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ABSTRACT

In this paper, we establish some inequalities for submanifolds of real space forms endowed
with a Ricci quarter-symmetric metric connection. Using these inequalities, we obtain the relation
between Ricci curvature, scalar curvature and the mean curvature endowed with the Ricci quarter-
symmetric metric connection.
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1. Introduction

In [8], the idea of a Ricci quarter-symmetric metric connection on a Riemannian manifold was introduced
and presented by Kamilya and De. They also found necessary and sufficient conditions for the symmetry of
the Ricci tensor of a Ricci quarter-symmetric metric connection and showed that conformal curvature tensor of
induced connection V and linear connection V are equal [8]. Before this work, a few papers had been written
about the studies of various types of a quarter-symmetric metric connection and their properties in [11] and
[12].

In 1993, Chen [4] introduced a new Riemannian invariant for a Riemannian manifold M as follows:

om = 7(p) — inf(K)(p), (1.1)
where 7(p) is scalar curvature of M and
inf(K)(p) = inf{ K (I) : K(II) is a plane section of T),M }.

Chen gave the following general optimal inequality involving the new intrinsic invariant 0, the squared mean
curvature ||H||* for an n—dimensional submanifold M in a real space form R(c) of constant sectional curvature
c:
2(n —
Sar < n*(n —2)

< =D ||H||2+%(n+1)(n—2)c. (1.2)

[3].

Also, Chen established a sharp inequality between the main intrinsic curvatures (the sectional curvature and
the scalar curvature) and the main extrinsic curvatures (the squared mean curvature) for a submanifold in real
space form R™(¢), well-known as Chen inequalities, in [2] as follows:

For each unit tangent vector X € T, M",

H?(p) > —{Rie(X) — (n — )2}, (1.3)

4
n?

where H? is the squared mean curvature and Ric(X) is Ricci curvature of M™ at X.
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In [7], Hong and Tripathi presented a general inequality for submanifolds of a Riemannian manifold by
using (1.3). In [13], this inequality was named Chen-Ricci inequality by Tripathi. In fact, the general inequality
obtained in [7] is a special case of Theorem 3.1 of [5]. Later, Mihai and Ozgiir in [10] proved Chen inequalities
for submanifolds of real space forms endowed with a semi-symmetric metric connection. Moreover, several
works in this direction is studied [1, 6, 9, 13].

The paper is organized as follows: Section 1 is concerned with introduction. In section 2, we give some basic
concepts on submanifolds of Riemannian manifold endowed with Ricci quarter-symmetric metric conection
which will be used throughout this paper. In section 3, we find some inequalities for submanifolds of real
space forms endowed with a Ricci quarter-symmetric metric connection. Considering these inequalities, we
obtain the relation between Ricci curvature, scalar curvature and the mean curvature endowed with the Ricci
quarter-symmetric metric connection.

2. Preliminaries

Let M be an m-dimensional Riemannian manifold and V a linear connection on M. A linear connection V is
said to be Ricci quarter-symmetric connection if the torsion tensor 7" is of the form

T(X,Y)=n(Y)LX — n(X)LY, (2.1)
where 7 is a 1-form and L is the (1, 1) Ricci tensor defined by

J(LX,Y) = S(X,Y) 2.2)

S is the Ricci tensor of :J\Z .
A linear connection V is called a metric connection if

(Vx9)(Y,Z) =0. 2.3)

Following [8], a Ricci quarter-symmetric metric connection ¥V on M is given by

o

VgV =ViY +7(Y)LX — S(X,Y)P (2.4)

for any vector fields X and Y of M ,where V denotes the Levi-Civita connection with respect to the Riemannian
metric g, m is a 1—form and P is the vector field defined by

(P, X) = m(X)

for an arbitrary vector field X of M .

From now on, we will consider a Riemannian manifold M endowed with a Ricci quarter-symmetric metric
o

connection V and the Levi-Civita connection denoted by V.

