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ABSTRACT

In this paper, we introduce anti-invariant ξ⊥-Riemannian submersions from almost hyperbolic
contact manifolds onto Riemannian manifolds. Necessary and sufficient conditions for a special
anti-invariant ξ⊥-Riemannian submersion to be totally geodesic are studied. Moreover, we obtain
decomposition theorems for the total manifold of such submersions.
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1. Introduction

The geometry of Riemannian submersions between Riemannian manifolds has been intensively studied
and sevral results has been pulished (see O’Neil [10] and Gray [7]). In [19] Waston defined almost Hermitian
submersion between almost Hermitian manifolds and in most cases he show that the base manifold and
each fiber has the same kind of structure as the total space. He also show that the vertical and horizontal
distributions are invariant. On the other hand, the geometry of anti-invariant Riemannian submersions is
different from the geometry of almost Hermitian submersions. For example, since every holomorphic map
between Kahler manifolds is harmonic [4], it follows that any holomorphic submersion between Kahler
manifolds is harmonic. However, this result is not valid for anti-invariant Riemannian submersions, which was
first studied by Sahin in [14] (see also [1], [2], [6], [11], [15], [16], [17]). Similarly, Ianus and Pastore [8] shows
φ-holomorphic maps between contact manifolds are harmonic. This implies that any contact submersion is
harmonic. However, this result is not valid for anti-invariant Riemannian submersions. In [3], Chinea defined
almost contact Riemannian submersion between almost contact metric manifolds. In [9], Lee studied the
vertical and horizontal distribution are φ-invariant. Moreover, the characteristic vector field ξ is horizontal.
We note that only φ-holomorphic submersions have been consider on an almost contact manifolds [5]. It was
1976, Upadhyay and Dube [18] introduced the notion of almost hyperbolic contact (f, g, η, ξ)- structure. Siddiqi.
et. al., study some properties of CR-submanifolds of trans hyperbolic Sasakian manifold were studied in [12].
Recently in 2018, Siddiqi and Akyol also, study anti-invariant ξ⊥-Riemannian submersions from hyperbolic
β-Kenmotsu manifolds [13]. In this paper, we consider a Riemannian submersion from an almost hyperbolic
contact manifold under the assumption that the fibers are anti-invariant with respect to the tensor field of type
(1, 1) of almost hyperbolic contact manifold. This assumption implies that the horizontal distribution is not
invariant under the action of tensor field of the total manifold of such submersions. In other words, almost
hyperbolic contact are useful for describing the geometry of base manifolds, anti-invariant submersion are
however served to determine the geometry of total manifold.

The paper is organized as follows: In Section 2, we present the basic information needed for this paper. In
Section 3, we give the definition of anti-invariant ξ⊥-Riemannian submersions. We also introduce a special anti-
invariant ξ⊥-Riemannian submersions and obtain necessary and sufficient conditions for such submersions
to be totally geodesic or harmonic. In Section 4, we give decomposition theorems by using the existence of
anti-invariant ξ⊥-Riemannian submersions and observe that such submersion put some restrictions on the
geometry of the total manifold.
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2. Preliminaries

In this section, we define almost hyperbolic contact manifolds, recall the notion of Riemannian submersions
between Riemannian manifolds and give a brife review of basic facts if Riemannian submersions.

Let M be an almost hyperbolic contact metric manifold with an almost hyperbolic contact metric structure
(φ, ξ, η, gM ), where φ is a (1, 1) tensor field, ξ is a vector field, η is a 1-form and gM is a compatiable Riemannian
metric on M such that

φ2 = I − η ⊗ ξ, φξ = 0, η ◦ φ = 0, η(ξ) = 1, (2.1)

gM (φX, φY ) = −gM (X,Y )− η(X)η(Y ) (2.2)

gM (X,φY ) = −gM (φX, Y ), gM (X, ξ) = η(X) (2.3)

An almost hyperbolic contact metric structure (φ, ξ, η, gM ) on M is called trans-hyperbolic Sasakian [12] if and
only if

(∇Xφ)Y = α(g(X,Y )ξ − η(Y )φX) + β(g(φX, Y )− η(Y )φX) (2.4)

for all X , Y tangent to M , α and β are smooth functions on M . On a trans-hyperbolic Sasakian manifold M , we
have

∇Xξ = −α(φX) + β(X − η(X)ξ), (2.5)

where ∇ is the Riemannian connection of Levi-Civita covariant differentiation.

