(_/
NTMSCI 5, No. 3, 85-96 (2017) BISKA 85

© NewTrendsinWathematcal Sciences

http://dx.doi.org/10.20852/ntmsci.2017.187

Egg-eating predators in interaction with age-structured
prey population

Ruslan Andrusyak Ivanna Andrusyak and Ulyana Telyuk

IDepartment of Mechanics and Mathematics, Ivan Franko Natigniversity of Lviv, Ukraine
2Institute of Applied Mathematics and Fundamental Scieniceis Polytechnic National University, Ukraine
3Department of Mechanics and Mathematics, Ivan Franko Natigniversity of Lviv, Ukraine

Received: 9 November 2016, Accepted: 5 March 2017
Published online: 25 August 2017.

Abstract: We investigate a predator-prey model for egg-eating poedah which the prey population is assumed to have an age
structure. By the method of characteristics, this modeliced to a system of integral equations. Then a generalizafithe Banach
fixed-point theorem is used to show, under relatively mildditons, the existence of a unique, global, weak solutiothé population
problem. Furthermore, this methodology allows us to geresasequence of iterates, called the Picard iterates, tmaerges to
the solution. Also, we strengthen the assumptions of thet@xte-uniqueness theorem to establish the validity o€dheesponding
conservation law in integral form. Thus we prove a resultolshows the coexistence of both predator and prey specéesadong
time.
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1 Introduction

Population dynamics has traditionally been the dominaahti of mathematical biology. Population models play a
critical role in helping us to understand the dynamic preessnvolved, in making practical predictions, and thus in
better understanding the natural world.

The construction and investigation of models for the pojatedynamics of predator-prey interactions have remaared
important area in theoretical ecology since the famous a-0fllterra equations. The mathematics used to study such
models often takes into account the structure of populatipnovided that this structure influences the size of each
species in a major way. The application of physiologicattystured models to describe the behavior of biological
systems has attracted the interest of many researchersaaradlbng standing tradition. The books by Charleswdith [
Metz and Diekmanng], Cushing B], and Murray f] give a good survey as well as the wide spectrum of appliitghoif

such models.

Allowing for an age structure, predator-prey relationshape usually governed by partial differential equationsixed
PDE-ODE systems, possibly with constant or distributecttdelay. Sometimes predator-prey models are considered in
which only the predator population has an age structure digatificantly affects its fecundity. In this case the age
structure of the prey population is insignificant in compan to that of the predators (see Cushing and Salé&@m [
Other researchers study predator-prey interactions widtigiion dependent on age of prey. The dynamics of the
predator and prey populations are shown to depend sulatardn what ages of prey are eaten by predators. In
particular, two cases are studied: where the predatordlesges of prey indiscriminately, and where the predatots ea
only eggs (or newborns, equivalently). For example, in fBugnd Levine ], the limiting dynamics of such
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predator-prey interactions are considered. Indiscriteieating is found to lead to stable periodic oscillationsumbers
of predator and prey, such as occur in the Lotka-Volterraatiqas, while egg eating leads to oscillations which insesa
rapidly in amplitude and result, ultimately, in the extiloet of both predator and prey. Other results for correspaodi
predator-prey models also concern the existence andigtgistbperties of nonnegative equilibria solutions (seg,,d7,
8,9,10]).