Let M™ be an n—dimensional submanifold of an m—dimensional Riemannian manifold M. On the
submanifold M™ we consider the induced Ricci quarter-symmetric metric connection denoted by V and the

induced Levi-Civita connection denoted by V.

o e}

Let R be the curvature tensor of M with respect to V and R the curvature tensor of M with respect to V. We
o} o
also denote by R and R the curvature tensors of V and V, respectively, on M.

The Gauss formulas with respect to V and V, respectively, can be written as:

VxY =VxY +h(X,Y), (2.5)

o

VxY =VxY +h(X,Y), (2.6)

where h is the second fundemental form of M in M and his a (0, 2)-tensor on M.
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For any orthonormal basis {eq, ..., e, } of the tangent space T, M", the mean curvature vector H (p) is given by
H(p) = lih(e- e;)
p - n — 2y =)

If h = 0( respectively H = 0), then the submanifold A" is called totally geodesic (minimal) in M.Ifh(X,Y) =
g(X,Y)H forall X,Y € TM, then M™ is said to be totally umbilical.
The Gauss equation with respect to the Ricci quarter-symmetric metric connection is

R(X,Y,Z,W) =R(X,Y,Z, W) + g(h(X, Z), (Y, W)) — g(h(X, W), (Y, Z)). (2.7)

The curvature tensor R with respect to the Levi-Civita connection vV on M (¢) is expressed by

o

R(X7 Y, Z, W) = C{g(Xv W)g(Y7 Z) - g(K W)g(Xv Z)} (28)

Let IT = Span{ei;, e;} be 2—dimensional non-degenerate plane of the tangent space TpM at p € M. Then the
number

K, — g(R(ej,e;)ei, e)) 2.9)
g(ei,ei)g(ej, ;) — glei, e5)?
is called the sectional curvature of the section IT at p € M.
Let M™ be an n-dimensional Riemanian manifold. We denote by K(m) the sectional curvature of M™
associated with a plane section 7 C TpM™, p € M™. If {es, ..., e, } is an orthonormal basis of the tangent space
TpM™, then the scalar curvature 7 at p is defined by

)= Y. K
1<i<j<n

Let M" be an n-dimensional Riemannian manifold, L be a k-plane section of TpM™, p € M™, and X be a unit
vector in L. We choose an orthonormal basis {ey, ..., e, } of L such thate; = X.
One defines [2] the Ricci curvature (or k-Ricci curvature) of L at X by

RiCL(X) =Ko+ Ki3+ ... + Ky,

where K;; denotes, as usual, the sectional curvature of the 2-plane section spanned by e;, ;. For each integer
k, 2 < k < n, the Riemannian invariant 6;, on M" is defined by:

0r(p) inf Ricp(X), pe M, (2.10)

:k—lL,X

where L runs over all k-plane sections in TpM™ and X runs over all unit vectors in L.

Then the curvature tensor R with respect to the Ricci quarter-symmetric metric connection V on M can be
shown that [8]

[e]

R(X,Y)Z = R(X,Y)Z-M(Y,Z)LX + M(X,Z)LY
S(Y.2)QX + S(X. 2)QY + #(2)[(VxD)Y — (VyL)X]
~[(Vx8)(Y,2) = (V¥ $)(X, 2)]P, 211)
where M is tensor field of type (0,2) defined by
M(X,Y)=9(QX,)Y) = (%Xw)Y —n(Y)n(LX) + %W(P)S(X, Y) (2.12)

and Q@ is a tensor field of type (2, 1) defined by

QX = %XP — n(LX)P + %W(P)LX. (2.13)
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Here we shall consider M™ to be an Einstein manifold, that is,

[e]

S(X,Y) = g(X.Y), (2.14)

where 7 is the scalar curvature.
Throughout this paper, we assume that A/" is an Einstein manifold.
Considering (2.11) and (2.14) we get

o

MY, 2)X ~ M(X. Z)Y +4(Y. 2)QX — g(X. Z)QY]. (2.15)

R(X,Y)Z = J%(X, Y)Z —

Contracting (2.15) with respect to X, we get

e}

S, 2) = —[9(Y,2) = {(n = 2)M(Y, Z) + mg(Y, )}, (2.16)

T
n
where S is the Ricci tensor of V and m is the trace of M (Y, Z). Now putting Y = Z = e;, where {eq,...,e,} is

an orthonormal basis of the tangent space at any point, we get by taking the sum for 1 < ¢ < n in the relation
(2.16)

o

%[n —2(n—1)m|, (2.17)

\]
I

where 7 is the scalar curvature of V.