Let (Mm, gM ) and (Nn, gN ) be Riemannian manifolds, where dimM = m, dimN = N and m > n. A
Riemannian submersion F : M → N is a map from M onto N satisfying the following axioms:

1. F has maximal rank

2. The differential F∗ preserves the lenghts of horizontal vectors.

For each q ∈ N , F−1(q) is an (m− n)-dimensional submanifold of M . The submanifold F−1(q) are called
fibers. A vector field on M is called vertical if it is always tangent to fibers. A vector field on M is called
horizontal if it is always orthogonal to fibers. A vector field X on M is called basic if X is horizontal and
F -related to a vector field X∗ on N , i.e., F∗Xp = X∗F (p) for all p ∈M . Note that we denote the projection
morphisms on the distributions kerF∗ and (kerF∗) by V and H, respectively.

We recall the following lemma from O’Neill [10].

Lemma 2.1. Let F : M → N be a Riemannian submersion between Riemannian manifolds and X , Y be basic vector
fields of M . Then

1. gM (X,Y ) = gN (X∗, Y∗) ◦ F .

2. The horizontal part [X,Y ]H of [X,Y ] is a basic vector field and corresponds to [X∗, Y∗], i.e., F∗([X,Y ]) =
[X∗, Y∗].

3. [V,X] is vertical for any vector field V of kerF∗.

4. ((∇)MX Y )H is the basic vector field corresponding to ∇NX∗Y∗.

The geometry of Riemannian submersion is characterized by O’Neil’s tensor T and A defined for vector
fields E, F on M by

AEF = H∇HEV F + V∇HEHF (2.6)

TEF = H∇V EV F + V∇V EHF (2.7)

where ∇ is the Levi-Civita connection of gM . It is easy to see that a Riemannian submersion F : M → N has
totally geodesic fibers if and only if T vanishes identically. For any E ∈ (TM), TC = TV C and A is horizontal,
A = AHE . We note that the tensor T and A satisfy

TUW = TWU, U,W ∈ (kerF∗) (2.8)
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AXY = −AYX =
1

2
V [X,Y ], X, Y ∈ (kerF∗)

⊥) (2.9)

On the other hand, from (2.6) and (2,7), we have

∇VW = TVW + ∇̄VW (2.10)

∇VX = H∇VX + TVX (2.11)

∇XV = AXV + V∇XV (2.12)

∇XY = H∇XY +AXV (2.13)

for X,Y ∈ (kerF∗)
⊥) and V,W ∈ (kerF∗), where ∇̄VW = V∇VW . If X is basic then H∇VX = AXV .

Finally, we recall the notion of harmonic maps between Riemannian manifolds. Let (M, gM ) and (N, gN ) be
Riemannian manifolds and supposed that φ : M → N is a smooth map. Then the differential φ∗ of φ can be
viewed a section of the bundle Hom(TM,φ−1TN)→M , where φ−1TN is the pullback bundle which has fibers
(φ−1TN)p = Tφ(p)N , p ∈M . Hom(TM,φ−1TN) has a connection ∇ induced from the Levi-Civita connection
∇M and the pullback connection ∇φ. Then the second fundamental form of φ is given by

(∇φ∗)(X,Y ) = ∇φXφ ∗ (Y )− φ ∗ (∇MX Y ) (2.14)

for X,Y ∈ TM . It is known that the second fundamental form is symmetric. A smooth map φ : (M, gM )→
(N, gN ) is said to be harmonic if trace(∇φ∗) = 0. On the other hand, the tensor field of φ is the section τ(φ) of
(φ−1TN) defined by

τ(φ) = divφ∗ =

m∑
i=1

(∇φ∗)(ei, ei), (2.15)

where {e1, .....em} is the orthogonal frame on M . Then it follows that φ is harmonic if and only if τ(φ) = 0 (see
[10]).

3. Anti-invariant ξ⊥- Riemannian Submersions

In this section, we define anti-invariant ξ⊥- Riemannian submersions from almost hyperbolic contact metric
manifold onto a Riemannian manifold and investigate the integrability of distributions and obtain a neccessary
and sufficient condition for such submersions to be totally geodesic map. We also investigate the harmonicness
of a special Riemannian submersions.

