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ABSTRACT

There are five different types of translation surfaces in a Galilean 3-space based upon planarity of
generating curves and absolute figure. We obtain these surfaces with arbitrary constant Gaussian
and mean curvature, except the type that both of generating curves are non-planar .
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1. Introduction and Preliminaries

Among the family of surfaces in classic differential geometry translation surfaces have been commonly
examined since early 1900s and for that reason an extensive literature relating to these appears. For example
see [1, 4, 5, 10, 11], [17], [19]-[24], [30]-[32], [37]-[42]. Such surfaces are geometrically described as translating
two curves along each other up to isometries of the ambient space. As far as we know the counterparts of this
notion in a Galilean space G5 were firstly considered in Sipus and Divjak’s work [27] by providing translation
surfaces with constant Gaussian (K) and mean curvature (H) under the condition that the generating curves
lie in perpendicular planes. Extending this condition, which is our motivation for the present study, leads us to
open fields for further investigations. More precisely, by assuming K = const. and H = const. we shall present
the translation surfaces in G3, except the ones whose both of generating curves are space curves.

A Cayley-Klein 3-space is defined as a projective 3-space P; (R) with certain absolute figure. Group of motions of
this space are introduced by the projective transformations which leave invariant the absolute figure. Metrically
arguments given by the absolute figure are invariant under this group (cf. [28]). The Galilean 3-space G is one
of real Cayley-Klein 3-spaces with the absolute figure {I',1,.} , where T is a plane (absolute plane) in P; (R), [ a
line (absolute line) in " and ¢ is the fixed elliptic involution of the points of [. For technical details, we refer the
reader to [2, 3], [6]-[9], [12]-[15], [18, 25, 26, 29], [33]-[36], [43]. Let (x¢ : 1 : 2 : x3) denote the homogeneous
coordinates in P; (R) . Then I is characterized by 29 = 0,l 29 = z; =0and ¢

(xo:x1:x9:x3) —> (T : @1 : 3 1 —T2).

For an affine model of G3 that is our interest field we use affine coordinates instead of the homogeneous
coordinates. Then, by means of the affine coordinates, the group of motions of G3 is given by the transformation

' =a+zx,
(x,y,2) — (2',9/,2') : ¢y =b+cx+ (cos) y + (sin ) z,
Z'=d+ex — (sinf)y+ (cosh) z,
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Constant curvature translation surfaces

where a,b,c,d,e and § are some constants. For given points p = (p1, p2,p3) and ¢ = (¢1,¢2,93) , the Galilean
distance is introduced by the absolute figure, namely

|Q1_p1|7 ifpl#ql,
d(p.q) = 2 5 _
(p2 —q2)” + (p3 — q3)”, otherwise.

Lines and planes in G3 are categorized up to the absolute figure. Explicitly, a line is said to be non-isotropic
(resp. isotropic) if its intersection with the absolute line [ is empty (resp. non-empty). Contrary to this, a plane
is said to be isotropic if it does not involve [, otherwise it is said to be Euclidean. In other words, an isotropic
plane does not involve any isotropic direction. In the affine model of G3, the Euclidean planes are determined
by the equation = = const. Accordingly, a vector is called isotropic if it is involved in the Euclidean plane 2 = 0.
Non-isotropic vectors are of the form u = (u1 # 0,u2,us) , u1, u2, uz € R.

For given two vectors u = (u1, ug,u3) and v = (v, v, v3) in Gs, the Galilean angle 6 between them is defined
as the Euclidean angle if u and v are isotropic. Otherwise, it is defined as the Galilean distance. Nevertheless,
all non-isotropic vectors are orthogonal to the isotropic ones.

A curve given in parametric form a = a(s) = (z (s),y(s), 2(s)) is said to be non-isotropic (or admissible) if
nowhere its tangent vector is isotropic, namely 2’ (s) = 92 # 0. Otherwise the curve « is said to be isotropic. Let
a be a non-isotropic curve having unit speed (i.e. 2’ (s) = £1). In this case the parameter s is called arc-length
parameter of . Hence the curvature and the torsion are given by

_ det (/(s),a”(s),a”(s))
[k (s)]

= 0. In this sense, we have the following cases:

(r(s) #0).

w(s) = ") + ()%, ()

1" 1 "1
z z

If 7(s) = 0 for all s, then it implies y -y
1. y” = 0and 2" # 0. Then it follows y(s) = as + b, a,b € Ri.e. a lies in a plane of the form y = ax + b;
2. 2 =0and y” # 0. Then it follows z(s) = as + b, a,b € R i.e. a lies in a plane of the form z = az + b;

3. 2 =ay” for a € R, a # 0. Then it follows z(s) = ay(s) + bs + ¢, b,c € Ri.e. o lies in a plane of the form
z=ay+br+ec.