Our research is devoted to a predator-prey model for eggegptedators in which the prey population is assumed to
have an age structure. The goal is to obtain sufficient cmmditfor the existence of a unique, global, weak solution to
the relevant mathematical problem; this solution deteesinow the age structure of the prey population and the total
predator population evolve in time. We study the simple cadeen the prey dynamics is modeled by the
McKendrick-von Foerster equation. Such an equation is thgde, and the fundamental idea associated with hypecboli
equations is the notion of a characteristic, a curve in spiaoe along which signals propagate. So, using the method of
characteristics, which is highly effective for investigat hyperbolic continuous-time models (see, e.g., Logeh, [
Brauer and Castillo-Chavea1?]), the solution of the population problem can be expressed éixed point of some
appropriately chosen integral operator in a suitable metpace. Then a generalization of the Banach fixed-point
theorem is used to show, under relatively mild conditiohg, ¢éxistence of a unique, global solution to the problem.
Furthermore, this methodology allows us to generate a seguef iterates, called the Picard iterates, that convearges
the solution. Also, we strengthen the assumptions of thstexte-uniqueness theorem to establish the validity of the
corresponding conservation law in integral form. Note thader our assumptions, the predator and prey populations
will never vanish as time increases. Thus we prove a resulthwshows the coexistence of both predator and prey
species over a long time.

2 Population model with age distribution

Letu(x,t) be an unknown density of a population at timeith respect to an age variabteso that the population at time
t between ages; andx; is f;‘f u(x,t)dx Therefore, the total number of individuals at any titme fOL u(x,t)dx, wherelL
is the maximum lifetime.

We assume that members leave the population through dewthihat there is an age-dependent death mgte. This
means that over the time interval framto t; the numberfttl2 ;‘12 m(x)u(x,t) dx of individuals with ages between and
Xz die. Thus we obtain the conservation law in integral form

X2 X2 t2 t2 t2 X
/ u(x,tz)dxf/ u(x,tl)dx:/ u(xl,t)dtf/ u(xz,t)dtf/ / m(x)u(x,t) dxdt 1)
X1 X1 t1 t 1 JIxq

forall (xg,t1),(X2,t2) € Q = {(x,t) : 0<Xx<L,0<t < +oo}.
Assuming smoothness af as well as continuity ofn, equation {) may be transformed into the single PDE

7} 7}

Eu(x,t) + &u(x,t) =-—-mxu(x,t) for (xt)eQ. 2
Thus we obtained th®cKendrickequation (1926), which is also known as tian Foersterequation (1959), because
the same equation arises in cellular biology.

Next, we assume that the birth process is governed by a amiotk,t) called the birth rate. Thus the total number of
births (eggs) between ting and timet; is fttf fOL b(x,t)u(x,t) dxdt Since this quantity must also ljéf u(o,t)dt, we
obtain the renewal condition .

u(0,t) :/o b(x,t)u(x,t)dx, for t>0. 3)
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In order to complete the model, we must specify an initial @ig&ibution
u(x,0) =up(x), for 0<x<L. 4
Then the full model consists of the PDE) @nd the two auxiliary conditionss), (4) (see #], [11], [12]).

It is easy to see that the characteristic curves for equéipare the straight lines—t = const. Characteristics are the
fundamental concept in the analysis of hyperbolic probleesause PDEs simplify to ODEs along these curves. Thus
differentiating the solutiom along the characteristics yields

du(t+x—t,1)

e = —m(T+Xx—tU(T+x—t,1). (5)

This equation can be solved by separation of variables to get
T
u(t+x—t,1)= u(ro+xt,ro)exp</ m(r1+xt)dr1) .
To

Make the change of variablés= 11 + x —t to obtain

T+X—t

u(r+x—t,r):u(ro+x—t,ro)exp(—/r m(E)dE). (6)

o+X—t
Denote m(x) = exp(— [fm(£)d&), which is the probability of survival from birth to agex. Then
m(x)11(%0) 1 = exp(f j;; m(E)dE), for anyxp < X, is the probability that an individual of agg will survive to agex.
We now assume thq‘gL m(X) dx = 40, while the functionx — m(x) is locally integrable inO,L). Thusm(L) = 0 (the
probability to survive to the maximum possible dgequals zero), and in the sequel, for simplicity of our inigegton,
we put (by definition)r7(x) = 0, and thereforei(x,t) = 0, for all x > L. Moreover, the product oftr and any other
function is interpreted to be zero whenexer L (even if the latter function is not defined on this interval).

