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Abstract: In this study, a mathematical model for the in-human host and in-mosquito dynamics of malaria parasite with immune
responses was formualeted and analyzed. A positive invariant region of the model was established, and a basic reproduction number
R0, of the model was computed. Existence and stability of two non-negative equilibrium points: malaria free equilibrium (MFE) and
malaria infection equlibrium (MIE) were established. We, also proved that MFE is locally asymptotically stable if R0 < 1 and globally
asymptotically stable (GAS) if R0 ≤ 1. Numerical simulations prove that MIE exists and is GAS. Moreover, our results revealed that
immunity has significant influence on lowering malaria infection at blood and mosquito stages. However, an insignificant effect of
immunity on both cells and parasites at liver stage infection was observed. Furthermore, the model depicts that infection decreases as
lifespan of immune cells increases. The impact of immune cells to suppress production of merozoites is noted to be higher than that of
antibodies to block invasion of sporozoites and merozoites.
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1 Introduction

In human, malaria infection is initiated by a bite from a parasite-carrying mosquito, where sporozoites are injected into
bloodstream and quickly migrate to the liver, where they penetrate hepatic liver cells (HLCs) and develop into schizonts
that give rise to thousands of merozoites into bloodstream [7]. Merozoites invade red blood cells (RBCs), that develop
into erythrocytic schizonts which finally burst and release an average of 16 merozoites [20] which either re-invade new
RBCs or switch to sexual form termed gametocytes. Human-mosquito infection of malaria begins through ingestion of
gametocytes into parasite-free mosquito during its blood-meal. Ingested gametocytes then fuse and develop into oocysts,
where each oocyst ruptures and releases an average of 1000 sporozoites [18] that are responsible for new
mosquito-human infection.

A major role of the human immune system is to defend a body against the infection-causing organisms, called
pathogens. Human immune system has two main components: innate immunity and adaptive immunity. Innate immunity
defends the body against any pathogenic invasion, while adaptive immunity provides protection against a specific
pathogen, and usually comes into action after the infections outrun the innate immunity. Innate immune responses
include macrophages, interferon and natural killer (NK) cells, while T-lymphocyte (cytotoxic T and helper T) and
B-lymphocyte (B-cells) are some elements of adaptive immune responses. Cellular-mediated responses involves cell
effectors such as cytotoxic T (CD8+ T) and NK cells to kill intracellular pathogens while humoral responses involve
effector molecules such as antibodies (secreted by B-cells) to clear free pathogens in body’s fluid such blood.
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In malaria infection, both innate and adaptive immune responses are stimulated [16,15] to obstruct parasites by either
preventing the re-invasion of parasite or increasing the death rate of infected cells [12,16], and both humoral and
cell-mediated immune effector mechanisms are involved in immunology of malaria [15,14]. Antibodies neutralize the
sporozoites and merozoites and inhibit sporozoites’ invasion to HLCs [14,15] and merozoites’ invasion to RBCs [20,14].
They also restrain the parasite growth [6,14]. Macrophages are activated by NK cells to intensify phagocytosis and
clearance of intra-erythrocytic parasites [3]. The IFN-γ produced by CD8+ T cells (in help of CD4+) inhibit growth of,
and kill intrahepatic parasites [14,3,15]. Moreover, antibodies and complement system that are ingested by mosquito
during blood meal mediate the lysis of gametocytes and inhibit development of parasite in the mosquito [15].

In recent years, there has been increasing interest in mathematical models on intra host dynamics of malaria with
immune responses [16,20,6] and references therein. Some of these studies ignored the absorption effect of merozoites
into RBC [16]. However, some authors incorporate this effect since during malaria infection parasite penetrates into
healthy cells. Therefore, in this case both populations (parasites and uninfected cells) decrease [2,20,6]. Moreover, the
clearance of free parasites or infected cells by immune responses has been modelled either as simple mass-action [20,6]
which is unbounded function or using the Michaelis-Menten-Monod function (MMMF) which is nonlinear-bounded
[16]. Furthermore, [6] incorporate the effects of antibodies to inhibit parasite’s growth or block invasion of host’s cells by
parasites using MMMF.