Definition 3.1. Let (M, gM , φ, ξ, η) be an almost hyperbolic contact metric manifold and (N, gN ) a Riemannian
manifold. Suppose that there exists a Riemannian submersion F : M → N such that ξ is normal to kerF∗ and
kerF∗ is anti-invariant with respect to φ, ie., φ(kerF∗) ⊂ (kerF∗)

⊥.Then we say that F is an anti-invaraint ξ⊥-
Riemannian submersion.

Now, we assume that F : (M, gM , φ, ξ, η)→ (N, gN ) is an anti-invaraint ξ⊥-Riemannian submersion. First of
all, from Definition 3.1, we have (kerF∗)

⊥ ∩ (kerF∗) 6= 0. We denote the complementary orthogonal distribution
to φ(kerF∗) in (kerF∗)

⊥ by µ. Then we have

(kerF∗)
⊥ = φ(kerF∗)⊕ µ, (3.1)

where φ(µ) ⊂ µ. Hence µ contains ξ. Thus, for X ∈ (kerF∗)
⊥, we have

φX = BX + CX, (3.2)

where BX ∈ (kerF∗) and CX ∈ (µ). On the other hand, since F∗(kerF∗)
⊥ = TN and F is a Riemannian

submersion, using (3.2), we have
gN (F∗φV, F∗φ(CX)) = 0

for any X ∈ (kerF∗)
⊥ and V ∈ (kerF∗), which implies

TN = F∗(φ(kerF∗)⊕ F∗(µ).
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Example 3.1. Let us consider a 5-dimensional manifold M̄ =
{

(x1, x2, x3, x4, z) ∈ R5 : z 6= 0
}

, where
(x1, x2, x3, x4, z) are standard coordinates in R5. We choose the vector fields

E1 = e−z ∂
∂x1

, E2 = e−z ∂
∂x2

, E3 = e−z ∂
∂x3

, E4 = e−z ∂
∂x4

, E5 = e−z ∂
∂x1

,
which are lineraly independent at each point of M̄ . We define g by

g = e2zG,

where G is the Euclidean metric on R5. Hence {E1, E2, E3, E4, E5} is an orthonormal basis of M̄ .
We consider an 1-form η defined by

η = ezdz, η(X) = g(X,E5), ∀X ∈ TM̄.

We defined the (1, 1) tensor field φ by

φ

{
2∑
i=2

(
xi

∂

∂xi
+ xi+2

∂

∂xi+2
+ z

∂

∂z

)}
=

2∑
i=2

(
xi

∂

∂xi+2
− xi+2

∂

∂xi

)
.

Thus, we have
φ(E1) = E3, φ(E2) = E4, φ(E3) = −E1, φ(E4) = −E2, φ(E5) = 0.

The linear property of g and φ yields that

η(E5) = 1, φ2(X) = X − η(X)E5

g(φX, φY ) = −g(X,Y )− η(X)η(Y ),

for any vector fields X,Y on M̄ . Thus, M̄(φ, ξ, η, g) defines an almost hyperbolic contact metric manifold wit
ξ = E5. Moreover, let ∇̄ be the Levi-Civita connection with respect to metric g. Then we have [E1, E2] = 0.
Similarly [E1, ξ] = e−zE1, [E2, ξ] = e−zE2, [E3, ξ] = e−zE3 [E4, ξ] = e−zE4, [Ei, Ej ] = 0, 1 ≤ i 6=≤ 4.
The Riemannian connection ∇̄ of the metric g is given by

2g(∇̄XY, Z) = Xg(Y,Z) + Y g(Z,X)− Zg(X,Y )− g(X, [Y,Z])− g(Y, [X,Z]) + g(Z, [X,Y ]),

By Koszul’s formula, we obtain the following equations

∇̄E1
E1 = −e−zξ, ∇̄E2

E2 = −e−zξ, ∇̄E3
E3 = −e−zξ, ∇̄E4

E4 = −e−zξ,

∇̄ξξ = 0, ∇̄ξEi = 0, ∇̄Ei
ξ = e−zEi, 1 ≤ i ≤ 4

and ∇̄Ei
Ei = 0 for all 1 ≤ i, j ≤ 4. Thus, we see that M is a trans-hyperbolic Sasakian manifold of type (0, e−z).

Here α = 0 and β = e−z .

Now, we define (1, 1) tensor field as follows

φ(x1, x2, x3, x4, z) = (−x3,−x4, x1, x3, z).