Takingtp =0, T =t, (i.e., considering the previous equati@ ¢n the characteristics that emanate from pojrtst,0)
on thex axis) and, similarly, takingp =t — X, T =t, (i.e., considering equatio®) on the characteristics that emanate
from points(0,t — x) on thet axis) give

m(x)
m(x—t)’ - - (7)

u(xt) =u(0,t —x)mm(x), for 0<x<t.

u(x,t) = u(x—t,0)

Definition 1. By a weak solution to the initial-boundary value problé®), (3), (4) we mean a functiox,t) — u(x,t)
continuous in0, L] x [0,+c) and satisfying the functional equatio®, along with condition£3), (4).

We can easily show that if a weak solution to the initial-bdary value problem), (3), (4) is continuously differentiable,
then this solution is classical, that is, it makes senseltutze its first derivatives and substitute them into eique?).

3 Predator-prey model for egg-eating predators

We consider a population of prey with age densify,t) at timet with respect to an age variabe Assume that, in
the absence of predators, the prey population is modeletidoynitial-boundary value problen®), (3), (4). Now let
us introduce a predator population that consumes the egipe @irey population. The total number of predators at any
timet is P(t), and we do not consider age structure in this populatiors. ittteresting that egg-eating predators is one
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of the theories posed for the extinction of the dinosaumsc&predators eat only eggs, the PRIi§ unaffected. What

is affected is the number of offspring (eggs) produced. Thesio longer have the renewal conditid®),(but we must
include a predation term that decreases the number of edgssimplest model is the Lotka-Volterra model, which
requires that the number of eggs eaten be proportional tprtséuct of the number of eggs and the number of predators.
Therefore, taking into account that the functigi©,t) must be nonnegative, we have

L +
u(o,t) = ((1—%P(t))/ b(x,t)u(x,t)dx) for t>0, ®)
Jo
wheres is the predation rate, ar(el) ™ := max{x, 0} for any realx.

Finally, we impose the Lotka-Volterra dynamics on the ptedpopulation given by

dP(t)

5 = —UP(t) +BP(t)./(;L b(x,t)u(x,t)dx for t>0, 9)

whereyl is the per capita mortality rate. Hence, in the absence of,qggdators die out. Initially, we take
P(0) = P. (20)

In summary, the predator-prey model is given by the mixed fIIEE system Z), (9), the boundary conditiorsf, and
the initial conditions 4), (10) (see [L1]).

We remark that if the predators consumed prey other than éggs a predation term would have to be included on the
right side of the dynamical equatioB)( Note also that the ODB) is equivalent to the integral equation

t L
P(t) = P(O)exp(—ut)+[3/0 P(t)exp(—u(t—1)) (/0 b(x, T)u(x, T)dX) dr for t>0. (11)

Definition 2. By a weak solution of the predator-prey model we mean a pduraftions(u, P), where(x,t) — u(x,t) and
t — P(t) are continuous in their respective domajfsL] x [0, +) and[0, +), such that equationd), (11), along with
conditions(4), (8), (10), are satisfied.

4 Reduction of the predator-prey model to a system of integreequations

Substitute conditionsyj, (8), (10) into the corresponding equationd,((11) to obtain

u(x,t) = up(x—t)

, for 0<t<x,
mx—t)

L +
u(xt) = ((1%P(tx))/o b(E,tx)u(E,tx)dE) n(x), for 0<x<t, (12)
t L
P(t) = Poexp(—ut)+B/O P(t)exp(—u(t—1)) </o b(x,r)u(x,r)dx) dr, for t>0.

It is easy to show that a solution of systef?) also satisfies conditiongl);, (8), (10). Then we have the following
proposition.

