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ABSTRACT

We extend the notion of triangle to imaginary triangles with complex valued sides and angles,
and parametrize families of such triangles by plane algebraic curves. We study in detail families of
triangles with two commensurable angles, and apply the theory of plane Cremona transformations
to find “Pythagorean theorems" for these triangles, which are interpreted as the implicit equations
of their parametrizing curves.
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1. Introduction

The use of algebraic geometry to study families of triangles has ancient roots. Back around 250 AD in
the famous problem II.8 of his Arithmetica (on the margins of which Fermat wrote his famous comment)
Diophantus introduced a trick for finding right triangles with three integer sides, the Pythagorean triples.
This trick will later be interpreted (starting with Kronecker’s 1901 algebra textbook, according to [14]) as
constructing a rational parametrization of the unit circle, an algebraic curve parametrizing the family of right
triangles up to similarity. Around 940 AD Al Khazen proposed the problem of finding right triangles with
rational sides and integer area. In modern terms, the problem amounts to finding rational points on some
elliptic curves. Other families of triangles with rational sides are actively studied today using elliptic and
higher genus curves [19, 20].

In this paper we will apply to triangles the classical algebraic geometry of plane curves and Cremona
transformations developed in the works of 19th century authors such as Plücker, Cayley, Cremona, Clebsch
and Max Noether before the onset of a more abstract modern approach after Hilbert, see [4] for a historical
survey, and [8, 9, 22, 23] for modern introductions. Classical algebraic geometry is attractive due to its more
intuitive flavor, especially when applied to the elementary geometry of triangles. Since algebraic geometry
works best over the field of complex numbers it is helpful to expand the notion of triangle accordingly, hence
the imaginary triangles of the title.

Specifically, we will use algebraic geometry to study what we call p : q triangles, which are similar to the
isosceles triangles, but with the base angles in an integer ratio p : q. As with the right triangles, parametrized
by a conic, their parametrizing curves are rational. In fact, they can be parametrized by the Chebyshev
polynomials (of the second kind), so we call these curves the Chebyshev curves. As with the right triangles,
one can look for triples of integers that can be sides of p : q triangles (“Pythagorean triples"), or for algebraic
relations among those sides (“Pythagorean theorems"). These problems can be naturally interpreted as looking
for rational points on, and implicit equations of, the Chebyshev curves.

Despite the classical flavor of the problems to the best of the author’s knowledge such triangle families were
first studied only in 1954 by Oppenheim (1 : 3 and 2 : 3 cases, see [10]). Later Oppenheim, together with Daykin,
explicitly characterized primitive integer triples for all p : q families, it seems fair to call them the Oppenheim
triples. Their result was published back in 1967 [6], but special cases and related results were rediscovered
later multiple times, see [2, 3, 7, 11, 13, 15, 16, 17, 21, 24]. However, almost all attention went to the Oppenheim
triples, while the “Pythagorean theorems", and algebro-geometric connections, were largely overlooked. We
hope to remedy this oversight.
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2. Imaginary triangles and SSS

Trigonometry literally translates from Greek as “the measurement of triangles". But sine and cosine functions
extend to complex values, and the trigonometric formulas continue to hold. It turns out that even some facts
about the ordinary Euclidean triangles are best explained by looking at complex values. But what sorts of
“triangles" would have complex sides and angles?

The principal relations between sides and angles of the ordinary triangles are given by the laws of sines and
cosines, so we should make sure that they continue to hold. Since trigonometric functions are 2π periodic, even
for complex values, we should identify angles differing by a multiple of 2π. Moreover, because cosines are even
functions, and the overall sign change in the angles does not alter the law of sines, we should identify triples
of angles differing by the overall sign change. This leads to the following definition.

Definition 2.1. Let α, β, γ ∈ C represent classes modulo 2π with α+ β + γ = π
(mod 2π), and let [−α,−β,−γ] ∼ [α, β, γ]. Denote by Λ the resulting set of equivalence classes [α, β, γ]. An
imaginary triangle (with ordered sides) is a pair

(
(a, b, c); [α, β, γ]

)
∈ C3 × Λ of sides and “opposite" angles,

such that the laws of sines and cosines hold for them. We call c the base of the triangle, and α, β the base
angles.

The imaginary triangles can be interpreted as living in C2 with sides and angles “measured" using a bilinear
form, (not a Hermitian one), which extends the inner product on R2. This interpretation is nicely described in
Kendig’s paper [12]. Our definition is slightly more refined since the bilinear form only defines complex valued
sides up to sign. But even with our definition we can not get the side triples to cover all of C3. Suppose c = 0,
for example, then by the law of cosines b2 = a2, and so b = ±a. Any zero-side triangle must be either isosceles
or “anti-isosceles"! In particular, if an imaginary triangle has two zero sides then all three sides are zero. We
will show, however, that this is the only restriction on the sides (Theorem 2.1).

