parametrized f-biharmonic curve~ : I — (R3, gso1) in Sol space (R?, g.o1) with constant
geodesic curvature is biharmonic.
2.2. f-Biharmonic curves of Cartan-Vranceanu 3-dimensional space

The Cartan-Vranceanu metric is the following two parameter family of Riemannian metrics

dx? + dy? ( ¢ yd, —xd, )

Trm@@+2P  \Z T 2 m@ 1 )

2 _
dS&m =

where ¢,m € R defined on M =R3 if m >0 and on M = {(at,y, ER3 2?2 +9% < — } [5]. The Levi-Civita
connection V of the metric ds7 ,,, with respect to the orthonormal basis

1o} Ly 0 0 fx O 0
=1 2 = = 1 T =
e = [L+m(a® +y7)] 5= = S o e = [L+m(a? +y)]8y+26 =3
is
Ve, €1 = 2myea, Ve, 2 = —2mye; + geg, Ve, €3 = Zeg,
Ve,e1 = —2maxey — %63, Ve,e2 = 2mae, Ve,€3 = §e1,
vegel = 7562; ve;gez = 5617 v6363 = 05

(see [5]).

Now assume that v : I — (M,ds,,) be a curve on Cartan-Vranceanu 3-dimensional space (M, ds3,,)
parametrized by arc length and let {T, N, B} be orthonormal frame field tangent to Cartan-Vranceanu 3-
dimensional space along «, where T' = Tie; + Thoes + Tze3, N = Niey + Noes + Nses and B = Bie; + Baes +
3363.

In this part, we investigate f-biharmonic curves of Cartan-Vranceanu 3-dimensional space. Firstly, we have
the following theorem:

Theorem 2.3. Let~y : [ — (M, ds3 ) bea curve parametrized by arc length in Cartan-Vranceanu 3-dimensional space
(M, ds3 ). Then ~ is f-biharmonic if and only if the following equations are satisfied:

—3fkK' —2f'Kk? =0,
"o 3 _ 2 _(p2 _ 2 ﬁ I ", _
fE" = fr>— frr* — (¢ —4m) frB3 + 4fl£—‘r2fl€ + f"k =0,

2f K'T + frr’ 4+ (6% — 4m) feN3Bs + 2f k1 = 0. (2.21)
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Proof. From [5], we have

2
R(T,N,T,N) = % — (¢ — 4m)B3, (2.22)
R(T,N,T,B) = (¢*> — 4m)N3Bs. (2.23)

Using the bitension field from [5], we can write
() = (=36 )T+ (K" — &* — kT*) N
+kR(T,N)T + (2’7 + k7') B. (2.24)
Substituting equations (2.2), (2.24) and (2.6) into equation (1.2), we obtain

To,5(7) = (=3fre") T + (fli// — fr3 — fm-z) N+ (2fK't + frr') B

+ fER(T,N)T + f"kN +2f' (=k*T 4+ k'N + kTB) = 0. (2.25)
Finally, taking the scalar product of equation (2.25) with 7', N and B, respectively and using equations (2.22)
and (2.23) we have the desired result. O

Remark 2.1. e If/=m=0, (M , ds%)m) is the Euclidean space and v is a f-biharmonic curve [14].

o If 2 =4mand (¢ #0, (M , dszm) is locally the 3-dimensional sphere with sectional curvature % and v is a
proper f-biharmonic curve.

e Ifm=0and¢#0, (M, ds7 ,,,) is the Heisenberg space Hs endowed with a left invariant metric and  is a
f-biharmonic curve in Hs.

o If £=1, (M,ds},,) is a 3-dimensional Sasakian space form [5] and v is a f-biharmonic curve in a 3-
dimensional Sasakian space form.

Now, we shall assume that £ # 4m and m # 0. As in the following cases we have f-biharmonicity conditions:
Case 2.5. If k = constant # 0, then we have the following corollary:

Corollary 2.7. Let v : 1 — (M, dsim) be a differentiable f-biharmonic curve parametrized by arc length in Cartan-
Vranceanu 3-dimensional space (M, ds ). If k = constant # 0, then ~ is biharmonic.

Proof. Putting x = constant # 0 into the equations (2.21), y is biharmonic. O
Case 2.6. If 7 = constant # 0, then we have the following corollaries:

Corollary 2.8. Let v : I — (M, ds} ) be a differentiable f-biharmonic curve parametrized by arc length in Cartan-
Vranceanu 3-dimensional space (M, ds3 ). If T = constant # 0 and N3Bs = 0, then ~ is a biharmonic curve.