Now, we can give the following example.

Example 3.2. Let (M1, g1 = e2zG,φ, ξ, η) be an almost Hyperbolic contact manifolds and M2 be R3. The
Riemannian metric tensor field g2 is defined by g2 = e2z(dy1 ⊗ dy1 + dy2 ⊗ dy2 + dy3 ⊗ dy3) on M2.

Let φ be a submersion defined by
φ : R5 −→ R3

(x1, x2, x3, x4, z) (
x1 + x3√

2
, z,

x1 + x2√
4

)

Then it follows that
kerφ∗ = span {V1 = ∂x1 − ∂x3, V2 = ∂x2 − ∂x2}

and
(kerφ∗)

⊥ = span {X1 = ∂x1 + ∂x3, X2 = ∂x2 + ∂x2, X3 = z = ξ}
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Hence we have φV1 = X1 and φV2 = X2. It means that φ(kerφ) ⊂ (kerφ)⊥. A straight computations, we get
φ∗X1 = ∂y1, φ∗X2 = ∂y3 and φ∗X3 = ∂y2. Hence, we have

g1(Xi, Xi) = g2(φ∗Xi, φ∗Xi), for i = 1, 2, 3.

Thus φ is a anti-invariant ξ⊥ Riemannian submersion.

Lemma 3.1. Let F be an anti-invaraint ξ⊥-Riemannian submersion from a trans-hyperbolic Sasakian manifold
(M, gM , φ, ξ, η) onto a Riemannian manifold (N, gN ). Then we have

gM (CY, φV ) = 0, (3.3)

gM (∇XCY, φV ) = −gM (CY, φAXV ) (3.4)

for X,Y ∈ ((kerF∗)
⊥) and V ∈ (kerF∗).

Proof. For Y ∈ ((kerF∗)
⊥) and V ∈ (kerF∗), using (2.2), we have

gM (CY, φV ) = gM (φY −BY, φV ) = gM (φY, φV ) = −gM (Y, V )− η(Y )η(V ) = −gM (Y, V ) = 0

since BY ∈ (kerF∗) and φV, ξ ∈ ((kerF∗)
⊥). Differentiating (3.3) with respect to X , we get

gM (∇XCY, φV ) = −gM (CY,∇XφV )

= gM (CY, (∇Xφ)V )− gM (CY, φ(∇XV ))

= −gM (CY, φ(∇XV ))

= −gM (CY, φAXV )− gM (CY, φν∇XV )

= −gM (CY, φAXV )

due to φν∇XV ∈ (kerF∗). Our assertion is complete.

We study the integrability of the distribution (kerF∗)
⊥ and then we investigate the geometry of leaves of

kerF∗ and (kerF∗)
⊥. We note it is known that the distribution (kerF∗) is integrable.

Theorem 3.1. Let F be an anti-invaraint ξ⊥-Riemannian submersion from a trans-hyperbolic Sasakian manifold
(M, gM , φ, ξ, η) onto a Riemannian manifold (N, gN ). The followings are equivalent.

1. (kerF∗)
⊥ is integrable,

2.
gN ((∇F∗)(Y,BX), F∗φV ) = gN ((∇F∗)(X,BY ), F∗φV )

+gM (CY, φAXV )− gM (CX,φAY V )

+(α+ β)η(Y )gM (X,V )− (α+ β)η(X)gM (Y, V ),

3.
gM (AXBY −AYBY, φV ) = gM (CY, φAXV )− gM (CX,φAY V )

+(α+ β)η(Y )gM (X,V )− (α+ β)η(X)gM (Y, V ).

for X,Y ∈ (kerF∗)
⊥ and V ∈ (kerF∗).

Proof. For Y ∈ (kerF∗)
⊥ and V ∈ (kerF∗), from Definition 3.1, φV ∈ (kerF∗)

⊥ and φY ∈ (kerF∗)⊕ µ. Using (2.2)
and (2.4), we note that for X ∈ (kerF∗)

⊥,

gM (∇XY, V ) = gM (∇XφY, φV )− (α+ β)η(Y )gM (X,V ) (3.5)

−(α+ β)η(X)η(Y )η(V ).