But first let us look at zero-area triangles. Recall that A = 1
2bc sinα = 1

2ac sinβ = 1
2ab sin γ gives the area of an

(ordinary) triangle. The law of sines a : b : c = sinα : sinβ : sin γ insures that all three expressions give the same
value, even for imaginary triangles. But as long as we exclude the zero-side triangles, having sinα = 0, say,
forces sinβ = sin γ = 0. In other words, zero-area triangles with non-zero sides can only have angles that are 0
or π, see Fig.1 (a). But then by the law of cosines a2 = b2 + c2 ± 2bc = (b± c)2 and a± b± c = 0 for at least one
choice of signs. This means that a triangle has zero-area if and only if

∆ := (a+ b+ c)(−a+ b+ c)(a− b+ c)(a+ b− c) = 4s(s− a)(s− b)(s− c) = 0, (2.1)

where s := 1
2 (a+ b+ c). One can show using the remaining laws of cosines, that the factors in (2.1) correspond

to [π, π, π], [π, 0, 0], [0, π, 0] and [0, 0, π] angle triples. If the first of these triples looks impossible, recall that 3π = π (
mod 2π). The second product in (2.1) should look familiar, it is 4 times the expression A under the square root
in the “Heron" area formula (likely due to Archimedes). So for ordinary triangles ∆ = 16A2.

Now let us turn to the angles. Any pair α, β can serve as the base angles of an imaginary triangle, indeed
γ = π − α− β, a = sinα, b = sinβ, c = sin(α+ β) define one such triangle. However, this construction may
produce a triangle with all sides equal to zero. This degeneration will not happen if at least one of α, β is
neither 0 nor π, and in that case the law of sines implies the law of cosines. To see this implication note that by
the law of sines there is a z such that a = z sinα, b = z sinβ, c = z sin(α+ β), and use the lesser known identity

sin(α+ β) sin(α− β) = sin2(α)− sin2(β). (2.2)

We will now prove a generalization of the side-side-side theorem (SSS) to imaginary triangles. The
elementary SSS states that a triangle’s angles can be uniquely recovered from its sides, and gives a geometric
construction for these angles. The uniqueness, however, can not hold for the zero-side triangles. If c = 0, for
example, and a = b then [α, π − α, 0] would satisfy the law of sines for any α ∈ C since sinα = sin(π − α), see
Fig. 1 (a). And if a = −b then [α,−α, π] would work as well. But even with the zero-side triangles excluded, we
cannot use the usual geometric constructions to prove SSS. Let us turn to complex analysis instead.

Given three sides we can try to recover the angles by using the area formulas as equations: sinα = 2A
bc and

sinβ = 2A
ac . It follows from complex analysis that the system sin z = w, cos z = w̃ has a solution z ∈ C if and only

if w2 + w̃2 = 1, and this solution is unique modulo 2π. In particular, sin z = w is solvable for any w ∈ C, and the
solution’s class modulo 2π is uniquely determined by a choice of value for

√
1− w2. This result implies that the

angles (or rather their classes in Λ) are determined uniquely by non-zero sides.
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Figure 1. (a) Zero-area and zero-side triangles (double lines are for visualization only); (b) Similar triangles with one and two negative sides.

Theorem 2.1 (SSS for imaginary triangles). Let (a, b, c) ∈ C3 and a, b, c 6= 0. Then there is a unique [α, β, γ] ∈ Λ
such that

(
(a, b, c); [α, β, γ]

)
is an imaginary triangle. If one of a, b, c is 0 an imaginary triangle with these sides exists if

and only if the other two are equal up to sign, and there are infinitely many such triangles.

Proof. Given a, b, cwe compute ∆ from (2.1). There is a sign ambiguity in recoveringA from ∆, but that is taken
care of by specifying triples of angles only up to the overall sign change. Suppose first that A 6= 0. There are at
most two solutions, modulo 2π, to each of the equations sinα = 2A

bc and sinβ = 2A
ac . Moreover, these solutions

correspond to a choice of value for
√

1−
(
2A
bc

)2 and
√

1−
(
2A
ac

)2. One can show that the identity

2A

ac

√
1−

(2A

bc

)2
+

2A

bc

√
1−

(2A

ac

)2
=

2A

ab
. (2.3)

becomes equivalent to (2.1) by moving one of the square roots to the right, squaring, isolating the other square
root, and squaring again. Working backwards, we find a unique choice of square roots that makes (2.3) hold.
Hence we can determine α, β uniquely, and (2.3) then implies that

sinα cosβ + sinβ cosα = sin(α+ β) =
2A

ab
.

This equation verifies the law of sines (and, therefore, the law of cosines since A 6= 0). Thus, [α, β, π − α− β] are
the sought after angles, unique by construction.

Now consider triangles with A = 0. Then one of the factors in (2.1) is zero. Suppose a = b+ c, for example.
Then a2 = b2 + c2 + 2bc, and bc 6= 0, so to satisfy the law of cosines cosα = −1, which also implies sinα = 0 and
α = π. The other two cosines are similarly found to be 1, so β = γ = 0. Conversely, the laws of sines and cosines
hold with these assignments. The other cases are analogous.

Triangles with negative sides are visualized on Fig.1 (b). These triangles occupy the same place as ordinary
triangles with absolute values of their sides, but are viewed differently where measuring the angles is
concerned. However, triangles that violate the triangle inequalities, even with all positive sides like 1,1,3, have
complex valued angles. To visualize these triangles one has to step outside of R2, see [12].