3. k-Ricci Curvature and k-Scalar Curvature

In this section, a sharp relation between the Ricci curvature in the direction of unit tangent vector X and
the mean curvature H with respect to Ricci quarter-symmetric metric connection V is established. Using

this inequality, a relationship between the k—Ricci curvature of M" and the squared mean curvature || H 12
is showed. From now on, we assume that the vector field P is tangent to M".
Denote by
N(p) = {X € T,M" | h(X,Y) = 0,VY € T,M"}.

Theorem 3.1. Let M"™ be an n—dimensional submanifold of an m—dimensional real space form M(c) of constant

sectional curvature ¢ endowed with Ricci quarter-symmetric metric connection . Then, the following statements are
true.

(¢) For each unit vector X € T, M™ we have
1
Ric(X) < ZnZ IH|> = (n—1)c[l —m+ (n—2)M(X, X)], (3.1)

where m is the trace of M.
(1) The equality case of (3.1) is satisfied by unit vector X € T, M™ if and only if

h(X,Y) = 0, forallY € TpM" orthogonal to X,
n
BXX) = SH(p). (3.2)

(t19) The equality case of (3.1) holds for all unit vector X € T,M™ if and only if either p is a totally geodesic point or
n = 2 and p is a totally umbilical point.

Proof. From (2.7) and (2.15) we get

27(p) = n(n — 1)c — 2(n — 1)2em + n? | H||> = |h)?, (3.3)
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where m is the trace of M and denote by

n

ij=1
From (3.3), we get
1 n(n —1)c
S = ) - " e 1yem
1 - T T T - - T
T Z (hi1 = Ry — hp)? + Z (hi;)?
r=n+1 r=n+1j=2
=D D> (= (i), (34)

where

Using (2.7) and (2.15) we also have

Yoo > (- = Y Ky- Y, Ky
r=n+12<i<j<n 2<i<j<n 2<i<j<n
1
= Z Ki;j —(n—1)(n—2)c <2—m+M(el,el)> . (3.5)
2<i<j<n
From (3.4) and (3.5), we obtain
1

Ric(e;) = ZnQ ||H||2 —(n=1)c(l=m+ (n—2)M(ey,e1))

m n - 1 m . . .
S DS 7 SRl R ) 6o

r=n+1 j=2 r=n-+1

If we choose e; = X as any unit vector of T, /™ in the above equation, one obtains (3.1).
Taking into consideration equation (3.6) and X = e, the equality case of (3.1) holds if and only if
hiy =his=..=hi, =0and hf; = hyy + ...+ h;,, re{n+1,..,m} (3.7)

which shows that (3.2) holds.
We now suppose that the equality case of (3.1) holds for all unit vector X € T,M". Then , in view of (3.7),
foreachr € {n+1,...,m} wehavei € {1,....,n},

o= 0, i#] (3.8)
2h]; hii +hie+..+h,., t€{1,...,n}. 3.9

From (3.9), we have 2h%, = 2h%, = ... = 2R}, = hi; + hby + ... + k], which implies that
(n—2)(h; + hiy + ...+ hy,) =0. (3.10)

Thus, either A7, + hiy + ...+ h},, = 0 or n = 2. If hi; + hi, + ... + hl,, = 0, then in view of (3.9), we get hl; =0
for all i € {1,...,n}. This together with (3.8) gives hj; =0 for all 4,7 € {1,...,n} and r € {n + 1, ..., m}, that is,
p is a totally geodesic point. If n = 2, then from (3.9) 2h]; = 2k}, = h}; + hj,, which shows that p is a totally
umbilical point. The proof of the converse part is straightforward. O

Corollary 3.1. If H(p) = 0, then a unit tangent vector X at p satisfies the equality case of (3.1) if and only if X € N(p).