Therefore, from (3.5), we get

gM ([X,Y ], V ) = gM (∇XφY, φV )− gM (∇Y φX, φV )
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= (α+ β)η(X)gM (Y, V )− (α+ β)η(Y )gM (X,V )

= gM (∇XBY, φV ) + gM (∇XCY, φV )

−gM (∇YBX,φV )− gM (∇Y CX,φV )

−(α+ β)η(Y )gM (X,V ) + (α+ β)η(X)gM (Y, V ).

Since F is a Riemannian submersion, we obtain

gM ([X,Y ], V ) = gN (F∗∇XBY,F∗φV ) + gM (∇XCY, φV )

−gN (F∗∇YBX,F∗φV )− gM (∇Y CX,φV )

−(α+ β)η(Y )gM (X,V ) + (α+ β)η(X)gM (Y, V ).

Thus, from (2.15) and (3.4), we have

gM ([X,Y ], V ) = gN (−(∇F∗)(X,BY ) + (∇F∗)(Y,BX), F∗φV )

−gM (CY, φAXV ) + gM (CX,φAY V )

−(α+ β)η(Y )gM (X,V ) + (α+ β)η(X)gM (Y, V ).

which proves (1)⇐⇒ (2).
On the other hand, using (2.14), we obtain

(∇F∗)(Y,BX)− (∇F∗)(X,BY ) = −F∗(∇YBX −∇XBY ) = −F∗(AYBX −AXBY ),

which shows that (2)⇐⇒ (3)

Corollary 3.1. Let F be an anti-invaraint ξ⊥-Riemannian submersion from a trans-hyperbolic Sasakian manifold
(M, gM , φ, ξ, η) onto a Riemannian manifold (N, gN ) with (kerF∗)

⊥ = φ(kerF∗)⊕ < ξ >. Then the following are
equivalent.

1. (kerF∗)
⊥ is integrable

2. (∇F∗)(X,φY ) + (α+ β)η(X)F∗Y = (∇F∗)(Y, φX) + (α+ β)η(Y )F∗X

3. AXφY + (α+ β)η(X)Y = AY φX + (α+ β)η(Y )X, for X,Y ∈ (kerF∗)
⊥.

Theorem 3.2. Let F be an anti-invaraint ξ⊥-Riemannian submersion from a trans-hyperbolic Sasakian manifold
(M, gM , φ, ξ, η) onto a Riemannian manifold (N, gN ). The following are equivalent.

1. (kerF∗)
⊥ defines a totally geodesic foliation on M .

2. gM (AXBY, φV ) = gM (CY, φAXY )− (α+ β)η(X)gM (X,V )− (α+ β)η(X)gM (Y, V ),

3. gN ((∇F∗)(Y, φX), F∗φV ) = gM (CY, φAXV )− (α+ β)η(X)gM (X,V )− (α+ β)η(X)gM (Y, V ), for
X,Y ∈ (kerF∗)

⊥ and V ∈ (kerF∗).

Proof. For X,Y ∈ (kerF∗)
⊥ and V ∈ (kerF∗), from (3.5), we have

gM (∇XY, V ) = gM (AXBY, φV ) + gM (∇XCY, φV )− (α+ β)η(Y )gM (X,V )− (α+ β)η(X)η(Y )η(V )

Then from (3.4), we have

gM (∇XY, V ) = gM (AXBY, φV ) + gM (CY, φAXV )− (α+ β)η(Y )gM (X,V )− (α+ β)η(X)η(Y )η(V )

which shows (1)⇐⇒ (2). On the other hand, from (2.12) and (2.14), we have

gM (AXBY, φV ) = gN (−(∇F∗)(X,BY ), F∗φ(V )),

which proves (2)⇐⇒ (3).
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Corollary 3.2. Let F be an anti-invaraint ξ⊥-Riemannian submersion from a trans-hyperbolic Sasakian manifold
(M, gM , φ, ξ, η) onto a Riemannian manifold (N, gN ) with (kerF∗)

⊥ = φ(kerF∗)⊕ < ξ >. Then the following are
equivalent.

1. (kerF∗)
⊥ defines a totally geodesic folition on M

2. AXφY = (α+ β)η(Y )X − (α+ β)η(X)Y

3. (∇F∗)(Y, φX) = (α+ β)η(Y )F∗X − (α+ β)η(X)F∗Y

for X,Y ∈ (kerF∗)
⊥.