Theorem 2.1 means that, excluding the zero side triangles, we can uniquely parametrize imaginary triangles
by points (a, b, c) ∈ C3 with three planes removed (a = 0, b = 0, and c = 0). Two lines in each of those planes
(intersections with c = ±b, c = ±a and b = ±a) have points corresponding to multiple zero-side triangles due
to angle indeterminacy. The rest of the excluded planes corresponds to no triangles at all. We will be mostly
interested in the shapes, or similarity classes, of triangles, that is we will identify those triangles that are the
same up to scale. The triangle shapes are parametrized by triple ratios [a : b : c]. Such triples, with [0 : 0 : 0]
excluded, form the complex projective plane CP 2, see e.g. [9]. Planes through the origin in C3 become projective
lines in CP 2, and lines through the origin in C3 become projective points, a, b, c are called homogeneous
coordinates.

Definition 2.2. We call the triangle shape plane, or simply the shape plane, the subset of CP 2 obtained by
removing three projective lines (a = 0, b = 0, and c = 0) except for two points on each projective line, ([0 : 1 : ±1],
[1 : 0 : ±1], and [1 : ±1 : 0]).

To better understand CP 2 it is instructive to look at a real slice, the real projective plane RP 2. Most of RP 2 can
be visualized by using the affine coordinates, say x := b

a , y := c
a . These affine coordinates cover the ordinary

plane R2, called the affine plane, and points with a = 0 can be thought of as being at infinity. The points at
infinity form one of the lines excluded from the triangle shape plane, and the other two are exactly the x
and the y axes. Two of the special points are on the line at infinity, and the four finite points are (±1, 0) and
(0,±1). The points on the line at infinity represent directions of parallel lines in R2 (with opposite directions
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Figure 2. (a) Real projective plane of triangle shapes with the gate points and the Euclidean triangle, the lower semicircle is identified with the upper one; (b) Real
affine plane of triangle shapes with the Euclidean half-strip.

corresponding to the same point). We can visualize those points by adding to the plane an infinitely distant
circle enclosing the entire affine plane. With antipodal points identified, this circle represents the line at infinity,
see Fig. 2 (a).

One can see that each affine quadrant is actually a projective triangle with the coordinate half-axes and half
of the line at infinity for sides. Moreover, each quadrant shares exactly one side with each of the other three, and
there is exactly one point on each of those sides that is part of the real triangle shape plane. They correspond
to the isosceles and the anti-isosceles zero-side triangles, and if not for these points the real shape plane would
be disconnected into four separate components.

Definition 2.3. We denote E± := [0 : 1 : ±1], F± := [1 : 0 : ±1], G± := [1 : ±1 : 0], and we call these points the
gate points. We also denote E0 := [1 : 0 : 0], F0 := [0 : 1 : 0], and G0 := [0 : 0 : 1].

Note that even imaginary triangles with real sides may not be real in the sense of elementary geometry,
because such triangles can have negative sides, or their sides may violate the triangle inequalities. Positivity of
a, b, c restricts us to the first quadrant, and rewriting the triangle inequalities in terms of x and y singles out a
half-strip in this plane with F+ and G+ as corners, Fig. 2 (b). In the projective view the half-strip is a projective
triangle with the vertices E+, F+ and G+, see Fig. 2 (a).

3. Chebyshev curves

The reason for introducing the triangle shape plane is that it streamlines the study of some natural families
of triangles. The two most classical families are the right and the isosceles triangles, studied already by
Pythagoreans. Both families are defined by imposing a linear condition on the angles (α = π/2 and β = α),
which imposes an algebraic relation on their sides: the Pythagorean theorem for the right triangles, a2 =
b2 + c2, and the converse of Pons Asinorum for the isosceles triangles, b = a. The corresponding curves in
the affine shape plane are of the simplest kind, the unit circle and a vertical line. We will study the following
generalizations of the isosceles family.

Definition 3.1. Let p, q be two relatively prime positive integers. We call an imaginary triangle a p : q triangle
if α : β = p : q for some angle representatives α, β, or more precisely if qα− pβ = 0 (mod 2π).

Each pair p : q defines a curve in the triangle shape plane. The corresponding curve can be parametrized
using the law of sines. Indeed, if α : β = p : q then α, β have a common measure θ ∈ C such that α = pθ, β = qθ
and γ = π − (p+ q)θ. The law of sines implies

a : b : c = sin(pθ) : sin(qθ) : sin(p+ q)θ,

which is a parametrization of a curve in CP 2 in homogeneous coordinates. For the purposes of algebraic
geometry it is bad because it involves transcendental functions. But it can be transformed into a rational
parametrization using an observation of Chebyshev’s [3] that the function sin(n+1)θ

sin θ extends to a polynomial
Un(cos θ), called the n-th Chebyshev polynomial of the second kind. Moreover, U0 = 1, U1 = 2t and Un+1 =
2tUn − Un−1. The better known Chebyshev polynomials are those of the first kind, but here it is the second
kind that take center stage. Rewriting the law of sines in terms of Un gives the parametrization (with t = cos θ):

a : b : c = Up−1(t) : Uq−1(t) : Up+q−1(t), t ∈ C . (3.1)
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In fact, it is more natural to let t take values not only in C but in C ∪ {∞}. The∞maps to G0 = [0 : 0 : 1] ∈ CP 2.
This is the only point on (the closure of) our curve that does not correspond to any, even imaginary, triangle.
And, aside from the gate points, it is the only point that all p : q curves pass through, one could even say that
they all begin and end at it, see Fig. 3.