Proposition 1. Finding a solution of the predator-prey model is equivatergolving the system of integral equati¢fg)
for the unknown functions:u0,L] x [0,+) — R and P: [0, +) — R.
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Let us denote bf(t) the number of births (eggs) in unit time after subtractirggilamber of eggs eaten by predators, that
is B(t) := u(0,t). Then, using this notation, rewrite systetr®Y in the equivalent form

u(x,t) = uo(x—t)m,

u(x,t) =B(t—x)m(x), for 0<x<t,

B(t) = ((1—%P(t))/OL b(x,t)u(x,t)dx)+, for t>0, (13)

t L
Pt) = Poexp(fut)wLB/ P(T)exp(—p(t—1)) (/ b(x, T)u(x, T)dX) dr, for t>0.
0 0
Using the first two relations inl@) and recalling our convention thafx) = 0, and therefore(x,t) = 0, for allx > L, the
integralfoL b(x,t)u(x,t) dx can be transformed as follows:

—+oo

+oo
b(x,t)u(x,t)dx= /bxt xtdx+/ b(x,t)u(x,t) dx

_/ b(x,t)B(t — x) rm(X)dx+ Z+wb(x,t)uo(x—t)ng((x)t)dx

Denotingq(t) := J; " b(x,t)ug(X—t) n’&f)t) dx, rewrite systemX3) in the equivalent form

u(x,t):uo(xft)ni, for 0<t<x,

u(x,t) =Bt —x)m(x), for 0<x<t,

B(t) = <1 Pt (/bxt (t—x (x)dx+q(t)>)+, for t>0,
P(t):Poexp(—ut)+B/oP(T)exp(—u(t—r))(/(:b(x,r)B(r—x)n(x)dx+q(r))dr, for t>0.

Clearly, the first two relations decouple from the systend &e can consider just the last two integral equations for the
total predator and egg populatioRg) andB(t)

't +
B(t) = | (1—3P(t)) b(x,t)B(t — x) r(x)dx+ q(t) , for t>0,
(1m0 )
P(t) = Poexp(—put) +B/O P(t)exp(—u(t—1)) (/o b(x, 7)B(T — x) rm(X)dx+ q(r)) dr, for t>0.
Proposition 2. Suppose the compatibility condition
4
Uo(0) = <(1%P0) /0 “bix. O)uo(x)dx) (15)

holds; then finding a solution of the predator-prey model barreduced to solving the system of integral equat{@As
for the unknown functions B and P. More precisely,

e a weak solution(u,P) of the predator-prey model gives the continuous solufBrP) of system(14), where the

+
function B=B(t) is explicitly determined by the formuld = ((1— »P(t)) fOL b(x,t)u(x,t) dx) fort > 0 provided
the continuity of b (this condition on b can be slightly wesdd);
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e conversely, a continuous solutigB, P) of systen{14) explicitly determines the functiontiu(x,t) from the relations

u(x,t):uo(x—t)m, for 0<t<x, (16)

u(x,t) =Bt —x)mm(x), for 0<x<t

and thus we have the weak soluti@nP) of the predator-prey model, provided that the functiofigtare continuous,
and condition(15) is satisfied.

The proof of propositior? is trivial, so we only remark that the compatibility conditi (15) is necessary to avoid a
discontinuity in the functiom = u(x,t) along the linex =t.

5 Existence-uniqueness theorem

We formulate an existence-uniqueness theorem for the fmepeey model.

Theorem 1Suppose the following conditions hold.

(1) s, y, B, and B are nonnegative constants;

(2) the function x— m(x) is nonnegative, locally Lebesgue integrable[@L) such thatjbL m(x)dx = +o (then the
function x— 11(x), defined byt(x) = exp(— JFm(&)dé&) for 0 < x < L and (x) = O for L < x < oo, is continuous
in [0, 4));

(3) the function - ug(x) is nonnegative, continuous |, L];

(4) the function(x,t) — b(x,t) is nonnegative, continuous in t for each fixed x and locallgeatially bounded,
measurable in x for each fixed t d& (meaning that on every compact subsetflthere exists an essential upper
bound for b independent of t);

(5) the compatibility conditior{15) holds.