We briefly call a curve planar (resp. space curve) provided 7(s) = 0 (resp. 7(s) # 0) for all s. Obviously; the
space curves are non-isotropic, whereas the isotropic curves are Euclidean planar, that is, lie in the Euclidean
plane = = const.

A surface in G3 is parameterized by the mapping

r:D g RQ — G?n (u17u2) — (I (Ul,’UQ) Y (u17u2) s R (ul7u2)) .
In order to indicate the partial derivatives we use

2
Oz and z.i; — 0z

1<i,j<2.

T ; <17,7<
! 8ui8uj’ ’

’ aul

Then r is said to be admissible if nowhere it has Euclidean tangent planes, i.e., z ; # 0 for some ¢ = 1,2. The first
fundamental form is given by

ds® = (gldul + ggdUg)2 + e (hllduf + 2hioduidus + hggdug) R
where gi = T4, hij =Y,:Y,; + Z4iZ 5, ’L,] = ]., 27 and

. 0, if the direction du; : dus is non-isotropic,
~ | 1, if the direction duy : dus is isotropic.

Let us introduce a function W given by

W= \/(I,lz,z —p21)" + (z0y1 —21y2)”

Then the normal vector field is defined as

1
N = W 0,—z12z2+T221,T1Y2 — T 2y,1)
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and thereafter the second fundamental form

IT = Lyidu? + 2L1oduydug + Logdu?,

where )
Lij = (910,945, 245) = 91,5 (0:y1,21)) - N> g1 # 0
or .
Lij=— (92 (0,935, 2,i5) — 95,5 (0,92, 2,2)) - N, g2 # 0.
Note that the dot ” -7 denotes the Euclidean scalar product. Thereby, the Gaussian and the mean curvature are
defined as

2 2
_ _93L11 —2g192L12 + g1 Lo
A surface is said to be minimal (resp. flat) if its mean (resp. Gaussian) curvature vanishes. Therefore the minimal
surfaces in G are classified by the following result (see [35] ):

Theorem 1.1. [35] Minimal surfaces in G3 are cones whose vertices lie on the absolute line and the ruled surfaces of type
C. They are all conoidal ruled surfaces having the absolute line as the directional line in infinity.

Remark 1.1. A ruled surface of type C in G is parameterized by
r(u, ug) = (u1, 2(ur) + ugy(ur), ugz(u1)),

for smooth functions z, y, z of one variable.

2. Translation Surfaces

A translation surface in G is locally parameterized by
r:Ii x I CR? — Gg, 7 (u,v) = a(u) + B (v),

where a and S are so-called generating curves. Under the condition that « and 3 are planar, the authors in [27]
categorized such a surface up to the absolute figure:

typel ais planar non-isotropic curve and 3 isotropic curve,

type 2 « and 3 are planar non-isotropic curves.

If the planes involving the generating curves are chosen as perpendicular to each other, the surfaces of type
1 and type 2 are respectively parameterized by

r(u,0) = (u,0, f (u) + g (v) (type 1), 7 (u,v) = (u+v, 9 (v), f (v)) (type 2). 21

These surfaces with K = const. and H = const. were obtained in [27]. Otherwise, i.e. the planes are not
perpendicular, then the notion of affine translation surface arises, introduced by Liu and Yu [20] as the graph
surfaces of the form

z(u,v) = f(u)+g(v+au), a €R, a#0.

By following this, we call the surfaces of type 1 and type 2 affine translation surfaces. We classify such surfaces
in Section 3 with K = const. and H = const. Furthermore, the generating curves could be non-planar and
hereinafter it is necessary to extend above categorization:

type 3 « is isotropic curve and 3 space curve,
type 4 «is planar non-isotropic curve and § space curve,

type 5 « and 3 are space curves.

