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ABSTRACT

In this paper, we establish some inequalities for submanifolds of real space forms endowed
with a Ricci quarter-symmetric metric connection. Using these inequalities, we obtain the relation
between Ricci curvature, scalar curvature and the mean curvature endowed with the Ricci quarter-
symmetric metric connection.
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1. Introduction

In [8], the idea of a Ricci quarter-symmetric metric connection on a Riemannian manifold was introduced
and presented by Kamilya and De. They also found necessary and sufficient conditions for the symmetry of
the Ricci tensor of a Ricci quarter-symmetric metric connection and showed that conformal curvature tensor of
induced connection ∇ and linear connection ∇̃ are equal [8]. Before this work, a few papers had been written
about the studies of various types of a quarter-symmetric metric connection and their properties in [11] and
[12].

In 1993, Chen [4] introduced a new Riemannian invariant for a Riemannian manifold M as follows:

δM = τ(p)− inf(K)(p), (1.1)

where τ(p) is scalar curvature of M and

inf(K)(p) = inf{K(Π) : K(Π) is a plane section of TpM}.

Chen gave the following general optimal inequality involving the new intrinsic invariant δM , the squared mean
curvature ‖H‖2 for an n−dimensional submanifold M in a real space form R(c) of constant sectional curvature
c :

δM ≤
n2(n− 2)

2(n− 2)
‖H‖2 +

1

2
(n+ 1)(n− 2)c. (1.2)

[3].
Also, Chen established a sharp inequality between the main intrinsic curvatures (the sectional curvature and

the scalar curvature) and the main extrinsic curvatures (the squared mean curvature) for a submanifold in real
space form Rm(c), well-known as Chen inequalities, in [2] as follows:

For each unit tangent vector X ∈ TpMn,

H2(p) ≥ 4

n2
{Ric(X)− (n− 1)c}, (1.3)

where H2 is the squared mean curvature and Ric(X) is Ricci curvature of Mn at X .
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In [7], Hong and Tripathi presented a general inequality for submanifolds of a Riemannian manifold by
using (1.3). In [13], this inequality was named Chen-Ricci inequality by Tripathi. In fact, the general inequality
obtained in [7] is a special case of Theorem 3.1 of [5]. Later, Mihai and Özgür in [10] proved Chen inequalities
for submanifolds of real space forms endowed with a semi-symmetric metric connection. Moreover, several
works in this direction is studied [1, 6, 9, 13].

The paper is organized as follows: Section 1 is concerned with introduction. In section 2, we give some basic
concepts on submanifolds of Riemannian manifold endowed with Ricci quarter-symmetric metric conection
which will be used throughout this paper. In section 3, we find some inequalities for submanifolds of real
space forms endowed with a Ricci quarter-symmetric metric connection. Considering these inequalities, we
obtain the relation between Ricci curvature, scalar curvature and the mean curvature endowed with the Ricci
quarter-symmetric metric connection.

2. Preliminaries

Let M̃ be an m-dimensional Riemannian manifold and ∇̃ a linear connection on M̃ . A linear connection ∇̃ is
said to be Ricci quarter-symmetric connection if the torsion tensor T̃ is of the form

T̃ (X,Y ) = π(Y )LX − π(X)LY, (2.1)

where π̃ is a 1-form and L is the (1, 1) Ricci tensor defined by

g̃(LX, Y ) = S(X,Y ) (2.2)

S is the Ricci tensor of M̃.
A linear connection ∇̃ is called a metric connection if

(∇̃X g̃)(Y,Z) = 0. (2.3)

Following [8], a Ricci quarter-symmetric metric connection ∇̃ on M̃ is given by

∇̃X̃ Ỹ =
◦
∇̃X̃ Ỹ + π(Ỹ )LX̃ − S(X̃, Ỹ )P (2.4)

for any vector fields X̃ and Ỹ of M̃ , where
◦
∇̃ denotes the Levi-Civita connection with respect to the Riemannian

metric g̃, π is a 1−form and P is the vector field defined by

g̃(P, X̃) = π(X̃)

for an arbitrary vector field X̃ of M̃ .
From now on, we will consider a Riemannian manifold M̃ endowed with a Ricci quarter-symmetric metric

connection ∇̃ and the Levi-Civita connection denoted by
◦
∇̃.

