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Abstract: The energy of a grap8 is equal to the sum of the absolute values of the eigenvafu@s which in turn is equal to the sum
of the singular values of the adjacency matrix®fLet X, Y andZ be matrices, such that+Y = Z. The Ky Fan theorem establishes
an inequality between the sum of the singular valueg ahd the sum of the sum of the singular valueXadndY. This theorem is
applied in the theory of graph energy, resulting in seveeal mequalities.
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1 Introduction

In this paper, we are concerned with simple graphs. Get (V,E) be a simple graph, with nonempty vertex set
V ={vi,...,Vn} and edge st = {ey,...,en}. Thatis to say is a simple(n,m)-graph. Letw be a vertex weight o,
i.e., wis a function from the set of vertices @ to the set of positive real numberG.is called w-regular if for any
u,v e V(G), w(u) = w(v). Observe that a well-known vertex weight of a graph is théevedegree weight assigning to
each vertex its degree. Let us denote itheg

The diagonal matrix of orderwhose(i,i)-entry isw(v;) is called the diagonal vertex weight matrix@fwith respect to
w and is denoted by, (G), i.e., Du(G) = diagw(Vi),...,w(Vn)) . The adjacency matridA(G) = (aj) of G is a
(0,1)-matrix defined byaj; = 1 if and only if the verticesv; and vj are adjacent. Then the matrices
Ldeg(G) = Dgeg(G) — A(G) and Lgeg(G) = A(G) + Dgeg(G) are called Laplacian and signless Laplacian matrixGof
respectively (seelll], [12], [22], [23], [24] and [25)). Let us generalize these matrices for arbitrary verteighted
graphs. LetG be a simple graph with the vertex weight Then we shall call the matricés,(G) = D, (G) — A(G) and
L{(G) = A(G) 4 Dy (G) the weighted Laplacian and the weighted signless Laplaviaftix of G with respect to the
vertex weightw, respectively. LeX = {x1,xo,...,Xn} be a data set of real numbers. Tiean absolute deviatidoften

called the mean deviation) MIX) and variance V4X) of X is defined as

n

MD(X) = %_im A Va0 = 15 (0

n :
wherex = z,lex. is the arithmetic mean of the distribution. Note that an eagplication of the Cauchy-Schwarz
inequality gives that the mean deviation is a lower boundhaestandard deviation (seg).

MD(X) < /Var(X). (1)
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The mean deviation and variance®@fvith respect taw, denoted by MR,(G) and Vag,(G), respectively, is defined as
MD(G) = MD(w(v1),...,0(Vn)), Vary(G) = Var(w(vi),...,w(Vn)).

It follows from Eq. (1) that MD,(G) < +/Vare(G). It is worth mentioning that Vagy(G) is well-investigated graph
invariant (see ] and [19)). Let A1, A2, ..., An be eigenvalues of the adjacency ma#iG) of graphG. It is known that

S 1Ai = 0. The notion of the energy (G) of an (n,m)-graphG was introduced by Gutman in connection with the
mm-molecular energy (sed §], [14], [16], [17], [2]1] and [29)). It is defined as

n
<ﬂG%;ZMﬂ:nMDQLMVWA@
i=

Let M € C™" be Hermitian with singular values(M),i = 1,2,...,n. If Aj(M),i = 1,2,...,n are eigenvalues ¥, then
s(M) = |Ai(M)], i = 1,2,...,n. Getting motivated from this fact, Nikiforov establishduetconcept of matrix energy
by analogy with graph energ2§]. Let M € C™" with singular values(M),i = 1,2,...,n. Then the energy oM,
denoted by’ (M), is defined as; (M) + (M) + ... + s(M). Consequently, iM € C™" is Hermitian with eigenvalues
A1(M);A2(M), ..., An(M), we have

£ = 3 [hM)L

Letn> g, Ho, ..., Hn = O be eigenvalues of Laplacian mattixG) of an(n,m)-graphG. It is known thaty ! ; ti = 2m.
Gutman and Zhou defined the Laplacian energy ofram)-graphG for the first time (seel8] ) as

LHQ:Z;

Numerous results on the Laplacian energy have been repededor instancel], [4], [7], [15], [27], [28] and [34]. Note

2m
i 77‘ =nMD(ug,..., Un).

that in the definition of Laplacian energzxn—1 is the average vertex degree@fThis motivates us to extend their definition
to the graphs equipped with arbitrary vertex weights. Gdie a graph with the vertex sét= {vy,...,vn} and with an
arbitrary vertex weighto. Let g, o, ..., Un be eigenvalues of the vertex weighted Laplacian matgjxG) of graphG
with respect to the vertex weiglat. Then we propose the weighted Laplacian endrfy(G) of G with respect to the
vertex weightw as

LE,(G) :-;’M —®| =nMD(uy,..., Hn), (2)

where | N
@ 2= g Zl”i = ne.
n Z

Note thatl Egeg(G) = LE(G).