However, none of these studies discussed the liver stage dynamics of malaria parasites. As it has been stated in previous
paragraph, some studies did not incoporate the absorption effect of parasites into uninfected cells. Moreover, some of
these models ignored either the saturation effect on cell proliferation and/or suppression of parasites replication. In this
study, we formulate a mathematical model for the in-human host and in mosquito dynamics of malaria with immune
responses, where the MMMF is used to describe the effect of both immune responses on clearance of infected cells and
free parasites. The effect of antibodies on supressing the replication of parasites at liver and blood stages of malaria
infection is included. Lastly, we incoroprate the effect of antibodies picked-up by mosquito in mediating the lysis of
gametocytes and preventing parasite’s development in the mosquito.

2 Model formulation

2.1 Model desription

In development of this model, we extend the model by [19] by incorporating the effect of immune system. The dynamics
of interactions of malaria parasites in-mosquito vector and in-human host with immune responses are described using a
system of nonlinear ordinary differential equations. Variables involved in this model are: the uninfected hepatocytic liver
cells (uHLCs), H; infected hepatocytic liver cells (iHLCs), Ih; hepatic schizonts, Th; merozoites, M; uninfected red blood
cells (uRBCs), R; infected red blood cells (iRBCs), Ir; erythrocytic schizonts, Tr; gametocytes, Gb; gametes, Gm; and
oocysts, C. Others are sporozoites in mosquito’s salivary gland, Sm; sporozoites in human, Sh; Immune cells (which
includes IFN-γ , CD8+ and CD4+ T, B and NK cells, macrophages etc) against liver stage and blood stage infections, Z1

and Z2 respectively; and antibodies, B.

Sporozoites, Sh are injected into uninfected human host at a constant rate abν , during a blood meal of infected mosquito,
where a is number of mosquito bites per individual, b is number of sporozoites injected per bite and ν is probability that
a mosquito bite is infective to human. Sporozoites attack the uHLCs at the rate β1ShH/(1 + k1B), where β1 is
sporozoites’ infection rate to uHLCs and k1 is efficiency of antibodies to block invasion of uHLCs.
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The uHLCs are constantly recruited at rate Λh, die naturally at rate µhH and reduced at rate β1ShH/(1+ k1B) due to
infection by sporozoites, and they are killed by immune cells (macrophages) at a rate σshZ1Sh/(1+πshSh), where σsh is
rate of successful removal of intra-human sporozoites by immune cells and 1/πsh is a half saturation constant of
sporozoites. The iHLCs increase at a rate β1ShH/(1 + k1B) due to infection of uHLCs and die at a rate µihIh. They
progress to schizonts at a rate α1Ih and killed by immune cells (IFN-γ , CD8+, NK) at a rate σihZ1Ih/(1+πihIh), where
σih is rate of successful removal of iHLCs by immune cells and 1/πih is a half saturation constant of Ih. The hepatic
schizonts die naturally at a rate µthTh, rupture to release merozoites a rate δ1Th, and cleared by immune cells (IFN-γ ,
CD8+, NK) at a rate σthZ1Th/(1+πthTh), where σth is rate of successful removal of hepatic schizonts by immune cells
and 1/πth is a half saturation constant of hepatic schizonts.

Merozoites are released from the hepatic schizonts at a rate r1δ1Th/(1+ c1Z1), where c1 is efficiency of immune cells
(IFN-γ and CD8+) to inhibit the merozoites’ production. They invade uRBCs at a rate β2RM/(1+ k2B) and they die
naturally at µmM. The parameter β2 is merozoites’ infection rate to uRBCs and k2 is efficiency of antibodies to inhibit
the infection of uRBCs by merozoites. They are cleared by immune cells (macrophages activated by IFN-γ) at a rate
σmZ2M/(1+πmM), where σm is rate of successful removal of merozoites by immune cells and 1/πm is a half saturation
constant of merozoites.