Let Mn be an n−dimensional submanifold of an m−dimensional Riemannian manifold M̃ . On the
submanifold Mn we consider the induced Ricci quarter-symmetric metric connection denoted by ∇ and the

induced Levi-Civita connection denoted by
◦
∇.

Let R̃ be the curvature tensor of M̃ with respect to ∇̃ and
◦
R̃ the curvature tensor of M̃ with respect to

◦
∇̃. We

also denote by R and
◦
R the curvature tensors of ∇ and

◦
∇, respectively, on M.

The Gauss formulas with respect to ∇ and
◦
∇, respectively, can be written as:

∇̃XY = ∇XY + h (X,Y ) , (2.5)

◦
∇̃XY = ∇̊XY +

◦
h (X,Y ) , (2.6)

where
◦
h is the second fundemental form of M in M̃ and h is a (0, 2)-tensor on M .
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For any orthonormal basis {e1, ..., en} of the tangent space TpMn, the mean curvature vector H(p) is given by

H(p) =
1

n

n∑
i=1

h(ei, ei).

If h = 0( respectively H = 0), then the submanifold Mn is called totally geodesic (minimal) in M̃. If h(X,Y ) =
g(X,Y )H for all X,Y ∈ TM , then Mn is said to be totally umbilical.

The Gauss equation with respect to the Ricci quarter-symmetric metric connection is

R(X,Y, Z,W ) = R̃(X,Y, Z,W ) + g(h(X,Z), h(Y,W ))− g(h(X,W ), h(Y,Z)). (2.7)

The curvature tensor
◦
R̃ with respect to the Levi-Civita connection

◦
∇̃ on M̃ (c) is expressed by

◦
R̃(X,Y, Z,W ) = c{g(X,W )g(Y, Z)− g(Y,W )g(X,Z)}. (2.8)

Let Π = Span{eii, ej} be 2−dimensional non-degenerate plane of the tangent space TpM at p ∈M . Then the
number

Kij =
g(R(ej , ei)ei, ej)

g(ei, ei)g(ej , ej)− g(ei, ej)2
(2.9)

is called the sectional curvature of the section Π at p ∈M .
Let Mn be an n-dimensional Riemanian manifold. We denote by K(π) the sectional curvature of Mn

associated with a plane section π ⊂ TpMn, p ∈Mn. If {e1, ..., en} is an orthonormal basis of the tangent space
TpMn, then the scalar curvature τ at p is defined by

τ(p) =
∑

1≤i<j≤n

Kij .

Let Mn be an n-dimensional Riemannian manifold, L be a k-plane section of TpMn, p ∈Mn, and X be a unit
vector in L. We choose an orthonormal basis {e1, ..., ek} of L such that e1 = X .

One defines [2] the Ricci curvature (or k-Ricci curvature) of L at X by

RicL(X) = K12 +K13 + ...+K1k,

where Kij denotes, as usual, the sectional curvature of the 2-plane section spanned by ei, ej . For each integer
k, 2 ≤ k ≤ n, the Riemannian invariant θk on Mn is defined by:

θk(p) =
1

k − 1
inf
L,X

RicL(X), p ∈M, (2.10)

where L runs over all k-plane sections in TpMn and X runs over all unit vectors in L.
Then the curvature tensor R̃ with respect to the Ricci quarter-symmetric metric connection ∇̃ on M̃ can be

shown that [8]

R̃(X,Y )Z =
◦
R̃(X,Y )Z −M(Y,Z)LX +M(X,Z)LY

−S(Y, Z)QX + S(X,Z)QY + π(Z)[(
◦
∇̃XL)Y − (

◦
∇̃Y L)X]

−[(
◦
∇̃XS)(Y,Z)− (

◦
∇̃Y S)(X,Z)]P, (2.11)

where M is tensor field of type (0, 2) defined by

M(X,Y ) = g(QX,Y ) = (
◦
∇̃Xπ)Y − π(Y )π(LX) +

1

2
π(P )S(X,Y ) (2.12)

and Q is a tensor field of type (2, 1) defined by

QX =
◦
∇̃XP − π(LX)P +

1

2
π(P )LX. (2.13)
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Here we shall consider Mn to be an Einstein manifold, that is,

S(X,Y ) =

◦
τ̃

n
g(X,Y ), (2.14)

where
◦
τ̃ is the scalar curvature.