We also provide the surfaces of type 3 and type 4 in next sections with K = const. and H = const.
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3. Constant Curvature Affine Translation Surfaces

Assume that A = (a;;) is a real invertible matrix, ¢, j = 1,2, and w = det A # 0. Let us consider the following
planar curves:

a —a
a=au) = (%u, w21 u, f(u)) , Py:iasix+ agny =0,

—ai2 ail
= = —_— P : — 0
B=B(v) ( w v, " 7)79(”)) ) B:anT+any ,

where P, and P3 denote the planes containing the curves «, . It is easily seen that P, is perpendicular to Pg
provided A is an orthogonal matrix. Nevertheless, if a1 = 0 (resp. aze = 0) in (3.1) then 3 (resp. o) becomes an
isotropic curve. Otherwise i.e. ajza22 # 0, both of them are non-isotropic curves.

By a translation of a and /3, we derive the following admissible surface:

(3.1)

r(u0) = (20— 220, By - By, f(w) 1 g(v) (3:2)
w w w w

where a?, + a3, # 0 because w # 0. Point out that by changing the coordinates u = a11z + a12y, v = a2z + azy

(3.2) turns to the usual form of affine translation surface given by

r(z,y) = (z,y, flanz + a12y) + g(aa1z + ay)) . (3.3)

The positive side of such a notion is to represent the surfaces of both type 1 and type 2 into one format as
well as a natural generalization of the surfaces given by (2.1).

Throughout this section, we only discuss the cases relating to f due to the fact that the roles of f and g are
symmetric.

After a calculation, we have the Gaussian curvature:

w2f//g//

K = 55
{1 + (a12f + 0229')2}

(3.4)

where f' = % and ¢’ = %, etc.

Theorem 3.1. If the surface in Gg given by (3.2) has constant Gaussian curvature K, then it is either a generalized
cylinder with isotropic or non-isotropic rulings (Ko = 0); or a certain surface parameterized by, up to suitable translations

and constants,
— / K K K
r(u,s) = (u, Z)Qlu + g 1-— (22) s2 + % arcsin (COS> ,gu2 + 20032> ,

where ¢ € R — {0} and s is the arc-length parameter of (3.

Proof. Assume that K, = 0. Then (3.4) leads f to be a linear function and thus the surface becomes a generalized
cylinder (so-called cylindrical surface, see [16], p. 439) with non-isotropic (a22 # 0) or isotropic rulings (a2 = 0).
Otherwise, i.e. K # 0, by (3.4) we get f”¢” # 0. Taking the partial derivative of (3.4) with respect to u gives

4K0[1 + (alzf/ + azgg/)Q] (alzf/ + aggg/) (algf”) = waI//gH. (3.5)
To solve (3.5), we have two cases:
1. a2 = 0. (3.5) follows that f” = ¢, ¢; € R — {0}. Then by (3.4) we get

1
Ko az2g

afiazct (14 (asg’)?)

(3.6)

where aj1a90 # 0 since w # 0. We treat the method used in [27] in order to solve (3.6). Since a2 = 0, 3 is
an isotropic curve and its reparametrization having unit speed is given by

2

Bs) = (0,p(s).q(s)), ()" + () =1, 3.7)
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where the prime denotes the derivative with respect to the arc-length parameter. In this case (3.4) turns
to
Ko = f"q". (3.8)

After solving (3.8), we obtain

K
q(s) = ﬁsQ + o5+ c3, co,c3 € R.
1

Morever, we have f(u) = %uZ + cau + cs, cq,c5 € R because f” = ¢q. Up to congruency of Gz we may
assume c3 = ¢; = 0 and, up to suitable translations of u, s choose ¢y = ¢4 = 0. Considering it into (3.7)

leads to
2
K K
p(s) = 2 1— (0103> + 220 arcsin <c103> + cg,

where one may assume ¢s = 0 up to congruency of Gs. Therefore one is congruent to the surface given in
the hypothesis of the theorem.

2. a1z # 0. By the symmetry we have a2 # 0 and then (3.5) can be rewritten as

[1 + (a12f’ + a22gl)2} (a12f' + azeg’) (¢") 7' = %- (39)

The partial derivative of (3.9) with respect to v yields
1+ 3 (a1af’ + aseg')? _ 9" . (3.10)

aaf' + azng + (arnf + azg’)’  a2(g”)?
Again taking the partial derivative of (3.10) with respect to u gives the following:
143 (aaf" + azzg/)4 =0,

which is a contradiction and this completes the proof.