Proof. Using the same method in the proof of Corollary 2.2, we obtain f = constant and ~ is a biharmonic
curve. O

Corollary 2.9. Let v : I — (M, dsj ) be a differentiable f-biharmonic curve parametrized by arc length in Cartan-
Vranceanu 3-dimensional space (M, ds ). If T = constant # 0, then f = o MO Nabs

Proof. By the same method in the proof of Corollary 2.3, we get the result. O
Case 2.7. If 7 = 0, then we have the following corollary:

Corollary 2.10. Let v : I — (M, ds3 ) be a differentiable non-geodesic curve parametrized by arc length in Cartan-
Vranceanu 3-dimensional space (M, ds3 ,,,). Then -y is f-biharmonic if and only if the following equations are satisfied:

263 =¢2, (2.26)
(fr)" = fr (ﬁ + (¢* —4m)B3 — f) (2.27)

and
N3Bs = 0, (2.28)

where ¢; € R.
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Proof. Suppose that 7 = 0. By the use of equations (2.21) and integrating the first equation, we find the desired
result. O

Case 2.8. If k # constant # 0 and T # constant # 0, then we have the following corollary:

Corollary 2.11. Let v : I — (M, ds3,,) be a differentiable non-geodesic curve parametrized by arc length in Cartan-
Vranceanu 3-dimensional space (M, ds3 ). Then  is f-biharmonic if and only if the following equations are fulfilled:

2R =, (2.29)
2
(fw)" = fr <H2 + 72+ ((* —4m) B3 — i) (2.30)
and
— (42 —4m) N3 B:
LN %7 (2.31)

where c¢; € R.

Proof. We suppose that x # constant # 0 and 7 # constant # 0. Then using the equations (2.21) and 1ntegratmg
the first and third equations, the proof is completed.

Using Corollary 2.10 and Corollary 2.11, we find the following theorem:

Theorem 2.4. An arc length parametrized curve v : I — (M, ds} ) in Cartan-Vranceanu 3-dimensional space is
proper f-biharmonic if and only if one of the following cases happens:

(i) 7 =0, f = c1x~ % and the curvature & solves the following equation

62
3 (/@')2 — 2kK" = 4K? (142 + ((* — 4m) B3 — 4) .

2
.. J TUEZAmING By 3 . .
(i) T #0, L = &——F——, f = c;x~ 2 and the curvature « solves the following equation
K Cl

I —2(¢%2 —4m)N3 Bg 02
3(K)° — 2kK" = 4K> (/{2 (1 + e;) + (> — 4m)B3 — 4> .
€1

Proof. (i) From the equation (2.26), we can write

f=cr s, (2.32)
Then, putting equation (2.32) into (2.27), we obtain the result.
(it) From the equation (2.29), we have
f=ck s, (2.33)
Putting the equation (2.33) into (2.31), we find
I —(22—4T)N3B3
- 6—2. (2.34)
K i
Then substituting the equations (2.33) and (2.34) into (2.30), we get
i 72(22747—7n)NgB3 9
3(K)? = 26K = 4K> <n2 (1 + 6—4 + (> — 4m)Bj — % .
1
This completes the proof of the theorem. O

From the above theorem, we have the following corollary:

Corollary 2.12. An arc length parametrized f-biharmonic curve ~: 1 — (M,ds7 ) in Cartan-Vranceanu 3-
dimensional space (M, ds7 ,,,) with constant geodesic curvature is biharmonic.
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2.3. f-Biharmonic curves of homogeneous contact 3-manifolds

A contact Riemannian 3-manifold is said to be homogeneus if there is a connected Lie group G acting
transitively as a group of isometries on it which preserve the contact form, (see [10] and [17]). The simply
connected homogeneous contact Riemannian 3-manifolds are Lie groups together with a left invariant contact
Riemannian structure [17].

Let (M, ¢,&,1n,9) be a 3-dimensional unimodular Lie group with left invariant Riemannian metric g. Then
M admits its compatible left-invariant contact Riemannian structure if and only if there exists an orthonormal
basis {ej, €2, e3} such that

le1,e2] = 2e3, [ez,e3] = caer, [e3,eq] = czen

[17]. Let ¢ be the (1, 1)-tensor field defined by ¢(e1) = e2, p(e2) = —eq and ¢(e3) = 0. Then using the linearity
of p and g we have

nies) =1, ©*(X)=-X +n(X)es, g(pX,9Y)=g(X,Y)—n(X)n(Y).
In [17], Perrone calculated the Levi-Civita connection of homogeneous contact 3-manifolds as follows:

Velel = 07
Ve,e1 = 5(c3 — ca — 2)es,
Ve,€1 = §(C3 + o — 2)ea,

Veleg = %(03762+2)63, Veleg = 7l(63 702+2)62,
V62€2 = 0, Vezeg = 75(63 — Cg — 2)61,
Ve3€2 = 7%(03 + co — 2)61, Veseg =0.
A 1-dimensional integral submanifold of a homogeneous contact Riemannian manifold M is called a Legendre
curve of M [1].

Let v:1 — M be a Legendre curve on homogeneous contact 3-manifold parametrized by arc length
and let {T, N, B} be orthonormal frame field tangent to homogeneous contact 3-manifold along v where
T =Tie; +Theg + Tzes, N = Nyiey + Noes + Nses and B = Bye; + Bayes + Bses.