Theorem 3.3. Let F be an anti-invaraint ξ⊥-Riemannian submersion from a trans-hyperbolic Sasakian manifold
(M, gM , φ, ξ, η) onto a Riemannian manifold (N, gN ). The following are equivalent.

1. kerF∗ defines a totally geodesic foliation on M

2. −gN (∇F∗)(V, φX,F∗φW ) = 0

3. TVBX +ACXV ∈ (µ),

for X,∈ (kerF∗)
⊥ and V,W ∈ (kerF∗)

Proof. For X,∈ (kerF∗)
⊥ and V,W ∈ (kerF∗), gM (W, ξ) = 0 implies that from (2.4)

gM (∇VW, ξ) = −gM (W,∇V ξ) = gM (W,−αφV + β(V − η(V )ξ)) = 0.

Thus we have
gM (∇VW,X) = −gM (φ∇VW,φX)− η((∇VW )η(X)

= −gM (φ∇VW,φX)

= −gM (∇V φW,φX) + gM ((∇V φ)W,φX)

= gM (φW,∇V φX).

Since F is Riemannian submersion, we have

gM (∇VW,X) = gN (F∗φW,F∗∇V φX) = −gN (F∗φW, (∇F∗)(V φX)),

which proves (1)⇐⇒ (2).
By direct calculation, we derive

−gN (F∗φW, (∇F∗)(V φX)) = gM (φW,∇V φX)

= gM (φW,∇VBX +∇V CX)

= gM (φW,∇VBX + [V,CX] +∇CXV ).

Since [V,CX] ∈ (kerF∗), from (2.10) and (2.12), we obtain

−gN (F∗φW, (∇F∗)(V φX)) = gM (φW, TVBX +ACXV ),

which proves (2)⇐⇒ (3).

As an analouge of a Lagrangian Riemannian submersion in [11], we have a similar result;

Corollary 3.3. Let F be an anti-invaraint ξ⊥-Riemannian submersion from a trans-hyperbolic Sasakian manifold
(M, gM , φ, ξ, η) onto a Riemannian manifold (N, gN ) with (kerF∗)

⊥ = φ(kerF∗)⊕ < ξ >. Then the following are
equivalent.

1. (kerF∗)
⊥ defines a totally geodesic folition on M

2. −(∇F∗)(V, φ(X) = 0

3. TV φW = 0,
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X,∈ (kerF∗)
⊥ and V,W ∈ (kerF∗)

Proof. From Theorem 3.6, it is enough to show (2)⇐⇒ (3). Using (2.14) and (2.11), we have

−gN (F∗φW, (∇F∗)(V φX)) = gM (∇V φW,φX)

= gM (TV φW,φX).

Since TV φW ∈ (kerF∗), the proof is complete.

We note that a differentiable map F between two Riemannian manifolds is called totally geodesic if∇F∗ = 0.
For the special Riemannian submersion, we have the following characterization.

Theorem 3.4. Let F be an anti-invaraint ξ⊥-Riemannian submersion from a trans-hyperbolic Sasakian manifold
(M, gM , φ, ξ, η) onto a Riemannian manifold (N, gN ) with (kerF∗)

⊥ = φ(kerF∗)⊕ < ξ >. Then F is a totally geodesic
map if and only if

TV φW = 0, V,W ∈ (kerF∗) (3.6)

and
AXφW = 0, X ∈ (kerF⊥∗ ). (3.7)

Proof. First of all, we recall that the second fundamental form of a Riemannian submersion satisfies

(∇F∗)(X,Y ) = 0 ∀ X,Y ∈ (kerF⊥∗ ). (3.8)

For V,W ∈ (kerF∗), we get

(∇F∗)(X,Y ) = F∗(φTV φW ). (3.9)

On the other hand, from (2.1), (2.2) and (2.14), we get

(∇F∗)(X,W ) = F∗(φAXφW ), X ∈ (kerF⊥∗ ). (3.10)

Therefore, F is totally geodesic if and only if

φ(TV φW ) = 0 ∀ V,W ∈ (kerF⊥∗ ). (3.11)

and
φ(AXφW ) = 0 ∀ X ∈ (kerF⊥∗ ). (3.12)

From (2.2), (2.6) and (2.7), we have
TV φW = 0 ∀ V,W ∈ (kerF∗). (3.13)

and
AXφW = 0 ∀ X ∈ (kerF⊥∗ ).