Definition 3.2. We denote by Cp,q the closure in CP 2 of the curve parametrized in (3.1), and call it the p : q
Chebyshev curve. The point G0 = [0 : 0 : 1] ∈ Cp,q is called the source point.

This definition will suffice for now, but later we will refine it to treat Cp,q as algebraic curves rather than just
parametrized point sets (Definition 4.3). Note that because Un have integer coefficients rational values of t are
mapped into rational points (that is points with rational coordinates), and therefore produce integer triples that
can be sides of (imaginary) triangles. It turns out that the converse is also true, irrational values of t do not map
into rational points. As noticed in [3], this result can be shown as follows. The law of cosines expresses cos(pθ),
cos(qθ) and cos(p+ q)θ as rational functions of a, b, c with ab, ac and bc in the denominators. One can then use
Chebyshev polynomials (of both kinds) to express t = cos θ as a polynomial in a, b, c. We leave the details as an
exercise to the reader.

It follows that the only potential self-intersection points of Cp,q, that is points that distinct values of t are
mapped into, are the points where a, b or c are 0, in other words, the gate points E±, F± and G± (the source
point G0 can only correspond to t =∞ because it does not represent a triangle). As we shall see, the trace of
Cp,q in RP 2 is determined qualitatively by the order in which they are visited. The next theorem will allow us
to find that order, as well as the self-intersection multiplicities.
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Figure 3. Real projective diagrams of (a) 1 : 2, (b) 1 : 3 (c) 1 : 4, and (d) 2 : 3 curves.

Theorem 3.1. As t ∈ R grows from −∞ to ∞ on the Chebyshev curve Cp,q the gate points E± are passed p− 1 times
ending with E− (at t = cos πp ), F± are passed q − 1 times ending with F− (at t = cos πq ), and G± are passed p+ q − 1

times ending with G+ (at t = cos π
p+q ). These are the only self-intersection points of Cp,q (if any), and their multiplicities

(number of distinct parameter values mapped into them) are given in Table 1. When t→ ±∞ all Chebyshev curves
approach the source point G0.

Proof. Recall that E± = [0 : 1 : ±1], so by the parametrization (3.1) E± is on the curve for t such that Up−1(t) =
sin(pθ)
sin(θ) = 0. This equation means that pθ = πk for integer k while θ 6= πj. Therefore θk = πk

p for k = 1, . . . , p− 1

produces all the possible values for tk = cos θk. Note also that sin(p+ q)θk = (−1)k sin(qθk), and therefore
Up+q−1(tk) = (−1)kUq−1(tk) according to (3.1). In other words, as k increases from 1 to p− 1 the passages
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Parities E+ E− F+ F− G+ G−
p odd, q odd p−1

2
p−1
2

q−1
2

q−1
2

p+q
2

p+q
2 − 1

p odd, q even p−1
2

p−1
2

q
2 − 1 q

2
p+q−1

2
p+q−1

2

p even, q odd p
2 − 1 p

2
q−1
2

q−1
2

p+q−1
2

p+q−1
2

Table 1. Real self-intersection multiplicities of the gate points.

through E+ and E− interlace, with E− being first in k, but last in t. These observations gives the first two
columns of Table 1. The other four columns are analogous.

Once the order of passage through the gate points has been determined the real projective trace of Cp,q can
be easily sketched. It is convenient to first find the code of a curve, the list of gate points in order of passage.

Example 3.1. For the 1 : 2 curve E±, F+ are not passed at all, F− is passed at θ = π
2 and G± at θ = π

3 ,
2π
3 . We

have the table:

E± : ∅ ; F± :
π

2
− , G± :

π

3
+,

2π

3
− ;

where the signs are easily assigned since they alternate, and we know the first sign for each pair of points. So
the code is G0G−F−G+G0 in the increasing order of t (decreasing order of θ), see Fig.3. Similarly, for the 1 : 3
curve the code is G0G+F+G−F−G+G0, and for the 2 : 3 curve the code is G0G−F+G+E−G−F−G+G0. Note that
in the affine view x = b

a , y = c
a curves passing through E± will look like having separate branches (intersecting

at the other gate points), and approaching G0 will look like approaching the vertical direction towards infinity
(although not a vertical asymptote), see Fig. 4.

(a) (b) (c)

(d) (e) (f)

Figure 4. Real affine graphs of (a) 1 : 2 (b) 1 : 3 (c) 1 : 4 (d) 1 : 5 (e) 2 : 3 and (f) 3 : 4 curves, drawn by Maple.