Then there exists a unique, nonnegative, global, weakisal(t, P) of the predator-prey model.

Proof. The right sides of equation$4) can be regarded as a mappimg on the set of continuous vector functiofi P).
That is, with each pai(B,P) of functions continuous in the intervéd, T] (T > 0) there is associated another pair of
functions.# (B,P) = (.#s(B,P),.#p(B,P)) defined, ateach €t < T, by

M(B,P)(t) = <(1 #P(1)) (/Ot b(x,t)B(t — X)77(x) dx+ q(t)) > ' , .

AMp(B,P)(t) = Pyexp(—put) +B./: P(T)exp(—u(t—1)) (./O‘T b(x, T)B(T — X) 11(X) dx+ q(r)) dr.

Therefore, systemlé) may be written in the forniB, P) = .# (B, P). Thus solving the predator-prey model is reduced to
finding a fixed point of the mappin@, P) — .# (B, P).

Consider the Banach spa&X[0,T];R?) consisting of all continuous two-dimensional vector fuoies on [0, T],
equipped with the uniform norm. Le®(T) be the closed subset of the spa®g0, T|;R?) that consists of all vector
functions(B, P) such that

» the functionB satisfies the inequality @ B(t) < koexp(kit) forall 0 <t < T, wherek; := Supco 11 €SSSUR-[ | P(X, 1)
(recall that, by assumption, there exists an essentialrippend forb independent of) andk; := k; fOL Up(x) dx
o the functionP satisfies the inequality € P(t) < Poexp(Bkzkl’l(exp(klt) — 1)) forall0<t<T.
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We will treat the subse(T) as a metric space using the metric induced by the uniform ndrat is, defining the
distance between any vector functigé, P') and(B?, P?) by

BLPY — (B2, P?)[w := BL(t) — B(t PL(t) — P2(t)|.
[(B*,P") — (B%,P)leo.T tggﬁI (t) U'ﬂ?ﬁé’,‘ﬁ' (t) )]

Note that every closed subset of a complete metric spaceriplete.
Thus, to prove the existence-uniqueness result for theapwegrey model, let us show that the mapping has
precisely one fixed point in the metric spa2¥T). To this end, by a generalization of the Banach fixed-poiabtam,

we must show that this space is invariant under the mappifigand some its iterate#" is a contraction on the space
2(T) with respect to the corresponding norm.

It is easily seen that the functiongg (B, P) and.#p(B,P) are nonnegative, continuous[iy T| if so are the function8
andP; that is,.# (B,P) € C([0,T];R2) whenever(B,P) € C([0,T];R2). Further, for any pai(B,P) in Z(T), we obtain
the estimates
t t
Ma(B,P)(t) < / b(x,t)B(t — X)71(x) dx -+ q(t) < klf B(t — x)dx+ ko
0 0
t
< klkz/ expky (t —x))dx—+ ko = ko(exp(kit) — 1) + ko = koexp(kit) for 0<t<T,
0

Mo(B,P)(t) < p0+p./: P(T) (kll/(: B(T—x)dx+k2) dr

t T
< Po+BPo/O eXp(BkzkIl(eXF(le)—l)) (klkz/o exp(ky (T — X)) dx+ kz) dr
t Bok; *(explkt)—1)
— P0+BP0/ exp(Bkzkl’l(exp(klr) - 1))k2exp(klr)dr =R+ Po/ expr1dn
0 0
=P+ Po(exp(ﬁkzkgl(exp(klt) - 1)) - 1) =P exp(ﬁkzkgl(exp(klt) - 1)) for 0<t<T.
Thus, we have proved that the spa@¥T) is invariant under the mapping?, that is, .# (B,P) € %(T) whenever

(B,P) € #(T). Now let us show that there is a positive integesuch that#" (n-th iterate of .#) is a contraction
mapping. TakingB!,P!), (B2,P?) to be in the space?(T ), we obtain the following estimates:

| #s(BY, P (1) — (B2, P?) ()] < (1+ »PL(t)) ./: b(x,t)|BY(t —x) — B?(t — x)|71(x) dx