Throughout this paper, we assume that Mn is an Einstein manifold.
Considering (2.11) and (2.14) we get

R̃(X,Y )Z =
◦
R̃(X,Y )Z −

◦
τ̃

n
[M(Y, Z)X −M(X,Z)Y + g(Y,Z)QX − g(X,Z)QY ]. (2.15)

Contracting (2.15) with respect to X, we get

S̃(Y,Z) =

◦
τ̃

n
[g(Y, Z)− {(n− 2)M(Y, Z) +mg(Y,Z)}], (2.16)

where S̃ is the Ricci tensor of ∇̃ and m is the trace of M(Y, Z). Now putting Y = Z = ei, where {e1, ..., en} is
an orthonormal basis of the tangent space at any point, we get by taking the sum for 1 ≤ i ≤ n in the relation
(2.16)

τ̃ =

◦
τ̃

n
[n− 2(n− 1)m], (2.17)

where τ̃ is the scalar curvature of ∇̃.

3. k-Ricci Curvature and k-Scalar Curvature

In this section, a sharp relation between the Ricci curvature in the direction of unit tangent vector X and
the mean curvature H with respect to Ricci quarter-symmetric metric connection ∇̃ is established. Using
this inequality, a relationship between the k−Ricci curvature of Mn and the squared mean curvature ‖H‖2
is showed. From now on, we assume that the vector field P is tangent to Mn.

Denote by
N(p) = {X ∈ TpMn | h(X,Y ) = 0,∀Y ∈ TpMn}.

Theorem 3.1. Let Mn be an n−dimensional submanifold of an m−dimensional real space form M̃(c) of constant
sectional curvature c endowed with Ricci quarter-symmetric metric connection ∇̃. Then, the following statements are
true.

(i) For each unit vector X ∈ TpMn we have

Ric(X) ≤ 1

4
n2 ‖H‖2 − (n− 1)c [1−m+ (n− 2)M(X,X)] , (3.1)

where m is the trace of M .
(ii) The equality case of (3.1) is satisfied by unit vector X ∈ TpMn if and only if

h(X,Y ) = 0, for all Y ∈ TpMn orthogonal to X,

h(X,X) =
n

2
H(p). (3.2)

(iii) The equality case of (3.1) holds for all unit vector X ∈ TpMn if and only if either p is a totally geodesic point or
n = 2 and p is a totally umbilical point.

Proof. From (2.7) and (2.15) we get

2τ(p) = n(n− 1)c− 2(n− 1)2cm+ n2 ‖H‖2 − ‖h‖2 , (3.3)
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where m is the trace of M and denote by

‖h‖2 =

n∑
i,j=1

g(h(ei, ej), h(ei, ej)).

From (3.3), we get

1

4
n2 ‖H‖2 = τ(p)− n(n− 1)c

2
+ (n− 1)2cm

+
1

4

m∑
r=n+1

(hr11 − hr22 − ...− hrnn)2 +

m∑
r=n+1

n∑
j=2

(hr1j)
2

−
m∑

r=n+1

m∑
2≤i<j≤n

(hriih
r
jj − (hrij)

2), (3.4)

where
hrij = g(h(ei, ej), er).