U
For the mean curvature, we have

H— afyf" + a3yg” 3.11)

2 [1 + (a12f’ + GQQQ’)Q} :
Theorem 3.2. Let the surface in G given by (3.2) have constant mean curvature Hy. Then:
(i) If Hy = 0, it is either
(i.1) an isotropic plane, or

(i.2) a generalized cylinder with isotropic rulings, or
(i.3) a non-cylindrical ruled surface of type C whose the base curve is a parabolic circle.

(ii) Otherwise (Hy # 0); it is either

(ii.1) a certain surface given by

2
1 2H,
r(u,v) = awﬁu, %v — %u,f(u) ~ 3, 1-— <a220v> , G9a # 0,

(ii.2) or a generalized cylinder with non-isotropic rulings given by

r(u,v) = U— ——v, —V— ——U,Cu . , a2a #0, c € R.
22

w w w w B 2H,

2
a22 a2 an as1 1 1_ 2H, _caip
a22
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Proof. Let M? be the surface given by (3.2). We divide the proof into two cases:
1. Hy = 0. Then (3.11) reduces to
0o f" + g = 0. (3.12)
We have three sub-cases:
(@) f”=0=g" is a solution for (3.12). This leads M? to be an isotropic plane, which implies the
statement (i.1) of the theorem.

(b) a12 = 0. Because w # 0 we get aze # 0. Thus (3.12) immediately implies ¢ = 0 and this proves the
statement (i.2) of the theorem.

(c) ai2 # 0. The symmetry implies as2 # 0. Solving (3.12) gives

C1 o )
f(u):@u + ¢ + cs, Q(U)Z—@U + ¢4 + 5,

where ¢y, ...,¢5 € R, ¢1 # 0. Up to congruency of G; we may assume c3 = ¢; = 0 and, up to suitable
translations of u, v choose ¢; = ¢4 = 0. Hence, substituting this into (3.3) leads to

2 2
r(z,y) = Jc,O,C—1 (%) — <a21> z? +y<0,1,2x |:a11_a21:|>.
2 ai12 a22 a12 a22
This means that M? is congruent to a non-cylindrical ruled surface whose the base curve is a
parabolic circle and the rulings are isotropic.

2. Hy # 0. We have two sub-cases:
(@) a12 = 0. Then (3.11) reduces to

2 I
Hy = 929 (3.13)
2 [1 n (azzgl)g] ’

where ag2 # 0 because w # 0. As in previous case, up to suitable translations and constants, solving

(3.13) gives
1 2H, \°

Therefore we obtain that M? is congruent to the surface given in the statement (ii.1) of the theorem.
(b) a12 # 0. Taking partial derivative of (3.11) with respect to u gives
6Ho[l + (ar12f" + az29')"]? [araf' + azag'] [ar2f") = a2 . (3.14)
For (3.14) there are two possibilities:
i. f” =0. Then from (3.11), we have

2H 11
0 _ f229 — (3.15)
azo [1 —+ (a12(36 —+ aggg/) ]5
where f’ = ¢, cg € R. By solving (3.15), up to suitable translations and constants, we obtain
2
1 2H, Cea12
v) =——+4/1— v)] — .
9(v) 2H, < a2 > a2
Therefore M? is congruent to the surface given in the statement (ii.2) of the theorem.
ii. f” # 0. Then (3.14) can be rewritten as
[+ (o + azag)* P [asaf’ + azmg) = 220 (316)
12 229 12 229 GHof" .
The partial derivative of (3.16) with respect to v gives
1 -+ 2 (alzf/ + a229/)2 = 0,
which is a contradiction. This completes the proof.
O
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4. Constant Curvature Surfaces of Type 3

Let one generating curve be the space curve given by a = a(u) = (u, fi(u), f2(u)) and another one the unit
speed isotropic curve given by
{ B =p) = (0,01(v), 2(v),

2 o
(0 + () =1, gi=% i=12.