+sPL(t) — PA(1)| (/Ot b(x,t)B2(t — X)7r(x) dx q(t))

< (1+%P1(t))k1/ot IBL(t — x) — B2(t — x)| dx+ >|PL(t) — P2(t)| (kl/ot B2(t — x) dx+ kz)

< (1+ %poexp(ﬁkzkgl(exp(klt) - 1))) kl/ot IBL(t — x) — B2(t — x)| dx-+ sk exp(ket)[PL(t) — P2(t)|

t
gcl/ IBL(1) — BX(1)|dT + Co[P(t) — P2(t)] for 0<t<T,
JO
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whereC, := <1+ %Poexp<[3'k2k[1(exp(k1T) — 1))) ki, Co := »kyexp(ky T); and also

| #p(BY,PY)(t) — . 4p (B2, P?)(1)] < ;3/; PL(1)exp(—u(t—1)) </OT b(x,7)|BY(1 —x) — Bz(rx)|rr(x)dx) dr
+8 [ IPA0) - P exi (e 1) [ blx BT - i dc () ) o
< 3./: PY(7) (kll/O‘T|Bl(r—x)—Bz(r—x)|dx) o|r+[s/0t IPL(1) — P(1)| (kll/: Bz(r—x)dx+k2) dr
< Bky /Ot Poexp( Blok; L(expikaT) — 1)) (/OT IBL(1 — X) — BX(T—X)| dx) dr +B|<2/0t exp(kiT)|PY(T) — P(1)|dt
< CS./: IBY(1) — BZ(T)|dr+C4/Ot IPY(1)—P*(1)|dT for O0<t<T,
whereCs := BklPofoT exp(Bkzkl’l(exp(klr) - 1)) dr, Cq:= BkoexpkiT).
From the last estimates it follows that
BB PO — AP 0] < Cu [ | a(BLP)(1) (7, (1)
4 Colt(BY, P (t) — (B2, PP)(1)] < Cy /: <c:1 /; B (1) — B(11)| d11 + Co|PL(T) — P2(1)|) dr
LG (Cg/ot|Bl(T)—BZ(T)|dT+C4./:|P1(T)—P2(T)|dr)
<GCs (/Ot 1BY(1) — BZ(T)|dr+/0t |PY(1) — Pz(r)|dr) for 0<t<T,
and, in the same way,
. Z2(BL, PY)(t) — .#2(B, P?)(t)| < Cs (/Ot IBL(1) — B%(1)|dT + ./0't IPL(1) — P(1)| dr) for 0<t<T,
where the consta@s are easily determined. From the last two inequalities weveéhe following one:
|.?(B,PY) — /(B2 P?) |y < csfot [(BY,PY) — (B2 P?)|lordT forall 0<t<T,
and the constar@s does not depend on the choice(Bf, P!) and(B?, P?) in the space#(T).
Using this estimate, we obtain
[|.2*(BY,PY) — . *(B2,P?)||wy < Cs /0 t ||.2(B,PY) — . 4/?(B?,P?)||w s AT
<2 [ (81 PY) (B PPy a7 < G2 (B PY) (BP9
and therefore,
o5 (B P) = AP < Cs [ 4B PY) — B PP

t-[-2 t3
<2 [ SI(BYPY — (B2P?) s < G (BLPY) — (B2 P) o
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and so on.

Mathematical induction can be used to prove that the foligvastimate holds for all positive integerand allt € [0, T]:
tn
2B, P) — (B, P?) oo < CEHII(Bl,Pl) = (B?,P?) g

Thus, in general, the mapping itself is not a contraction on the spag&T), but some its iterate#>" is a contraction,
n
provided than is chosen sufficiently large to satisfy the inequaﬁ%ﬂl <1.