Now, we obtain the f-biharmonicity condition for Legendre curves of homogeneous contact 3-manifold:

Theorem 2.5. Let v : I — M be a Legendre curve parametrized by arc length in a homogeneous contact 3-manifold M.
Then +y is f-biharmonic if and only if the following equations are satisfied:

—3fkK' —2f'k? =0,

1
fl‘i”_fl’i3_fKJTQ-‘rfk’(Z(CB_02)2_3+02+CS)+2f/’f/+fH“:07

2fk'T 4+ frT’ +2f kT =0, (2.35)
wherec; € R, 1 <4 < 3.
Proof. From [10], we have
R(T,N,T,N) = (s — e2 ~3 4 e2 e, (2.36)
R(T,N,T,B) = 0. (2.37)

Using the bitension field from [10], we can write
To(y) = (=3kK") T + (Ii// — K= /€T2) N
+kR(T,N)T + (2’7 + k7') B. (2.38)
In view of equations (2.2), (2.38) and (2.6) into equation (1.2), we calculate
2.5 (v) = (=3fke) T + (f" — f&* — for®) N + (2f&'T + fr7') B

+ [ER(T,N)T + f"kN +2f' (=k*T 4+ k'N + k7B) = 0. (2.39)

Finally, taking the scalar product of equation (2.39) with T', N and B, respectively and using the equations (2.36)
and (2.37) we obtain the result. O
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From the above theorem, we have the following cases:
Case 2.9. If k = constant # 0, then we have the following corollary:

Corollary 2.13. Let v : I — M be a differentiable f-biharmonic Legendre curve parametrized by arc length in a
homogeneous contact 3-manifold M. If k = constant # 0, then -y is biharmonic.

Proof. Putting the curvature x = constant # 0 into the equations (2.35), it is clear that v is a biharmonic
curve. O

Case 2.10. If 7 = constant # 0, then we have the following corollary:

Corollary 2.14. Let ~v: I — M be a differentiable f-biharmonic Legendre curve parametrized by arc length in a
homogeneous contact 3-manifold M. If T = constant # 0, then ~y is biharmonic.

Proof. Putting the curvature 7 = constant # 0 into the equations (2.35), it is clear that v is a biharmonic
curve. O

Case 2.11. If 7 = 0, then we have the following corollary:

Corollary 2.15. Let v : 1 — M be a differentiable non-geodesic Legendre curve parametrized by arc length in a
homogeneous contact 3-manifold M. Then ~ is f-biharmonic if and only if the following equations are satisfied:

2R =c3, (2.40)
and
(fr)" = fr </~@2 - 2(03 — ) +3—cy— 03> (2.41)
wherec; € R, 1 <4 < 3.
Proof. Suppose that 7 = 0. Then using the equations (2.35), we find the desired result. O

Case 2.12. If k # constant # 0 and T # constant # 0, then we have the following corollary:

Corollary 2.16. Let v: I — M be a differentiable non-geodesic Legendre curve parametrized by arc length in a
homogeneous contact 3-manifold M. Then +y is f-biharmonic if and only if the following equations are satisfied:

fPed=df, (2.42)
(fr)" = fx </<;2 + 72— 3(03 — )’ +3—cr— 63> (2.43)

and
PR =y (2.44)

wherec; € R, 1 <4 < 4.

Proof. Assume that x # constant # 0 and 7 # constant # 0. Then using the equations (2.35) and integrating the
first and third equations, we have the result. O

By the use of Corollary 2.15 and Corollary 2.16, we obtain the following theorem:

Theorem 2.6. An arc length parametrized Legendre curve v : I — M in a homogeneous contact 3-manifold M is
proper f-biharmonic if and only if one of the following cases happens:

(i) 7 =0, f = c1s~ % and the curvature k solves the following equation
3 (/i')2 — 2kK" = 4K? <Ii2 - 3(03 —c)?+3—ca— 03> .
(@) T#0, L =cs5, f = 1k~ % and the curvature r solves the following equation
3 (f</)2 — 2kK" = 4> <Ii2 (1 + cg) — i(cs — ) +3—cy— 03> ,

wherec; e R, 1 <4 <5.
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Proof. (i) Using the equation (2.40), we can write

P (2.45)

Then, substituting the equation (2.45) into (2.41), we find the result.
(22) From the equation (2.42), we have

FEp— (2.46)

Putting the equation (2.46) into (2.44), we find

= cs. (2.47)

Then substituting the equations (2.46) and (2.47) into (2.43), we get

1
3(k)% = 2kK" = 4K? </¢2 (14¢2) - 1(63 — ) +3—cy— 03) .

From the above theorem, we have the following corollary:

Corollary 2.17. An arc length parametrized f-biharmonic Legendre curve v : I — M in a homogeneous contact 3-
manifold M with constant geodesic curvature is biharmonic.
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