4. Heron transformation and its inverse

Parametrizations are central in differential geometry, but in algebraic geometry implicit equations are more
commonly used. The Pythagorean theorem can be written as a homogeneous implicit equation b2 + c2 − a2 = 0
that defines an algebraic curve in CP 2 with a, b, c as homogeneous coordinates. This curve is a non-degenerate
conic, which can be rendered as an ellipse (circle) or a hyperbola, depending on a choice of affine coordinates.
With the choice we are using, x = b

a , y = c
a , this curve is the unit circle x2 + y2 − 1 = 0. We can expect something

similar for our p : q triangles. In algebraic terms, we are looking for implicit equations fp,q(a, b, c) = 0 of the
Chebyshev curves Cp,q. For C1,2 the implicit equation can be found by inspection from the parametrization (3.1):
we have b

a = t and c
a = t2 − 1, so b2 − a2 − ac = 0. But already for C1,3 the implicit equation is not so obvious.

Fortunately, there is a recursion for computing fp,q with nice interpretations in both elementary and algebraic
geometry. The interpretations involve transforming triangles with the base angles α, β into those with α, β − α.
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We start with the elementary interpretation. Consider a triangle 4ABC with the base angles α, β, and
from the vertex C opposite the base drop a segment CB′ onto the base so that 4B′CB is isosceles, Fig. 5.
By inspection, 4ACB′ has the base angles α, β − α, which means that we can transform p : q triangles into
p : q − p triangles this way. Let us see how the transformation acts on the sides a, b, c of 4ABC opposite

b BA BD

C

α β
β−α

aa

b

Figure 5. Heron transformation of an ordinary triangle.

A,B,C. If a′, b′, c′ are the corresponding sides of 4ACB′ then a′ = a and c′ = b by inspection. To find b′ drop
the perpendicular CD to AB and apply the Pythagorean theorem twice, to 4ACD and 4BCD. This gives
b′ = b2−a2

c . Since we care about triangles only up to scaling we can homogenize the transformation, i.e. take ac,
b2 − a2 and bc as the new sides.

Definition 4.1. The Heron transformation is the rational map H : CP 2 99K CP 2 given in homogeneous
coordinates by H([a : b : c]) = [ac : b2 − a2 : bc]. We will occasionally abuse notation by denoting the (non-
homogenized) Heron transformation also by H : C3 → C3.

This elementary construction of H appears in [2, 17, 21], all three papers use it to find the Oppenheim triples
recursively. D. Rogers pointed out to the author that the construction is reminiscent of Heron’s in his Metrica,
hence the name.

Now let us turn to algebraic geometry. The reason for the dashed arrow in Definition 4.1 is that H is not
defined on quite all of CP 2. H is of course always defined as a map C3 → C3, but if the image of a point is
(0, 0, 0) then there is no point in CP 2 that corresponds to the point since [0 : 0 : 0] is not in CP 2. One can see
that this anomaly happens if and only if a = b = 0 or c = 0 and b = ±a. Thus, the source point G0 = [0 : 0 : 1]
and the gate points G± = [1 : ±1 : 0] are the only points of CP 2 not in the domain of H . But f ◦H is defined
everywhere (for non-homogenized H), and f ◦H is a homogeneous polynomial if f is.
H is neither one-to-one nor onto. So it may come as a surprise that despite that H has an explicit (almost)

inverse, and a rational one at that, no square roots! The reason is that on CP 2 we invert only up to scale. Indeed,
if H([a : b : c]) = [u : v : w] then b

a = w
u and b+a

c = v
w−u , so c

a = w2−u2

uv .

Definition 4.2. The inverse Heron transformation is the rational map H−1 : CP 2 99K CP 2 given in
homogeneous coordinates by H([u : v : w]) = [uv : vw : w2 − u2].

The “inverse Heron transformation" should be understood as an idiom, H−1 is not a set-theoretic inverse of
H on CP 2. In elementary terms, it transforms triangles with the base angles α, β into triangles with the base
angles α, β + α. Like H it is undefined at three points, namely F0 = [0 : 1 : 0] and F± = [1 : 0 : ±1]. When we
look for their pre-images under H we find that these pre-images are entire lines c = 0 and b = ±a. Reciprocally,
H−1 maps the lines v = 0 and w = ±u into the points where H is undefined, G0 and G±. So “undefined" should
not be taken to mean that those points go nowhere. One can even show that when a curve approaches one of
these points, its image under H approaches a point on the corresponding line, different tangents of approach
corresponding to different points [5, II.I.1]. It is said that H and H−1 blow up three points into three lines, and
blow down three lines into three points [22, 3.2], see Fig. 6.
H is an example of quadratic plane Cremona transformation. The points where H is undefined are called its

base points, and the curves (lines) that H maps into points its exceptional lines [1]. Points on the exceptional
lines are called exceptional and form the exceptional locus. In classical works the base points are called

H−1

G+G_

F_

0F

0G F+

G_

F_ F+

F0

G0

G+H

Figure 6. Heron transformation diagram: blow ups and blow downs.

fundamental, and the exceptional curves fundamental or principal [4, 5]. So H blows up its base points into the
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exceptional lines of H−1, and blows down its exceptional lines into the base points of H−1. The action of H and
H−1 is depicted schematically on Fig. 6, where the lines are labeled by (primed) points they are blown down
to. The two maps are the set-theoretic inverses of each other on CP 2-s with the exceptional loci removed.