Consequently, using a generalization of the Banach fixedtgweorem, the mapping? has precisely one fixed point in
the metric spaces(T) for all positiveT. This fixed point is a solution of systeri4) in the interval[0, T]. Taking into
account that the value may be chosen arbitrarily large, we may extend this soluticamy finite timeT;, whereT; > T,
and therefore we obtain a global existence result, gueeargehe existence of a unique soluti@, P) of system 4)
for all t in [0,+), whereB and P are nonnegative and continuous. Then applying proposRigives the unique,
nonnegative, global, weak solutign, P) of the predator-prey model. Thus the theorem is proved.

6 Validity of the conservation law in integral form

We remark that the PDE2) arises from the conservation law in integral fori), @nd the integral form of this law holds
true even though the functions= u(x,t) andm = m(x) may not meet the requirements of smoothness and continuity,
respectively, imposed by the PDE. Now we strengthen thengstsons of the previous theorem to establish the validity
of the conservation lawlj for a weak solution of the predator-prey model.

Theorem 21n addition to the assumptions of theordnsuppose the following conditions hold:

(1) the function x— m(x) is Lipschitz in[0,L], or equivalently, x— 17 (x) is essentially bounded ifO,L) (recall that
(x) = —exp(— [Fm(&)d&) m(x) for 0 < x < L);

(2) the function - up(X) is Lipschitz in[O,L];

(3) the function(x,t) — b(x,t) is locally Lipschitz in both variables of.

Then the weak solution, whose existence is guaranteed byethd, also satisfies the integral form of the conservation
law (1).

We remark that any function with continuous first derivagive locally Lipschitz. Thus the property of being locally
Lipschitz is stronger than continuity, yet weaker than gardus differentiability.

Proof. First show that, under the conditions stated in theoPem weak solution of the predator-prey model is locally
Lipschitz in Q. Indeed, making the change of variables, we rewrite raiat{d7) for the mapping# in the form

48P0 = (1P ([ bt £.0BE)me- )0t +aw) )

A6(8.P)0) = Roexi )+ B | P(r)exp(—pat ) [b(r— EMBE)MT- )dE +a(n) ) d.

From these representations it is easily seen that the ime#iz(B, P) is Lipschitz in[0,T] if B is continuous andp is
Lipschitz, but a sufficient condition for#p(B,P) to be Lipschitz in[0,T] is that the functiond8 and P be both
continuous, provided that, ug, andb satisfy Lipschitz conditions of theoretn Therefore, ifB andP are required to be
both continuous, then the functiongg(.# (B, P)) and.#p(.# (B,P)) are both Lipschitz in the intervdDd, T]. It follows
immediately that a fixed point of the mappitB,P) — .# (B,P) in C([0,T];R?) satisfies a Lipschitz condition i{®, T|
for all T > 0, and therefore the solution of systefr) defined for allt in [0,+) is locally Lipschitz in this interval.
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Then, applying propositio, we deduce that a weak solutiém P) of the predator-prey model is locally Lipschitz .

Further, prove the validity of the conservation laly for a weak solution of our model. L&2(T) := [0,L] x [0, T]. To
prove this fact, it suffices to show that if Lipschitz funetgu: Q(T) — R andP: [0, T] — R satisfy equationsl2), and
thereforeu satisfies equationg), then the integral equatiorl)(holds for all(x3,t1), (X2,t2) € Q(T). But equations?)
are equivalent to the single equatid).(Therefore it must be shown that a Lipschitz functionQ(T) — R satisfying
(6) also satisfies the integral equatid).(

We remark that the subsequent reasoning is based on thadaet function belongs to the Sobolev spaee™(Q(T)) if
and only if it admits a Lipschitz continuous representatimeparticular, this representative is differentiable @eQ(T)
and its derivatives are essentially bounded as elemeht$(@#(T)) (see, e.g.,13).