Theorem 3.2. Let M™ be an n—dimensional submanifold of an m—dimensional real space form M(c) of constant
sectional curvature c endowed with Ricci quarter-symmetric metric connection V

(n—1)
7(p) <

Equality case of (3.11) holds at p € M™ if and only if p is a totally umbilical point.

(nHH||2 +ne— 2¢(n — 1)m). (3.11)
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Proof. Letp € M™ and {ey, ..., e, } be orthonormal basis of T, M. The relation (3.3) is equivalent to
n® |H|* = 27(p) + [|]|* + (n — e (2(n — 1)m —n) . (3.12)

We choose an orthonormal basis {e1, ..., €5, €pt1, ..., €, } at p such that e,, 11 is parallel to the mean curvature
vector H(p) and e, ..., e, diagonalize the shape operator A Then the shape operators take the forms

€n41°
aiy 0 . . . 0
0 as . . . 0
Acpiy (3.13)
o 0 . . . ap
A, = (hfj) , Li=1,..,n r=n+2,.,m, traceA., =0. (3.14)
From (3.12), we get
n?||H|? = 2r(p +Za + Z Z +(n-1ec@m—-1)m-n). (3.15)
r=n+21i,j=1
On the other hand, since
O<Z a; —aj;)’ = (n—1) Za _22%% (3.16)
i<j 1<j

we obtain )
n?|H|?* = ( ai> :Za?—l—QZaiaj SnZa? (3.17)

which implies

ai >n|H|*. (3.18)
=1
So from (3.15) and (3.18), we have
n?H|? = 2r(p) +n|HIP+ > Y (h)* + (n— e (2(n—1)m —n). (3.19)
r=n+21i,j=1

If the equality case of (3.11) holds, then from (3.16) and (3.19) it follows that
ag=ay=..=a, and A,, =0, r=n+2,...,m. (3.20)
Therefore, p is a totally umbilical point. The converse is straightforward. O

Theorem 3.3. Let M™ be an n—dimensional submanifold of an m—dimensional real space form M(c ) of constant
sectional curvature c endowed with Ricci quarter-symmetric metric connection V. Then we have

ouip) < N+ (2= D), 621

Proof. Let {es,...,e,} be an orthonormal basis of T,M". Denote by L;, ;, the k-plane section spanned by
{€s,, ..., i, }. Using the definitions of the ricci and scalar curvatures, we have

1

7 (Liy.ix) = 5 Z Ricy,, ., (€i), (3.22)
i€{i,..., i}
1
7(p) = oF2 Z T (L i) - (3.23)

n—2 1<i;<...<ip<n

From (2.10), (3.22) and (3.23), we get

7(p) > ka (p). (3.24)

Using (3.11) and (3.24) we obtain (3.21). O
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Lemma 3.1. Ifn >k > 2and a, ..., ay, a are real numbers such that

(i ai> =n-k+1) <Zn: a? + a> (3.25)

i=1 i=1
then
2 Z a;a; >a (326)
1<i<j<k
with equality holding if and only if
a1+ as + ... + ap = g1 = ... = Gy (3.27)

Theorem 3.4. Let M™ be an n—dimensional submanifold of an m—dimensional real space form M(c) of constant

sectional curvature ¢ endowed with Ricci quarter-symmetric metric connection V. Then, for each point p € M™ and
each k-plane section I, C TpM™ (n > k > 2), we have

") - (m) < (- b) | g VI - e

—(n—1)(k—1)c trace(m‘ﬂ? ). (3.28)

—(n—1)em

The equality case of (3.28) holds at p € M™ if and only if there exist an orthonormal basis {e1, ..., e, } of TpM"™ and an
orthonormal basis {e,11,...,em} oprLM" such that (a) II=Span{es, ..., ex } and (b) the forms of shape operators A.,,
r=mn+1,...,m, take the forms