Let Is be the unit matrix of ordes. For the considerations that follow it will be necessary éberthat instead via Eq2),
the weighted Laplacian energy can be expressed also as

LEw(G) = &(Lw(G) — @ly). 3)

The following results are already known. The next lemma isvkm for the vertex degree weigh][ Its proof for an
arbitrary vertex weight is done in a similar way.

(© 2017 BISKA Bilisim Technology



=
NTMSCI 5, No. 3, 322-331 (2017)www.ntmsci.com BISKA 324

Lemma 1. Let G be a bipartite graphs with n vertices and with a verteigivew. Then l,(G) and L{,(G) are similar.

Lemma 2. [20, Section 7.1, Ex. 2] IA = (ajj)nj:]_ is a positive semi-definite matrix arg = 0 for somei, thena;j =
O:aji, j =1,...,n

Theoreml, supporting the concept of matrix energy proposed by Nikifpwas first obtained by Ky Far8] using

a variational principle. It also appears in Gohberg and iKKf&0] and in Horn and Johnsor2()]. No equality case is
discussed in these references. Thomp8@n33] employs polar decomposition theorem and inequalitiestdifean and
Hoffman [9] to obtain its equality case. Day and S§] pave the details of a proof for the inequality and the case of
equality.

Theorem 1.Let A and B be two complex square matrices of size, B @C"*") and let C= A+ B. Then
&(C) < &(A)+&(B). 4)

Moreover the equality in Eq4) holds if and only if there exists a unitary matrix P such thatdhd PB are both positive
semi-definite matrices.

Let A be a complex matrix of siza (A € C™"). Let us denote the Hermitian adjoint Afby A*. Then bothA*A and
AA* are Hermitian positive semi-definite matrices with the same-zero eigenvalues. In particulatA and AA* are
diagonalizable with real non-negative eigenvalues. Thespectral theorem for complex matrices we may deffije=
(A*A)Y/2. Here we present the following version of the polar decoritjpwstheorem P0).

Theorem 2. For A € C"™", there exist positive semi-definite matrice¥> C"*" and unitary matrices £ € C"*" such
that A= PX =Y F. Moreover, the matrices X are unique, X= |A|, Y = |A*|. The matrices P and F are uniquely
determined if and only if A is non-singular.

There is a great deal of analogy between the properti€g®§ andLE,,(G), but also some significant differences. These
similarities and dissimilarities has been investiga&.[In this paper we apply Theorefnin the theory of graph energy,
resulting in several new inequalities, as well as new probfome earlier known inequalities. It is worth mentionihgtt
the idea of this paper inspired frorq] and [28]; Our proofs are based on those of these references.

2 Graphs G for which LE,(G) = &(G) + &(Dw(G) — @ly)

In the case of vertex degree weight, the inequality in thiefdhg theorem was proved ir2§], whereas the equality in
Eq. ) was investigated inZ7]. Based on their proof, we generalize their results for anemted graph with an arbitrary
vertex weight.

Theorem 3. Let G be a connected graph with n vertices and with a verteghtes. Then
LE,(G) < NMDo(G) + £(G). (5)

Moreover the equality in EJ5) holds if and if G isw-regular.

Proof.We Know that
Lw(G) — @ln = (Dw(G) — @ln) + (—A(G)). (6)

Note thatD,(G) — @l is a diagonal matrix whose eigenvalues ax®;) — @, i = 1,...,n. It follows from Theoreni that

n n n

;s (Lw(G) —wly) < Zs (Dw(G) —@ln) + _;S (—A(G)).
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Therefore

n n
LEL(G) < wVi) =@+ Y |Ai(—=AG))].
«(G) i;l (Vi) —@| ;I i(—AG))|
Then, due to the similarity betwe&{G) and—A(G), we haveLE,(G) < nMD(G) + &(G).

Let G be aw-regular graph with eigenvaluds, ..., Ay. Thenw = w(vi) for each 1< i < nandLy(G) = @l — A(G). It
follows thatw — A1,..., @ — Ap are all the eigenvalues &f,(G). Therefore, by Eq.3) we haveLE,(G) = &(G).