Using (2.7) and (2.15) we also have
m∑

r=n+1

m∑
2≤i<j≤n

(hriih
r
jj − (hrij)

2) =
∑

2≤i<j≤n

Kij −
∑

2≤i<j≤n

K̃ij

=
∑

2≤i<j≤n

Kij − (n− 1)(n− 2)c

(
1

2
−m+M(e1, e1)

)
. (3.5)

From (3.4) and (3.5), we obtain

Ric(e1) =
1

4
n2 ‖H‖2 − (n− 1)c (1−m+ (n− 2)M(e1, e1))

−
m∑

r=n+1

n∑
j=2

(hr1j)
2 − 1

4

m∑
r=n+1

(hr11 − hr22 − ...− hrnn)2. (3.6)

If we choose e1 = X as any unit vector of TpMn in the above equation, one obtains (3.1).
Taking into consideration equation (3.6) and X = e1, the equality case of (3.1) holds if and only if

hr12 = hr13 = ... = hr1n = 0 and hr11 = hr22 + ...+ hrnn, r ∈ {n+ 1, ...,m} (3.7)

which shows that (3.2) holds.
We now suppose that the equality case of (3.1) holds for all unit vector X ∈ TpMn. Then , in view of (3.7),

for each r ∈ {n+ 1, ...,m}we have i ∈ {1, ..., n},

hrij = 0, i 6= j (3.8)
2hrii = hr11 + hr22 + ...+ hrnn, i ∈ {1, ..., n}. (3.9)

From (3.9), we have 2hr11 = 2hr22 = ... = 2hrnn = hr11 + hr22 + ...+ hrnn, which implies that

(n− 2)(hr11 + hr22 + ...+ hrnn) = 0. (3.10)

Thus, either hr11 + hr22 + ...+ hrnn = 0 or n = 2. If hr11 + hr22 + ...+ hrnn = 0, then in view of (3.9), we get hrii = 0
for all i ∈ {1, ..., n}. This together with (3.8) gives hrij = 0 for all i, j ∈ {1, ..., n} and r ∈ {n+ 1, ...,m}, that is,
p is a totally geodesic point. If n = 2, then from (3.9) 2hr11 = 2hr22 = hr11 + hr22, which shows that p is a totally
umbilical point. The proof of the converse part is straightforward.

Corollary 3.1. If H(p) = 0, then a unit tangent vector X at p satisfies the equality case of (3.1) if and only if X ∈ N(p).

Theorem 3.2. Let Mn be an n−dimensional submanifold of an m−dimensional real space form M̃(c) of constant
sectional curvature c endowed with Ricci quarter-symmetric metric connection ∇̃

τ(p) ≤ (n− 1)

2

(
n ‖H‖2 + nc− 2c(n− 1)m

)
. (3.11)

Equality case of (3.11) holds at p ∈Mn if and only if p is a totally umbilical point.
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Proof. Let p ∈Mn and {e1, ..., en} be orthonormal basis of TpMn. The relation (3.3) is equivalent to

n2 ‖H‖2 = 2τ(p) + ‖h‖2 + (n− 1)c (2(n− 1)m− n) . (3.12)

We choose an orthonormal basis {e1, ..., en, en+1, ..., em} at p such that en+1 is parallel to the mean curvature
vector H(p) and e1, ..., en diagonalize the shape operator Aen+1

. Then the shape operators take the forms

Aen+1
=


a1 0 . . . 0
0 a2 . . . 0
. . . .
. . . .
. . . .
0 0 . . . an

 (3.13)

Aer =
(
hrij
)

, i, j = 1, ..., n; r = n+ 2, ...,m, traceAer = 0. (3.14)

From (3.12), we get

n2 ‖H‖2 = 2τ(p) +

n∑
i=1

a2i +

m∑
r=n+2

n∑
i,j=1

(hrij)
2 + (n− 1)c (2(n− 1)m− n) . (3.15)

On the other hand, since
0 ≤

∑
i<j

(ai − aj)2 = (n− 1)
∑
i

a2i − 2
∑
i<j

aiaj (3.16)

we obtain

n2 ‖H‖2 =

(
n∑

i=1

ai

)2

=

n∑
i=1

a2i + 2
∑
i<j

aiaj ≤ n
n∑

i=1

a2i (3.17)

which implies
n∑

i=1

a2i ≥ n ‖H‖
2
. (3.18)

So from (3.15) and (3.18), we have

n2 ‖H‖2 ≥ 2τ(p) + n ‖H‖2 +

m∑
r=n+2

n∑
i,j=1

(hrij)
2 + (n− 1)c (2(n− 1)m− n) . (3.19)

If the equality case of (3.11) holds, then from (3.16) and (3.19) it follows that

a1 = a2 = ... = an and Aer = 0, r = n+ 2, ...,m. (3.20)

Therefore, p is a totally umbilical point. The converse is straightforward.