The uRBCs are constantly recruited at a rate Λr from the bone marrow. Their density is reduced by natural death at a rate
µrR and due to the infection by merozoites at a rate β2RM/(1+k2B). The iRBCs increases at a rate β2RM/(1+k2B) and
decreases due to death at a rate µirIr and due to progression to erythrocytic schizonts at a rate α2Tr. The immune cells
(macrophages activated by IFN-γ) phagocytize the iRBCs at a rate σirZ2Ir/(1+ πirIr), where σir is rate of successful
removal of iRBCs by immune cells and 1/πir is a half saturation constant of iRBCs. The erythrocytic schizonts die at
rate µtrTr and rupture to release new merozoites at rate δ2Tr, which they initiate a series of repetitive cycles to infect
other uRBCs. Proportion p, of these newly released merozoites procceds with asexual replication cycle at a rate
pr2δ2Tr/(1+ c2Z2), while the other proportion 1− p switch to sexual form of parasites called gametocytes at a rate
(1− p)r2δ2Tr/(1+ c2Z2). The parameter c2 is efficiency of immune cells to inhibit the production of intra-erythrocytic
merozoites or gametocytes. They are also killed by immune cells (macrophages) at a rate σtrZ2Ir/(1 + πtrTr). The
parameter σtr is rate of successful removal of erythrocytic schizonts by immune cells and 1/πtr is a half saturation
constant of erythrocytic schizonts.

The gametocytes in blood stream increases at a rate (1− p)r2δ2Tr/(1+ c2Z2) and decrease by natural death at a rate
µgbGb, for being ingested by mosquito at a rate qωGb and being cleared by immune cells at a rate σgbZ2Gb/(1+πgbGb).
The parameters σgb and 1/πgb are respectively, the rate of successful removal of gametocytes by immune cells and the
half saturation constant of gametocytes. The gametes in mosquitoes are recruited at a rate ρqωGb/(1+ k3B), where ρ is
number of bites a mosquito can make during its lifetime and k3 is efficiency of antibodies picked up by mosquito during
its blood meal to mediate lysis of gametocytes and prevent parasite’s development in mosquito [15]. Gametes decrease
by natural death at rate µgmGm and progression to oocysts at a rate, α3Gm. The oocysts rupture to release an avarage of r3

sporozoites per oocyst at a rate, δ3C and die at a rate µcC. The released sporozoites, Sm migrate to salivary glands where
they either naturally die at a rate µsmSm or injected into a new host at rate abν . Table 1 below summarizes the variables
of the model and their biological descriptions.
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Table 1: Variables and their descriptions

Variable Description

Sh : number of sporozoites injected to the liver
H : number of uninfected HLCs
Ih : number of infected HLCs
Th : number of schizonts developed from infected HLCs
Tr : number of schizonts developed from infected RBCs
M : number of merozoites in bloodstream
R : number of uninfected RBCs
Ir : number of infected RBCs

Gb : number of gametocytes in the bloodstream
Gm : number of gametes in the mosquito

C : number of oocysts
Sm : number of sporozoites in mosqouito’s salivary gland
Z1 : number of immune cells that fight against malaria infection at the liver stage
Z2 : number of immune cells that fight against malaria infection at the blood stage
B : number of antibodies

2.2 Model Assumptions

In development of this model, we assume the following

(i) Both HLCs and RBCs are constantly recruited from bone marrow and they die naturally.
(ii) Infections of HLCs and RBCs are reduced by presence of immune responses.

(iii) Number of gametocytes ingested by mosquito depends on gametocytes’ density in bloodstream, while number of
sporozoites injected by mosquito is independent of sporozoites’ density in salivary glands [8].

(iv) Death rates of infected cells are higher than that of uninfected ones.
(v) The injected sporozoites and the released merozoites do either die or successfully infect HCLs and RBCs

respectively.
(vi) The ingested gametocytes either die or macro- and micro- gametes successfully fuse.

(vii) Constant proportion of asexual parasites converts to gametocytes within each cycle.
(viii) The cycle starts when the infected mosquito bites the human.

(ix) Bite of an infected mosquito onto an infected host is neglected.
(x) Survival of mosquito depends on human blood for developing their eggs.

(xi) For simplicity, all immune cells that fight against malaria infection in human are grouped into two compartments:
immune cells against liver-stage infection and immune cells against blood-stage infection. All malaria-specific
antibodies are considered as single compartment.

(xii) Production of immune cells is due constant recruitement from hematopoietic stem cell in the bone marrow, and
stimulation by presence of sprozoites, schizonts, infected HLCs and RBCs, merozoites and gametocytes. They
natural die at constant rate.

(xiii) Proliferation of antibodies that inhibit invasion of HLCs and RBCs depends only presence of sporozoites and
merozoites. They die constantly.