If [a : b : c] ∈ CP 2 represents an imaginary triangle with the base angles α, β, and is not a gate point or
exceptional for H (b 6= ±a), then H([a : b : c]) represents an imaginary triangle with the base angles α, β − α.
Analogously, if [a : b : c] is non-gate and non-exceptional for H−1 then H−1([a : b : c]) represents an imaginary
triangle with the base angles α, β + α. In generic cases this can be seen by noticing that if a : b : c = sinα :
sinβ : sin(α+ β) and [u : v : w] = [ac : b2 − a2 : bc], then u : w = ac : bc = a : b = sinα : sinβ, and u : v = sinα :
sin(β − α) due to identity (2.2). We leave checking the degenerate cases with base angles (0, 0), (0, π), (π, 0)
or (π, π) to the reader.

Now we can reason as follows. Suppose we know the “Pythagorean theorem" (implicit equation) for p : q − p
triangles, say fp,q−p = 0. Then we should have fp,q−p(a

′, b′, c′) = fp,q−p(a,
b2−a2
c , b) = 0, and since fp,q−p is a

homogeneous polynomial the composition with fp,q−p should still vanish on Cp,q. Unfortunately, this vanishing
does not imply the converse, that any triple satisfying this equation represents the sides of a p : q triangle.
Indeed, the naive recursion introduces extraneous factors that have to be dealt with. For instance,

f1,2 ◦H = (b+ a)
(

(b+ a)(b− a)2 − ac2
)

= (b+ a)f1,3,

similarly f1,3 ◦H = (b+ a)(b− a)f1,4. As one may suspect, it is the behavior of H at and near the exceptional
locus that is responsible for these extraneous factors. To explain their appearance we need some more
terminology [22, 7.4], [23, III.7.3].

Up to now we essentially identified algebraic curves with sets of points. But these curves are more than sets,
f = 0 and f2 = 0 define the same set of points in CP 2, but they are different curves. As understood in algebraic
geometry, they differ in multiplicity. In fact, in algebraic geometry a curve is identified with the polynomial
(up to a numerical multiple) that defines the curve, but notationally it is still convenient to distinguish between
the polynomial f and the curve Cf as a geometric object.

Definition 4.3. Let Γp,q(t) denote the Chebyshev parametrization (3.1), and fp,q be the homogeneous
polynomial of minimal degree such that fp,q ◦ Γp,q = 0 as a polynomial in t. From now on we refine Cp,q to
mean the algebraic curve Cfp,q .

If f has proper factors the curves they define are called components of Cf . Polynomials that cannot be
factored non-trivially, and the curves they define, are called irreducible. One can show that fp,q is well-defined,
irreducible, and of degree p+ q − 1 [22, 4.1]. The Heron transformation H maps entire lines into points, so if f

F_

F+H

F_

F+

G_ G+ G_ G+

0G G_
1,3

x

x

x

x

x

x

x

x

1,2

Figure 7. Exceptional lineG0G− on the algebraic transform f1,2 ◦H = (b+ a)f1,3.

happens to be 0 at these points then f ◦H will surely be 0 on the entire exceptional line. We can now explain the
origin of the extraneous factors. Chebyshev curves never pass through F0 (it is neither a triangle point nor the
source point), but they do pass through F±, which are the blow downs by H of the lines G0G± with equations
b∓ a = 0. These are exactly the factors that appear in fp,q−p ◦H in addition to fp,q, see Fig. 7. Thus, fp,q is what
remains from fp,q−p ◦H after dividing out these exceptional factors.

Definition 4.4. Let Cf be a projective algebraic curve defined by a homogeneous polynomial f . We call the
curve Cf := Cf◦H the algebraic transform of Cf . Furthermore, we denote by f̃ the polynomial generated from
f ◦H by dividing out all the exceptional factors, and call the curve C̃f := C

f̃
the proper transform of Cf .

Of course, f̃ divides f ◦H so as sets C̃f ⊆ Cf , but at this point it is conceivable that the exceptional factors are
not the only extraneous factors that can appear. The next theorem rules out this worry.
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Theorem 4.1. Let p, q be relatively prime positive integers, with q > p. Then up to scale, f̃p,q−p = fmp,q for some m ≥ 1,
and the only components of Cp,q−p other than Cp,q (if any) are the exceptional lines G0G± of H . Cp,q−p contains G0G± if
and only if Cp,q−p passes through the gate points F±, respectively.

Proof. First we will show that C̃p,q−p is a subset of Cp,q. Suppose ξ ∈ C̃p,q−p is non-exceptional for H . Then
H(ξ) is also non-exceptional, and fp,q(H(ξ)) = 0, i.e. H(ξ) ∈ Cp,q−p. Moreover, ξ = H−1

(
H(ξ)

)
, and since H−1

transforms p : q − p triangles into p : q triangles ξ ∈ Cp,q. There are at most finitely many exceptional points on
C̃p,q−p, because all exceptional factors are divided out, and on Cp,q, because with the exception of C1,1 it has
no straight line components, as the parametrization shows. Since C̃p,q−p and Cp,q are algebraic curves as sets
C̃p,q−p ⊆ Cp,q. It follows from Hilbert’s Nullstellensatz [18, 2.3.10] that f̃p,q−p divides fnp,q for some n ≥ 1. But
fp,q is irreducible, so up to scale f̃p,q−p = fmp,q for some m ≥ 1, and C̃p,q−p, Cp,q coincide as sets.