Define the se®(t,T) := {(X, 1) : x€ [0,L], (T+x—t,7) € Q(T)}, which depends on the valde> 0 and the choice of

€ [0,T]. For each fixedT > 0 andt € [0,T], suppose¥W(t,T) : O, T) — Q(T) is a map such that
(x,T) — (T+x—1,T). Sinceu belongs to the Sobolev spade-*(Q(T)) and the map is invertible, with®’ and@—*
Lipschitz functions, we conclude that ¥ € W3*(O(t,T)), and, by the chain rule, we have

du(t+x—-t,1) 0d

e 7Eu(r+x—t,r)+iu(r+x7t,r) fora.e. (x,17)€O(t,T) (18)

X

(see [L3)). Therefore we may differentiat®) with respect tar to obtain 6), and then, usingl@), we derive

Eu(r+x—t,r) +§Xu(r+x—t,r) =-m(T+x—t)u(t+x—t,1) fora.e. (x,7) €O(,T),

with any fixedT > 0 andt € [0, T|; or equivalently, we have

u(x,t) + 9

axu(x,t) =-—m(x)u(x,t) fora.e. (xt)e€ Q. (19)

at
Further, because(-,t) ¢ W= (0,L) for all t € [0, T], it follows that the fundamental theorem of calculus is@athat is,
forall (x1,t), (X2,t) € Q(T),

X2

u(Xo,t) —u(xg,t) = —u(x,t)dx (20)
X1 17)%
Similarly, we have
.
uxt) —utxty) = [ Luxt)dt 1)
ty at

forall (x,t1),(x,t2) € Q(T).
We now integrate equation g overx; < x<xp,t; <t <t,to obtain

/ —uxt dtdx+ / —uxt dxdt= — / / u(x,t)dxdt
X1 Jtg X1 5]

Using relationsZ0), (21), we can easily rewrite the previous equation as the coatierviaw ().

7 Approximation of the solution

The Banach fixed-point theorem, as well as its generalizats®ed above, provide an approximation method for solving
the system of integral equatiorisdj and therefore finding a solution of the predator-prey model
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Precisely, for any nonnegative, continuous functiBgsand Py that meet the requirements of the spagg€r) (the pair
(Bo,Po) is taken to be an initial approximation), the sequence afaies (Bo,P),.# (Bo,Ro), # (4 (Bo, o)), ...
converges in the uniform norm topology to the fixed point & thapping# . Thus we may define the iteration scheme
for allt > 0 and nonnegative integems

Ba(t) = ((1 <Pu(t)) < JECE x>n<x>dx+q<t>>)+,

t T
Pria(t) = Poexp(fut)JrB/O Pa(T)exp(—u(t—1)) (/o b(x, T)Bn(T — X) 11(X) dX+ q(r)) dr.

Proceeding in this manner, we generate the sequ@ce, ), (B,,P,), (B3, P3),... of iterates, called the Picard iterates,
that, under conditions of theoreinconverges to the solution of systef¥ in the|| - ||» 1 norm for allT > 0. Denoting
this solution by(B.,P;), we havel|(Bn,Ph) — (Bs,P.)|l»,1 approaches zero as— +o, and thereford3, andP, both
converge uniformly to the limiting functior, andP., respectively, on each intervil, T] for all T > 0.

The sequencéBy,, Py) constructed above gives the sequence of approximate @adutin, P,) of the predator-prey

model, where the functions, is determined explicitly by relationd.6), whereu andB must be replaced by, andB,
respectively; that is

Un(X,t) = up(x—t)

Un(X,t) = Ba(t —x)11(x), for 0<x<t.

Let (u.,P.) denote the exact weak solution of the predator-prey modethB convergence of iterates, we conclude that
un converges uniformly to the limiting functiom, on each se©(T) forall T > 0.

To summarize, we have constructed the sequence of appriexgolutions(un, P,) of the predator-prey model, and this
sequence tends to the exact weak solufionP,) in the local uniform norm topology.
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