From (2.4), F is totally geodesic if and only the equation (3.6) and (3.7) hold

Finally, in this section, we give a necessary and sufficient condition for a special Riemannian submersion to
be harmonic as an analouge of Lagrangian Riemannian submersion in [11].

Theorem 3.5. Let F be an anti-invaraint ξ⊥-Riemannian submersion from a trans-hyperbolic Sasakian manifold
(M, gM , φ, ξ, η) onto a Riemannian manifold (N, gN ) with (kerF∗)

⊥ = φ(kerF∗)⊕ < ξ >. Then F is harmonic if and
only if Trace(φTV ) = 0 for V ∈ (kerF∗).

Proof. From [5], we know that F is harmonic if and only if F has minimal fibers. Thus F is harmonic if and
only if

∑m1

i=1 Teiei = 0. On the other hand, from (2.4), (2.11) and (2.10), we have

TV φW = φTVW (3.14)

due to ξ ∈ (kerF⊥∗ ) for any V,W ∈ (kerF∗). Using (3.14), we get

m1∑
i=1

gM (Teiφei, V ) =

m1∑
i=1

gM (φTeiφei, V ) = −
m1∑
i=1

gM (Teiei, φV )
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for any V ∈ (kerF∗). Thus skew-symmetric T implies that

m1∑
i=1

gM (φTeiφei, V ) = −
m1∑
i=1

gM (Teiei, φV ).

Using (2.8) and (2.2), we have

m1∑
i=1

gM (ei, φTV ei) = −
m1∑
i=1

gM (φei, TV ei) = −
m1∑
i=1

gM (Teiei, φV )

which shows our assertion.

4. Decomposition theorems

In this section, we obtain decomposition theorems by using the existence of anti-invariant ξ⊥-Riemannian
submersions. First, we recall the following.

Theorem 4.1. [10] Let g be a Riemannian metric on the manifold B = M ×N and assume that the canonical foliations
DM and DN intersect perpendicular every where. Then g is the metric tensor of

1. (i) a twisted product M ×f N if and only if DM is totally geodesic foliation and DN is a totally umbilical foliation.

2. (ii) a warped product M ×f N if and only if DM is totally geodesic foliation and DN is a spheric folition, i.e., it is
umbilical and its mean curvature vector field is parallel.

3. (iii) a usual product of Riemannian manifold if and only if DM and DN are totally geodesic folitions.

Our first decomposition theorem for anti-invariant ξ⊥-Riemannian submersion comes from Theorem 3.4 and
3.6 in terms of the second fundamental forms of such submersions.

Theorem 4.2. Let F be an anti-invariant ξ⊥-Riemannian submersion from a trans-hyperbolic Sasakian manifold
(M, gM , φ, ξ, η) on to a Riemannian manifold (N, gN ). Then M is locally product manifold if and only if

−gN ((∇F∗)(Y, φX), F∗φV ) = gM (CY, φAXV )− (α+ β)η(Y )gM (X,V )

and
−gN ((∇F∗)(V, φX), F∗φW ) = 0

for X,Y ∈ (kerF∗)
⊥) and V,W ∈ (kerF∗).

From Corollary 3.5 and 3.7, we have the following decomposition theorem:

Theorem 4.3. Let F be an anti-invariant ξ⊥-Riemannian submersion from a trans-hyperbolic Sasakian manifold
(M, gM , φ, ξ, η) on to a Riemannian manifold (N, gN ) with (kerF⊥∗ )⊕ < ξ >. Then M is a locally product manifold
if and only if AXφY = (α+ β)η(Y )X and TV φW = 0, for X,Y ∈ (kerF⊥∗ ) and V,W ∈ (kerF∗).

Next we obtain a decomposition theorem which is related to the notion of a twisted product manifold.