Here we may assume g; # 0 without loss of generality. The last equality implies

9197 + 9595 = 0. 41)
Because the torsion of « is different from zero we get
{/ é// /// # 0 (4.2)
where i = f/ etc. i = 1,2. Thereby the obtained translation surface belongs to type 3 and given by
r(u,v) = (u, fr(w) + 91(v), f2(u) + g2(v)). (4.3)
By a calculation, the Gaussian curvature is
K= —*( 192 = f291)- (44)

Theorem 4.1. If the surface in Gy given by (4.3) has constant Gaussian curvature K, then it is a generalized cylinder
with isotropic rulings (Ko = 0).

Proof. The proof is by contradiction. Then K, # 0 implies g5 # 0. Hence (4.4) can be rewritten as

91
- Ko%= flas~ 4! @5)
2

The partial derivative of (4.5) with respect to u follows
) ®6)

¢ and g5 in (4.6) can not be linearly independent due to (4.2) and thus it leads to ¢ = cgj, c € R —{0}.
Substituting this into (4.1) gives (1+ ¢?) g{g{ =0 or g§ = 0. This means that K, must be zero. Therefore j
becomes an isotropic line and the surface is a generahzed cylinder with isotropic rulings. O

Theorem 4.2. If the surface in G3 given by (4.3) has constant mean curvature Hy, then either it is a generalized cylinder
with isotropic rulings (Hy = 0); or the generating curve (3 is a Euclidean circle with radius ﬁ (Hy #0).

Proof. Assume that the surface given by (4.3) has constant mean curvature Hy. Then we have the relation

g//
2Hy = 2. (4.7)
9N
This immediately implies that H, vanishes provided £ is an isotropic line. If H, # 0, then we have from (4.7)
g5 = 2Hog}. (4.8)
Considering (4.8) into (4.1) gives
g{ = —2Hyg>. (4.9)
We may formulate the equations (4.8) and (4.9) as follows:
91 + 4H091 =0,
{ "o 4Hog2 =0. (4.10)

After solving (4.10) we obtain, up to suitable constants,

{ g1 = 2|H 3] Sin 2\H0|u)+2| o7 cos(2 |Hol u),
92 = g7 Sin(2[Ho| v) + g7 cos(2 |Hol v),

where ci, ...,cy € R. Because (g})? + (g5)2 = 1 we have (c1)?+(e3)%2 =1, (ca)® + (cs)®? =1 and ¢ + c3¢4 = 0.
This means that B is a Euclidean circle with radius Tl H - O

Remark 4.1. It is easy to see from Theorem 4.2 that for a surface in G3 given by (4.3) H = 0 implies K = 0.
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5. Constant Curvature Surfaces of Type 4

In last section, we are interested in the surfaces generated by translating a space curve a = a(u) =
(u, f1(u), f2(v)) and a planar non-isotropic curve S = S(v) = (v,g(v),av), a € R. Since the torsion of « is
different from zero, we have

LR R A0, G)
where % = f/'and so on, i = 1, 2. Therefore the obtained translation surface is parameterized by
r(u,v) = (u+ v, fi(u) + g(v), fa(u) + av). (5.2)

By a calculation, the Gaussian curvature turns to
2
g1 =)’ = B - o - )]

K= 2
(= a2+ (1 = 9]

(5.3)

Theorem 5.1. If the surface in G3 given by (5.2) has constant Gaussian curvature K, then it is a generalized cylinder
with non-isotropic rulings (Ko = 0).

Proof. Assume that Ky = 0 and ¢’ # 0. Then (5.3) turns to

1(fo—a)=f2(fi—¢)=0. (54)

Taking partial derivative of (5.4) with respect to v, we get f3 = 0 which is not possible due to (5.1). Hence, it
follows ¢g” = 0, namely the surface is generalized cylinder with non-isotropic rulings. Next, we assume that
Ky # 0. This immediately implies ¢” # 0. Dividing (5.3) with ¢” and then taking its partial derivative with
respect to u leads to

d(A) d(B)

du du

(o) - BR| [0+ (f =] 1A= B - B+ (=) =0, G
where ,
A= (P, B=B(f-a). C=(f-o 66)

(5.5) is a polynomial equation on ¢’ and the leading coefficient which comes from the term (¢’ )‘3 is %. This
must be zero, i.e. B = By € R—{0}. Thus (5.5) reduces to