(xiv) Antibodies ingested with gametocytes during the blood meal prevent the fusion of gametocytes (macro- and micro-
gametes) and other developmental stages of parasites within mosquito.
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Table 2: Model parameters and their description

Par Description Value References
a : probability that a bite infects human 0.75 [19]
b : number of mosquito bites per individual 15day−1 [19]
ν : number of sporozoites injected per bite 10−20 [19]

β1 : infection rate of HLCs by sporozoites 0.001 µ lc−1d−1 [19]
r1 : number of merozoites per liver schizont 10000 [19]
α1 : progression rate of infected HCLs

to schizonts 0.125 day−1 [19]
δ1 : rupture rate of liver schizonts 0.0975 day−1 [19]
Λh : the recruitmet rate of HLCs 3000 cµl−1d−1 [19]
µh : natural death rate of uninfected HLCs 0.94 day−1 [19]
µih : death rate of infected HLCs 0.95 day−1 [19]
µth : death rate of liver-schizonts 0.029 day−1 [19]
β2 : infection rate of RBCs by merozoites 2×10−6 µ lc−1d−1 [19]
δ2 : rupture rate of blood schizonts 0.115 d−1 [19]
α2 : progression rate of infected RBCs

to schizonts 0.145 d−1 [19]
r2 : number of merozoites per blood schizont 16 [10]
q : probability that a bite is infectious

to mosquito 0.09 [1]
ω : number of gametocytes ingested per bite 10 [19]
ρ : number of bites made by mosquito

in its lifetime 3 [19]
Λr : the recruitmet rate of RBCs 41500 cµl−1d−1 [16]
µr : death rate of uninfected RBCs 0.02 d−1 [10]
µir : total death rate of uninfected RBCs 0.025 d−1 [9]
µtr : death rate of blood-schizonts 0.185 [19]
µm : death rate of merozoites 48 d−1 [16]
µgb : death rate of gametocytes 6.25×10−5d−1 [19]
δ3 : rupture rate of Oocysts 0.05 day−1 [19]
r3 : number of sporozoites per Oocyst 1000 [19]
α3 : progresion rate of gametes to Oocysts 0.07 d−1 [19]

µgm : death rate of gametes 0.052 d−1 [19]
µc : death rate of Oocysts 0.024 d−1 [19]

µsm : death rate of sporozoites in mosqouito 40 d−1 [19]
µsh : death rate of sporozoites in human liver 1.2×10−11 d−1 [19]

p : proportion of asexual that differentiate
to merozoites 0.926 [19]

Λz1 : the recruitmet rate of immune cells in the liver 30 cµ l−1d−1 Estimated
Λz2 : the recruitmet rate of immune cells in the blood 30 cµ l−1d−1 [6]
µz1 : death rate of immune cells 1.5 Estimated
µz2 : death rate of immune cells 1.53 [6]
µb : deterioration rate of antibodies 0.4 [6]
c1 : efficiency of immune cells to suppress

Continued on next page
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Table 2 – Continued from previous page
Par Description Value References

the production of M from liver-schizonts 10−5 Estimated
c2 : efficiency of immune cells to suppress

the production of M from blood-schizonts 3×10−5 Estimated
k1 : efficiency of immune cells to inhibit invasion

of HLCs by sporozoites 0.035 Estimated
k2 : efficiency of immune cells to inhibit invasion

of RBCs by merozoites 0.0015 Estimated
k3 : efficiency of immune cells to mediate

lysis of gametocytes and inhibit fertilization 0.03 Estimated
σsh : rate at which sporozoites are cleared

by immune cells 9×10−9 Estimated
σih : rate at which infected HLCs are cleared

by immune cells 9×10−9 Estimated
σth : rate at which liver schizonts are cleared

by immune cells 1×10−8 Estimated
σm : rate at which merozoites are cleared

by immune cells 1×10−8 [16]
σir : rate at which infected RBCs are cleared

by immune cells 1×10−8 [16]
σtr : rate at which blood schizonts are cleared

by immune cells 1×10−8 Estimated
σgb : rate at which gametocytes are cleared

by immune cells 1×10−8 [4]
εsh : proliferation rate of immune cells

due to contact with sporozoites 5×10−5 Estimated
εih : proliferation rate of immune cells

due to contact with infected HLCs 4.6×10−5 Estimated
εth : proliferation rate of immune cells