If ξ ∈ Cp,q−p, i.e. (fp,q−p ◦H)(ξ) = 0, and H(ξ) is defined and non-exceptional, then H(ξ) ∈ Cp,q−p and ξ =
H−1

(
H(ξ)

)
∈ Cp,q. The only other possibilities are that H(ξ) is undefined (i.e. ξ is a base point of H) or H(ξ) is a

base point of H−1 (other exceptional points are not in the image of H). There are only three base points, so the
former case produces no components, and since F0 /∈ Cp,q−p in the latter case we must have H(ξ) ∈ {F+, F−},
so ξ ∈ G0G+ ∪G0G− . Conversely, if Cp,q−p passes through F+ and/or F− then fp,q−p vanishes at these points.
Hence, the composition of fp,q−p with H vanishes on G0G+ and/or G0G−, respectively. Thus, these lines will
be components of Cf .

As a matter of fact,m = 1 and fp,q = f̃p,q−p, giving us the promised recursion. However, proving this equality,
and determining the powers of the exceptional factors to be divided out of fp,q−p ◦H to get f̃p,q−p, requires
more work.

5. Singularities and Pythagorean theorems

To relate fp,q−p ◦H to f̃p,q−p more precisely we need to know the powers of the exceptional factors, and we
can expect from Theorem 4.1 that those powers depend on the behavior of Cp,q−p at F+ and F−. Indeed, it turns
out that the powers of the factors are equal to the algebraic multiplicities of F± on Cp,q−p.

Definition 5.1. Let Cf be a projective algebraic curve and ξ ∈ Cf . Then the algebraic multiplicity mf(ξ) is the
degree of the Taylor polynomial of f at ξ in some (and then any) affine coordinates. If ξ /∈ Cf we set mf (ξ) := 0.
A point ξ is called singular (or a singularity) if mf (ξ) ≥ 2 [9, 6.2,10.2].

As an example, let us find the algebraic multiplicity of the source pointG0 on Cp,q. In x = a
c , y = b

c coordinates
G0 is at the origin, and for t ∼ ∞we have:

x =
Up−1(t)

Up+q−1(t)
∼ (2t)p−1

(2t)p+q−1
= (2t)−q; y =

Uq−1(t)

Up+q−1(t)
∼ (2t)q−1

(2t)p+q−1
= (2t)−p .

Therefore, the implicit equation of Cp,q near the origin is xp − yq = 0, up to the higher order terms. Thus,
mfp,q (G0) = min(p, q), andG0 is singular whenever p, q ≥ 2. At self-intersection points the algebraic multiplicity
is at least the number of (local) branches, but the multiplicity can be strictly greater because of multiple
tangents. In particular, if the real self-intersection multiplicity of a gate point in Table 1 is 2 or more that point
is also singular on Cp,q.

We will need some classical results concerning transformation of point multiplicities by quadratic Cremona
transformations. They are usually formulated for the standard quadratic transformation Q([a : b : c]) = [bc :
ac : ab] [5, II.1.1], [23, III.7.4], which was used classically to resolve singularities of plane curves. But H can be
obtained from Q by composing with invertible linear transformations of CP 2 that preserve all multiplicities,
which makes it easy to rephrase results about Q in terms directly applicable to H .

Theorem 5.1 ([23, III.7.4]). Let Φ be a quadratic Cremona transformation and Cf be a degree d plane algebraic curve
with algebraic multiplicities m1, m2, m3 at the base points of Φ−1. Then C̃f is a degree 2d−m1 −m2 −m3 curve
with the algebraic multiplicities d−m2 −m3, d−m1 −m3, d−m1 −m2 at the base points of Φ (blown down from
the exceptional lines of Φ−1 through its base points with the corresponding indices). The algebraic multiplicities of all
non-exceptional points of Cf are preserved on C̃f .
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If we could show that all Cp,q can be obtained by iterating the Heron transformation starting from C1,1, which
is the line b = a, we would have a complete account of their singularities and their multiplicities, and hence of
the exponents of the exceptional factors.

Unfortunately, this is not quite the case. We can go from Cp,q to Cp,q+p, so we can get the chain of curves
1 : 1→ 1 : 2→ 1 : 3→ . . . through proper transforms by H , but we can never alter the first index. This is easily
remedied, however.

Definition 5.2. Let S (for swap transformation) denote the map CP 2 → CP 2 that transposes the first two
homogeneous coordinates, S([a : b : c]) = [b : a : c]. Clearly, S = S−1. For curves we define S(Cf ) = Cf◦S−1 =
Cf◦S .

1 : 1
H−→ 1 : 2

H−→ 1 : 3
H−→ 1 : 4

H−→ 1 : 5
H−→ . . .

... ↓ S
...

...
3 : 1

H−→ 3 : 4
H−→ 3 : 7

H−→ . . .
... ↓ S

...
4 : 3

H−→ 4 : 7
H−→ . . .

Figure 8. Euclidean algorithm recursion on ratios.