Theorem 3.3. Let Mn be an n−dimensional submanifold of an m−dimensional real space form M̃(c) of constant
sectional curvature c endowed with Ricci quarter-symmetric metric connection ∇̃. Then we have

θk(p) ≤ ‖H‖2 + c

(
2− 4(n− 1)m

n

)
. (3.21)

Proof. Let {e1, ..., en} be an orthonormal basis of TpMn. Denote by Li1...ik the k-plane section spanned by
{ei1 , ..., eik}. Using the definitions of the ricci and scalar curvatures, we have

τ (Li1...ik) =
1

2

∑
i∈{i1,...,ik}

RicLi1...ik (ei), (3.22)

τ(p) =
1

Ck−2
n−2

∑
1≤i1<...≤ik≤n

τ (Li1...ik) . (3.23)

From (2.10), (3.22) and (3.23), we get

τ(p) ≥ n(n− 1)

2
θk(p). (3.24)

Using (3.11) and (3.24) we obtain (3.21).
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Lemma 3.1. If n > k ≥ 2 and a1, ..., an, a are real numbers such that(
n∑

i=1

ai

)2

= (n− k + 1)

(
n∑

i=1

a2i + a

)
(3.25)

then
2
∑

1≤i<j≤k

aiaj ≥ a (3.26)

with equality holding if and only if
a1 + a2 + ...+ ak = ak+1 = ... = an. (3.27)

Theorem 3.4. Let Mn be an n−dimensional submanifold of an m−dimensional real space form M̃(c) of constant
sectional curvature c endowed with Ricci quarter-symmetric metric connection ∇̃. Then, for each point p ∈Mn and
each k-plane section Πk ⊂ TpMn (n > k ≥ 2), we have

τ(p)− τ(πk) ≤ (n− k)

[
n2

2(n− k + 1)
‖H‖2 − (n+ k − 1)

2
c− (n− 1)cm

]
−(n− 1)(k − 1)c trace(m|

π⊥
k

). (3.28)

The equality case of (3.28) holds at p ∈Mn if and only if there exist an orthonormal basis {e1, ..., en} of TpMn and an
orthonormal basis {en+1, ..., em} of T⊥p Mn such that (a) Πk=Span{e1, ..., ek} and (b) the forms of shape operators Aer ,
r = n+ 1, ...,m, take the forms

Aen+1
=



hn+1
11 0 . . . 0
0 hn+1

22 . . . 0
. . . 0
. . .
. . .
0 0 . . . hn+1

kk

0

(
k∑

i=1

hn+1
ii

)
In−k


, (3.29)

Aer =



hr11 hr12 . . . hr1k
hr12 hr22 . . . hr2k
. . . 0
. . .
. . .

hr1k hr2k . . . −
k−1∑
i=1

hrii

0 0n−k


, r ∈ {n+ 2, ...,m}. (3.30)

Proof. Let Πk ⊂ TpMn be a k−plane section. We choose an orthonormal basis {e1, ..., en} for TpMn and
{en+1, ..., em} for the normal space T⊥p M

n at p such that Πk=Span{e1, ..., ek}, the mean curvature vector H
is in the direction of the normal vector to en+1 and e1, ..., en diagonalize the shape operator Aen+1

. Then the
shape operators take the forms (3.13) and (3.14). We rewrite (3.3) as(

n∑
i=1

hn+1
ii

)2

= (n− k + 1)