[dc(l:) - Bof{/] [C +(f1 - 9/)2} —4[A=Bo(fi =) Bo+ (fi —4) f]=0. (5.7)

Similarly, (5.7) is a polynomial equation on ¢’ and the leading coefficient which comes from the term (¢')” is

a(4) +3Byfl =0 (5.8)
du
and the coefficient of the term ¢’
d(A
(c(lu) - Bof{’> fi+2(—Afy +2Bofi fi' + B3) = 0. (5.9)

Putting (5.8) into (5.9) gives

(1) = (£ =0,
which is a contradiction due to (5.1). Therefore the proof is completed. O

By a calculation, the mean curvature turns to

g f2—a) {'+9")—(f{—92f2". (5.10)
2 -+ -97]
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Theorem 5.2. There does not exist a minimal translation surface in Gg given by (5.2).
Proof. The proof is by contradiction. Then (5.10) reduces to

(fs—a) (' +9") - (1 -9 fF =0 (5.11)
The partial derivative of (5.11) with respect to v yields

59"+ (fz —a)g" =0. (5.12)

111

Because (5.1), ¢ and ¢
integration yields

in (5.12) cannot be linearly independent. Therefore it follows ¢ = ¢1¢”, ¢; € Rand an

9" =c1g + e, 2 €R. (5.13)
Substituting (5.13) into (5.11) gives a polynomail equation on ¢’ of degree one, i.e.
(fs—a)(fi' +e1g +c2) = (fi —g') f2 =0.

The fact that the coefficients must be zero gives

a(fs—a)+f5=0 (5.14)
and
(fa—a)(fi +c2) = fify =0. (5.15)
Note that ¢; # 0 due to fy # 0in (5.14). Putting (5.14) into (5.15) leads to
/' +eifi +ea=0. (5.16)
From (5.14) and (5.16) we easily get f)” = —c1 f3 and f{"” = —c, f{'. This contradicts with (5.1). O

Theorem 5.3. If the surface in G3 given by (5.2) has nonzero constant mean curvature Hy, then it is a generalized
cylinder with non-isotropic rulings whose the base curve satisfies the following equation, up to a suitable constant and a
translation of u

1
) = gou = /1= 4Ho (falu) — au)’,
where g = go € R.

Proof. The partial derivative of (5.10) with respect to v gives

~6Ho [(fs—af’ + (= 9)°] (=99 = (s —a)g" + 59" (5.17)
To solve (5.17), we have two cases:

1. ¢ = g0, go € R. (5.10) turns to

2H, — (f3 —a) /1 — (f1 — 90) fé/‘ (5.18)

(=0 + (f - 90)"]

(5.18) can be rewritten as

2H (f} - a) = (5%) (5.19)

2
fi—g0
(52

N

An integration of (5.19) with respect to u gives

fi—90
fo—a

, 2
(1 (%) )
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Up to a translation on u, we may assume ¢ = 0. (5.20) can be rewritten as

4Hy (f2 — au)’ (ﬁ-—m)z

1-— 4H0 (fg — au)2 fé —a
or - )
fi—go= MHollz 0wz —0) (5.21)
\/1 — 4Hy (f2 — au)?
Up to suitable constant, an integration of (5.21) with respect to u gives
1 2
g" # 0. (5.17) can be rewritten by dividing ¢” as
/ 2 / "2 3 / ’ / g/// 7
6H0[(f2—a) +(f1—9)} (f1—9):(f2_a)?+f2- (5.22)

The partial derivative of (5.22) with respect to v gives

, 2 ’ , m\ !
(f —a)® +2(f] — g')? = 6Htg” <9> _ (5.23)
(fi—a) [(f5 =) + (f — 9]

9

By again taking partial derivative of (5.23) with respect to u we derive a polynomial equation on ¢'. The

leading coefficient which comes of the term (¢’ )*is —4(f} — a) f4. This can not be vanish due to (5.1) and
therefore we achieve a contradiction.

O

Remark 5.1. It is easy to see from Theorem 5.3 that for a surface in G3 given by (5.2) H = const. # 0 implies
K =0.

6. Conclusions

This study was devoted to obtain translation surfaces in G3 with K = const. and H = const. when at least
one of the generating curves is planar. In this sense it is still an open problem to find the translation surfaces in
G3 with K = const. and H = const. when both of generating curves are non-planar.
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