Obviously, S(Cp,q) = Cq,p, and, since S is linear and invertible, it preserves all the algebraic multiplicities.
Now we can swap 1 : 3 into 3 : 1, and obtain some 3 : q curves. At any point the swap can be used again
to change the first index, and so on. Clearly, many more Cp,q can be generated in this way, Fig. 8. But can
we generate them all? It turns out that we can, and the requisite sequence of transformations is derived by
performing the Euclidean algorithm on q, p.

Let p, q be relatively prime, q > p. According to the Euclidean algorithm,

q = d1p+ r1

p = d2r1 + r2

...
rn−2 = dnrn−1 + 1

rn−1 = dn+11 + 0 .

So Hd1 takes us from p : r1 to p : r1 + d1p = p : q. The swap gets us p : r1 from r1 : p, which in turn we get from
r1 : r2 by applying Hd2 , and so on. Since there is no C1,0 we rewrite the last line as rn−1 = (dn+1 − 1)1 + 1 to
start from C1,1. Thus, we can get Cp,q by applying

Hd1SHd2S . . .HdnSHdn+1−1 (5.1)

to C1,1, where each application of H means taking the zero set of the proper transform by H . To track the
multiplicities of potential singularities through these transformations we will look at how H and S transform
the gate points, and apply Theorem 5.1.

Theorem 5.2 (Pythagorean recursion). For all relatively prime positive integers p, q with q > pwe have Cp,q = C̃p,q−p.
All singularities of Cp,q, if any, are at the gate points and/or at the source point. The algebraic multiplicity of the source
point is min(p, q), and the algebraic multiplicities of the gate points are equal to their real self-intersection multiplicities
given in Table 1. Let fp,q be the implicit equation of Cp,q, and H be the Heron transformation. Then up to scale

fp,q−p ◦H = (b+ a)m
+
p,q (b− a)m

−
p,qfp,q , (5.2)

where for q − p odd m±p,q = q−p−1
2 , while for q − p even m+

p,q = q−p
2 , and m−p,q = q−p

2 − 1.

Proof. Let Hp,q denote the curves generated from C1,1 by composing proper transforms by H and S as in (5.1).
We will prove that Hp,q = Cp,q, along with the claims about multiplicities, by induction on their application.
Both claims are true for C1,1 since it is a straight line passing through G+ and G0, and no other gate points.
Now suppose that the claims hold for Cp,q = Hp,q, we need to show the same for Cp,q+p and Cq,p.
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For Hp,q+p = C̃p,q there are three cases: when p, q are both odd, and when p or q is even (they are relatively
prime, so not both even). We will check only the first case, the other two are analogous. Applying the
transformation formulas from Theorem 5.1 to the first row of Table 1 we get values that should match the
values in the second row of Table 1 with q replaced by p+ q since p+ q is even. And they do. The identity (5.2),
with fp,q replaced by f̃p,q−p, follows directly from Theorem 5.1, with m±p,q the multiplicities of F∓ on Cp,q−p,
which we expressed explicitly according to Table 1. In all cases m+

p,q +m−p,q = q − p− 1, so

deg(f̃p,q−p) = 2 deg f̃p,q−p − (q − p− 1) = 2(p+ q − p− 1)− (q − p− 1) = deg(fp,q).

But by Theorem 4.1 we have fmp,q = f̃p,q−p. Hence, m = 1 and fp,q = f̃p,q−p. Applying this result to fp,q+p we get
fp,q+p = f̃p,q and Cp,q+p = Hp,q+p.

Since the swap preserves the degrees of curvesHq,p = Cq,p is obvious. In terms of Table 1, applying S amounts
to transposing p and q, E± and F± columns (because S swaps those points), and the second and the third rows
(because the parities of p and q are also swapped). As one can check, the combination of these moves leaves
Table 1 intact. Hence, Cq,p also has the multiplicities given by Table 1. This completes the induction.

Since the algebraic multiplicities of the gate points are fully accounted for by the real self-intersecting
branches with distinct tangents all non-base exceptional points of Cp,q are non-singular. The non-exceptional
points are also non-singular since their multiplicities are preserved. Thus, starting from C1,1 the proper
transform by H can only create singularities at G0, G±, and then move the latter to F∓. From there S can
also move the singularities to E∓, which it swaps with F∓. But S fixes G0, G±, and H fixes E±, so no further
singularities are created by this process. Since the multiplicity of G0 was computed earlier this concludes the
proof.

Note that the iteration based on (5.2) is not only more effective than computing resultants, but also more
effective than the naive instruction to divide out all the exceptional factors from fp,q ◦H . In the affine
coordinates x = b

a , y = c
a the exceptional factors become x± 1, and since (5.2) gives us their exact multiplicities

we can divide them out by ordinary long division in one variable. The Heron transformation can be applied
to find Pythagorean theorems for other triangle families. Instead of starting from C1,1 we could start from the
curves parametrizing triangles with the base angles (θ, π/2) or (θ, π/3), and combine proper transforms by
H , H−1 and swaps to generate more. It would also be nice to have a recursion for fp,q that does not involve
composition, like the one we have for the Chebyshev polynomials themselves. Perhaps at least f1,n admits
such a recursion.
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