Theorem 4.4. Let F be an anti-invariant ξ⊥-Riemannian submersion from a trans-hyperbolic Sasakian manifold
(M, gM , φ, ξ, η) on to a Riemannian manifold (N, gN ) with (kerF⊥∗ )⊕ < ξ >. ThenM is locally twisted product manifold
of the form M⊥kerF∗ ×f MkerF∗ if and only if

TV φX = −gM (X,TV V ) ‖V ‖−2 − (α+ β)η(Y )gM (φX, φV ).

and
AXφY = (α+ β)η(Y )X

for X,Y ∈ (kerF⊥∗ ) and V ∈ (kerF∗), where M(kerF⊥∗ ) and M(kerF∗) are integrable manifolds of the distributions
(kerF⊥∗ ) and (kerF∗).
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Proof. For X ∈ (kerF⊥∗ ) and V ∈ (kerF∗), from (2.4) and (2.11), we obtain

gM (∇VW,X) = gM (TV φW,φX) = −gM (φW, TV φX)

Since TV is skew-symmetric. This implies that kerF∗ is totally umbilical if and only if

TV φX − (α+ β)η(V )gM (φX, φV ) = −X(λ)φV,

where λ is a function on M . By direct computation,

TV φX = −gM (X,TV V ) ‖V ‖−2 − (α+ β)η(Y )gM (φX, φV ).

Then the proof follows from Corollary 3.5
However, in the sequel, we show that the notion of anti-invariant ξ⊥-Riemannian submersion puts some
restrictions on the source manifold.

Theorem 4.5. Let (M, gM , φ, ξ, η) be a trans-hyperbolic Sasakian manifold and (N, gN ) be a Riemannian manifold . Then
there does not exist an anti-invariant ξ⊥-Riemannian submersion from M to N with (kerF∗)

⊥ = φ(kerF∗)
⊥⊕ < ξ >

such that M is a locally proper twisted product manifold of the form MkerF∗ ×f M(kerF∗)⊥ .

Proof. Suppose that F : (M, gM , φ, ξ, η) −→ (N, gN ) is an anti-invaraiant ξ⊥-Riemannian submersion with
(kerF∗)

⊥ = φ(kerF∗)
⊥⊕ < ξ > andM is a locally twisted product of the formMkerF∗ ×f M(kerF∗)⊥ .ThenMkerF∗

is a totally geodesic foliation and M(kerF∗)⊥ is a totally umbilical foliation. We denote the second fundamental
form of M(kerF∗)⊥) by h. Then we have

gM (∇XY, V ) = gM (h(X,Y ), V ) X,Y ∈ ((kerF∗)
⊥, V ∈ (kerF∗). (4.1)

Since M(kerF
⊥
∗ ) is a totally umbilical foliation, we have

gM (∇XY, V ) = gM (H,V )gM (X,Y ),

where H is the mean curvature vector field of M(kerF∗)⊥ . On the other hand, from (3.5), we derive

gM (∇XY, V ) = −gM (φY,∇XφV )− (α+ β)η(Y )g(X,V )− (α+ β)η(X)η(Y )η(V ). (4.2)

Using (2.13), we obtain

gM (∇XY, V ) = gM (φY,AXφV )− (α+ β)η(Y )g(X,V )− (α+ β)η(X)η(Y )η(V ) (4.3)

= gM (Y,AXφV )− (α+ β)g(X,V )− (α+ β)η(X)η(V )ξ)

Therefore, from (4.1), (4.3) and (2.2), we have

AXφV = gM (H,V )φX + η(AXφV )ξ.

Since AXφV ∈ (kerF∗),
η(AXφV ) = gM (AXφV, ξ) = 0.

Thus, we have
AXφV = gM (H,V )φX.

Hence, we derive

gM (AXφV, φX)− (α+ β)η(X)η(V )g(Y, φX) = −gM (H,V )
{
‖X‖2 − η2(X)

}
gM (∇XφV, φX) = −gM (H,V )

{
‖X‖2 − η2(X)

}
+ (α+ β)η(X)η(V )g(Y, φX)

gM (∇XY, V ) + (α+ β)η(Y )g(X,V )− (α+ β)η(X)η(Y )η(V )

= −gM (H,V )
{
‖X‖2 − η2(X)

}
+ (α+ β)η(X)η(V )g(Y, φX).

Thus using (2.9), we have AXX = 0, which implies

(α+ β)η(X)gM (X,V ) = −gM (H,V )
{
‖X‖2 − η2(X)

}
+ (α+ β)η(X)η(Y )[η(V )− gM (Y, φX)]

for every X ∈ ((kerF⊥∗ ), V ∈ (kerF∗). Choosing X which is orthogonal to ξ gM (H,V ) ‖X‖2 = 0. Since gM is the
Riemannian metric and H ∈ (kerF∗), we conclude that H = 0, which shows kerF⊥∗ is totally geodesic, so M is
usual product of Riemannian manifolds.
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