Ryt 0 . . .0 1
0 ALY .. .0
0
i1 = . . . : (3.29)
0 0 R
0 (Z h;;“) I
L =1 J
[ hiy Pl hik ]
hiy Dy hay,
. 0
A = ' ’ ’ , re{n+2,..,m} (3.30)
k—1
P ;h;
L 0 On—k _

Proof. Let I, C TpM™ be a k—plane section. We choose an orthonormal basis {es,...,e,} for TpM™ and
{€n+1, ..., em} for the normal space Tle ™ at p such that IIy=Span{es, ..., e}, the mean curvature vector H
is in the direction of the normal vector to e, 41 and ey, ..., e, diagonalize the shape operator A Then the
shape operators take the forms (3.13) and (3.14). We rewrite (3.3) as

(Z hn+1> (n—k+1) (Zn: hn+1 i Zn: (hi;)? +€> , (3.31)

€n+41°

where 20— B
e =27(p) —n(n —1)c+2(n—1)%cm — ] | H|?. (3.32)
Applying Lemma 3.1 in (3.31), we get
9 Z h7z+1hn+1 > et Z Z (h%)2. (3.33)
1<i<j<k r=n+21i,j=1
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From equation (2.7) and (2.15) it also follows that

k

k(k—1
r(m) = % =Dk —1)e > Mlene)+ S AL
i=1 1<i<j<k
+ > D Ak - (W) (3.34)
r=n+2 1<i<j<k
Using (3.33) and (3.34) we get
k
T(m) > @ —(n=1)(k—=1)cY _ Meie:)+ %e
i=1
1 m . ; . 1 m n
+5 > (Wi + kb4t By + 3 SN ()2
r=n-+2 r=n+21i,j>k
+ Z Z + (h5)2 4 o+ (h)?) (3.35)
r=n+2 j>k
or .
-1 - 1
T(m) > M —(n—=1)(k - 1)02 M(e;,e;) + € (3.36)
i=1
We remark that
M(e1,e1) + M(ez,e2) + ... + M(ey, ex) = m — trace(m , ). (3.37)

From (3.32), (3.36) and (3.37) we obtain

() > (k) ((’”5‘” - 1>cm) +7(0)
n2(n k)
which proves the inequality case of (3.28). O

If the equality case of (3.28) holds, then the inequalities given by (3.33) and (3.36) become equalities. In this
case, forr =n+2,...,m we have

Wt =hgft = =hit =0, j=k+1,..n, (3.39)
hi; =0, i,j=k+1,..n, (3.40)
h”lﬂl + h’gQ + oo + th - 0. (3.41)

Applying Lemma 3.1 we also have
R hs T R =R, I=k 41, (3.42)

Thus, after choosing a suitable orthonormal basis {es, ..., e, }, the shape operator of M takes the form given
by (3.29) and (3.30). The converse is easy to follow.
By Theorem 3.4 we get the following corollary.

Corollary 3.2. Let M™ n > 3, be an n-dimensional submanifold of an m—dimensional real space form M (c) of constant

sectional curvature ¢ endowed with Ricci quarter-symmetric metric connection V. Then, for each point p € M™ and each
2-plane section 11y, C TpM™, we have

5M S (TL—Q)

—(n—1)em

n? (n+1)
2(Tl — 1) || || - 2 c
—(n—1)ctrace(m| ). (3.43)
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The equality case of (3.43) holds at p € M™ if and only if there exist an orthonormal basis {e1, ...,ez} of TpM"™ and
an orthonormal basis {en41,...,em} Of TpLM” such that (a) Io=Span{ey, e2} and (b) the forms of shape operators A.,,
r=n+1,..., m,become

a 0 0 ¢ dy 0
Ac..,=10 b 0 A, = | dr —cr 0 , r=n+2,..,m. (3.44)
0 0 (a+b)I,—2 0 0 0,9
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