Conversely, suppose that the equality in E&) holds. Without loss of generality, we may assume that
w(vi) =max{w(vi) | 1 <i<n)}. Suppose on the contrary thatis notcw-regular. Therefore

w(v) > @. (7
Leta ;= w(vi)—wfori=1,...,n. We havea; > 0, via Eq. 7). Due to the equality in Eq5j, we may apply Theorerh
to Eq. €). Therefore, there exists a unitary matfsuch thaiX = P(D,(G) — @l,) andY = P(—A(G)) are both positive

semi-definite. Henc®*X andP*Y are polar decompositions of the matrid®g(G) — wl, and —A(G), respectively. It
follows from Theoren® thatX = |D,(G) — @ly| andY = |A(G)|. ThereforeX = diag(|aa|,|az], ..., |an|) . Setting

0 agpp--- agn

app 0 --- apy
P* — ., , A( — ,
On1--- Q
" a amnag -+ 0
P*X = Dw(G) — @lp, implies
Qi1 -~ O\ [laa] ar
Gn1 --* Onn |an] an
Then,

|a1]g11 |a2|012 -+ |an|din ai
|a1|g1 |@2|d22 - |an|02n B a
|az|0n1 |@2|dn2 -+ |a1]dnn an

Equality at first column imposesg; = 1 andgi1 = 0,i = 2,...,n. It follows that

10---0
Oi2 - Oin
P=1 . . .
Qin - Onn
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We must then have

10---0 0 ajp--- an Oagp--- ain

Q12 - Oin a2 0 - ag *x 0 - %
Y =— = —

Gin -+ Onn amag - 0 *dgn o X

The previous matrix is positive semi-definite and by LemPpave obtaina;; = 0, j = 2,...,n. This contradicts our
assumption thab is a connected graph and the result follows. |

The following is a direct consequence of Theorém

Corollary 1. Let G be a connected graph with n vertices. Then

max{LEw(G) —nMD(G) | wis a vertex weight ofC} <&(G).

3 Graphs G for which LE,(G) = &(G)

In Theorem3 we showed that i5 is aw-regular graph, thebE,(G) = £(G). In what follows we consider the converse
argument.

In the case of vertex degree weight, the first part of the fatig theorem was proved ir2f], whereas the second part
was proved in 27]. Based on their proof, we generalize their results for aneated graph with an arbitrary vertex
weight.

Theorem 4. Let G be a bipartite graph with a vertex weiglt Then
LEw(G) > &(G). 8

Moreover, the equality in Eq8) holds if and only if G is av-regular graph.

Proof. From the definition of weighted Laplacian matrix and weighdégnless Laplacian matrix, it is clear that
(LE(G) = @ln) — (Lw(G) — @ln) = 2A(G). 9)

If Gis bipartite, then it follows from LemmathatL(G) andLZ,(G) have the same spectra and therefore

n n

ZS(Lw —wln) = ZS (—[Lw(G) —@ln]) = LEw(G).

3. S(LL(0) -l -
So by Theoreni, LE,(G) > &(G).

Let G be aw-regular graph. Then by TheoreBnthe equality in Eq.&) holds. Conversely, suppose that the equality in
Eq. (8) holds. Therefore,

@@((LL(G) —@ln) — (Lo (G) fmln)) = 26(G) = &(G) + £(G) = LE(G) + LEw(G).
SinceG is bipartite it follows from Lemmad. that

@@((LL(G) —@ln) — (Lo(G) — mln)) = &(LL(G) —@ln) + 5( — (Lu(G)— mln)). (10)
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Therefore, Theorerh asserts that there exists a unitary maRixsuch that
sz(LL(G)—wln) andY:P(— (Lw(G)—H)In)), (11)

are both positive semi-definite matrices. Henee&X and P*Y are polar decompositions dIZ,(G) — wl, and
—(Lw(G) — @ln), respectively. By Theorerhwe obtainX = |L,(G) — @ln| andY = | — (Lo(G) — @ln)|.

In view of the fact thats is bipartite, we conclude that =Y. Therefore, it follows from Eq.1(2) that
LL(G) + Lw(G) = 20y,
implying the result. ]

The following is a direct consequence of Theorém

Corollary 2. For a bipartite graph G we have
min{LEw(G) | wis a vertex weight of (}; > &(G).

In the case of vertex degree weight, the next theorem waggdioy28] and based on their proof, we get also the following
theorem.

Theorem 5. Let G be a bipartite graph with n vertices and with a vertexghét. Then
max{nMDw(G),é’(G)} < LEy(G) < nMD(G) + £(G). (12)
Proof. The right side inequality is a direct consequent of TheoBelret us prove the left one. It is easy to see that
LL(G) + Lw(G) = 2D (G),

from which (LL(G) —U)ln) + (Lw(G) fﬂ)ln) = Z(Dw(G) fi)ln). It follows from Theoreml that
é"(LZ,(G) —E)In) +£’(Lw(G) fE)In) > 25(Dw(G) fE)In) — 2nMD&(G).