(
n∑

i=1

(
hn+1
ii

)2
+

m∑
r=n+2

n∑
i,j=1

(hrij)
2 + ε

)
, (3.31)

where

ε = 2τ(p)− n(n− 1)c+ 2(n− 1)2cm− n2(n− k)

(n− k + 1)
‖H‖2 . (3.32)

Applying Lemma 3.1 in (3.31), we get

2
∑

1≤i<j≤k

hn+1
ii hn+1

jj ≥ ε+

m∑
r=n+2

n∑
i,j=1

(hrij)
2. (3.33)
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From equation (2.7) and (2.15) it also follows that

τ(πk) =
k(k − 1)c

2
− (n− 1)(k − 1)c

k∑
i=1

M(ei, ei) +
∑

1≤i<j≤k

hn+1
ii hn+1

jj

+

m∑
r=n+2

m∑
1≤i<j≤k

(
hriih

r
jj − (hrij)

2
)
. (3.34)

Using (3.33) and (3.34) we get

τ(πk) ≥ k(k − 1)c

2
− (n− 1)(k − 1)c

k∑
i=1

M(ei, ei) +
1

2
ε

+
1

2

m∑
r=n+2

(hr11 + hr22 + ...+ hrkk)
2

+
1

2

m∑
r=n+2

n∑
i,j>k

(hrij)
2

+

m∑
r=n+2

n∑
j>k

(
(hr1j)

2 + (hr2j)
2 + ...+ (hrkj)

2
)

(3.35)

or

τ(πk) ≥ k(k − 1)c

2
− (n− 1)(k − 1)c

k∑
i=1

M(ei, ei) +
1

2
ε. (3.36)

We remark that
M(e1, e1) +M(e2, e2) + ...+M(ek, ek) = m− trace(m|

π⊥
k

). (3.37)

From (3.32), (3.36) and (3.37) we obtain

τ(πk) ≥ (n− k)

(
(n+ k − 1)

2
c+ (n− 1)cm

)
+ τ(p)

− n2(n− k)

2(n− k + 1)
‖H‖2 + (n− 1)(k − 1)ctrace(m|

π⊥
k

) (3.38)

which proves the inequality case of (3.28).

If the equality case of (3.28) holds, then the inequalities given by (3.33) and (3.36) become equalities. In this
case, for r = n+ 2, ...,m we have

hn+1
1j = hn+1

2j = ... = hn+1
kj = 0, j = k + 1, ..., n, (3.39)

hrij = 0, i, j = k + 1, ..., n, (3.40)

hr11 + hr22 + ...+ hrkk = 0. (3.41)

Applying Lemma 3.1 we also have

hn+1
11 + hn+1

22 + ...+ hn+1
kk = hn+1

ll , l = k + 1, ..., n. (3.42)

Thus, after choosing a suitable orthonormal basis {e1, ..., em}, the shape operator of Mn takes the form given
by (3.29) and (3.30). The converse is easy to follow.

By Theorem 3.4 we get the following corollary.

Corollary 3.2. Let Mn n ≥ 3, be an n-dimensional submanifold of an m−dimensional real space form M̃(c) of constant
sectional curvature c endowed with Ricci quarter-symmetric metric connection ∇̃. Then, for each point p ∈Mn and each
2-plane section Π2 ⊂ TpMn, we have

δM ≤ (n− 2)

[
n2

2(n− 1)
‖H‖2 − (n+ 1)

2
c− (n− 1)cm

]
−(n− 1)c trace(m|

π⊥ ). (3.43)
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The equality case of (3 .43 ) holds at p ∈Mn if and only if there exist an orthonormal basis {e1, ..., e2} of TpMn and
an orthonormal basis {en+1, ..., em} of T⊥p Mn such that (a) Π2=Span{e1, e2} and (b) the forms of shape operators Aer ,
r = n+ 1, ...,m,become

Aen+1 =

 a 0 0
0 b 0
0 0 (a+ b)In−2

 , Aer =

 cr dr 0
dr −cr 0
0 0 0n−2

 , r = n+ 2, ...,m. (3.44)
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