In the other hand, sinc8 is bipartite, it follows from Lemma. thatLE,(G) = g(LL(G) —w|n) - é"(Lw(G) —mn).
Therefore
LEw(G) > nMDy(G). (13)

Hence, the result follow from Eq18) and Theorem. |

4 An upper bound on the Laplacian matrix energy for the digoint union of graphs

Here and throughout this sectio@) denotes the block matrix direct surd(]. Let k € N. Suppose that for each
1<i <k, G = (M,E) is an(n;, m)-graph with the vertex s& and the edge s&;. LetVi’s are mutually disjoint. In this
case thalisjoint unionof G;'s, denoted b;{)!‘zl Gi, is a non-connected graph with the vertex@égl\/i and the edge set
UK L Ei. Itis easy to see that(K ; G)) = BK AG)).
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Moreover, ifa is a vertex weight, assigned @, thenU!‘:1 G;i inherits naturally a vertex weight from its components.
This weight is nothing butw := JK_; @, i.e., For eactv € K1 Vi, w(v) = w (v) if and only if v e Vi. Note that@ is a
convex combination odo;, i = 1,...,k, since

w 71 . a i —
= (5 (3.2,9) - Z(ﬁ)“ﬂ- (14)

Moreoverw > @y, i=1,...,k

In the case of vertex degree weight, the next theorem wasegdrov [27] and based on their proof, we get also the
following result.

Theorem 6. Let ke N. Suppose that for each<i <k, G is a graph with pvertices and with a vertex weighi. Then

LEw(LkJGi) < _iLEm(Gi)+_i\wi —w‘ni. (15)
=1 i= i=

Equality holds if and only ito; = wforalli = 1,... k.

Proof. In order to simplify the writing and omit some subscripts, éach 1< i <k, we denotd,, andw; — @ by I; and
bi, respectively. It is clear that

k

Lw(G) = @n =P (La (G) — @) =

K k
(La (Gi) —@ili) + P bili (16)
i—1 i—1 i—1

Therefore, as a consequence of E3).and Theoreni, the inequality in Eq.15) follows.

k
Now let us consider the the equality case in Hdp)(Letw; = wforalli =1,... k. Therefore the matri@ bilj is zero
i=1
and consequently it follows from EdlL®) that the equality in Eq.1(5) holds.

Conversely suppose on the contrary that there existsl K k such thatw, > @. We may assume that= 1. As a
consequence of TheoremEg. (L6) and the equality in Eq16), there exists a unitary matrX such that

k k
X=PEP (Ly(G)-a@ili) and Y =PHbil;,
i=1 i=1

are both positive semi-definite. Hene&xX andP*Y are polar decompositions of the matrices

-

I
N

(Lm (Gi)—a)ili) and ekabili,
i=1

respectively. By Theorerd, we arrive at

k k
Y = Ihilli = PP bili (17)
i=1 i=1
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We can write the unitary matrik as

Pi1 Pr2 -+ P
Po1 Po2 -+ P
P=1 . A (18)
Pa - P
with the diagonal matriceBjj,j = 1,...,k of ordern;, respectively. From Eql1{) we have
[bafl; O - O P11 Pip -+ P bils 0 --- O
0 |b2||2--- 0 B Pglpzz---PZk 0 b2|2--- 0
0 - 0 |blk = = 0 - 0 byl
and then
lbgflz 0 --- O b1P11 Pio - Py
0 |bpflz--- O P1Po1 Poz -+ P
: =1 L (19)
0 - 0 |bylk bRy - - =7

As by = w1 —w > 0, via Eq. (9 we obtainP;; =1; and Pj1 =0, j = 2,...,k. Now it follows from
X = PEBik:l(Lm (Gi) fE)iIi) that Loy, (G1) — @al1 is positive semi-definite. Now we have the required contisati,
since by the Rayleigh principle we find that, (G1) — @1l1 has a negative eigenvalue. Hence the assertion follovll.

5 Conclusion

The vertex degree may be considered as a vertex weight opa grespired from this we just replaced the vertex degree
by an arbitrary vertex weight in the definition of Laplaciaatnix and investigated the differences and similaritieghwi
the results in 27] where the vertex degree weight was considered. What wenaatahows that our results generalize
most of those inZ7]. To support our theory we refer t8(] where several natural vertex weights were considered.
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