due to contact with liver schizonts 4.63×10−5 Estimated
εm : proliferation rate of immune cells

due to contact with merozoites 4.69×10−5 [16]
εir : proliferation rate of immune cells

due to contact with infected RBCs 2.5×10−5 [16]
εtr : proliferation rate of immune cells

due to contact with blood schizonts 2.5×10−5 Estimated
εgb : proliferation rate of immune cells

due to contact with gametocytes 2.5×10−5 Estimated
πsh : 1/πsh saturation constant of sporozoites 5×10−4 Estimated
πih : 1/πih saturation constant of infected HLCs 5×10−4 Estimated
πth : 1/πth saturation constant of liver schizonts 5×10−4 Estimated
πm : 1/πm saturation constant of merozoites 7×10−4 [16]
πir : 1/πir saturation constant of infected RBCs 5×10−4 [16]
πtr : 1/πtr saturation constant of blood schizonts 5×10−4 Estimated
η1 : maximum rate of increase of antibodies

Continued on next page
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Table 2 – Continued from previous page
Par Description Value References

due to presence of sporozoites 1×10−4 Estimated
η2 : maximum rate of increase of antibodies

due to presence of merozoites 4×10−4 Estimated

2.3 Compartmental diagram

Based on the dynamics described in Section 2.1 and the assumptions described in Section 2.2, the proposed model for
the in-human host and in-mosquito dynamics of entire life cycle of malaria parasites with immune responses is shown in
Figure 1, in which the variables and parameters are described in Table 1 and Table 2, respectively.

Fig. 1: Compartmental model diagram for the in-human host and in-mosquito dynamics of malaria parasites with immune
responses
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2.4 Model Equations

Based on the compartmental diagram illustrated in Figure 1 above, the in-human host and in-mosquito dynamics for the
entire life cycle of malaria parasite with immune responses are governed by the following system of ordinary differential
equations.

dH
dt

=Λh −
β1ShH
1+ k1B

−µhH (1a)

dIh

dt
=

β1ShH
1+ k1B

− (α1 +µih)Ih −
σihZ1Ih

1+πihIh
(1b)

dTh

dt
=α1Ih − (δ1 +µth)Th −

σthZ1Th

1+πthTh
(1c)

dM
dt

=
r1δ1Th

1+ c1Z1
+

pr2δ2Tr

1+ c2Z2
− β2RM

1+ k2B
− σmZ2M

1+πmM
−µmM (1d)

dR
dt

=Λr −
β2RM

1+ k2B
−µrR (1e)

dIr

dt
=

β2RM
1+ k2B

− (α2 +µir)Ir −
σirZ2Ir

1+πirIr
(1f)

dTr

dt
=α2Ir − (δ2 +µtr)Tr −

σtrZ2Tr

1+πtrTr
(1g)

dGb

dt
=(1− p)

r2δ2Tr

1+ c2Z2
− (qω +µgb)Gb −

σgbZ2Gb

1+πgbGb
(1h)

dGm

dt
=

ρqωGb

1+ k3B
−α3Gm −µgmGm (1i)

dC
dt

=α3Gm −δ3C−µcC (1j)

dSm

dt
=r3δ3C−aνSm −µsmSm (1k)

dSh

dt
=abν − β1ShH

1+ k1B
−µshSh −

σshZ1Sh

1+πshSh
(1l)

dZ1

dt
=Λz1 +

(
εshSh

1+πshSh
+

εihIh

1+πihIh
+

εthTh

1+πthTh

)
Z1 −µz1Z1 (1m)

dZ2

dt
=Λz2 +

(
εmM

1+πmM
+

εirIr

1+πirIr
+

εtrTr

1+πtrTr
+

εgbGb

1+πgbGb

)
Z2 −µz2Z2 (1n)

dB
dt

=η1
ShZ1

1+πshSh
+η2

MZ2

1+πmM
−µbB (1o)

3 Analysis of the Model

3.1 Wellposedness of the model

In this section we assess the wellposedness of the model by investigating the existence and feasibility of its solution. That
is, to test whether the solutions are epidemiologically (variables have biological interpretation) and mathematically (a
unique bounded solution exists for all the time) wellposed. The model system (1a)-(1o) can be expressed in the compact
form [11,19]

dX
dt

= A(x)X +F

where
X = (H, Ih,Th,M,R, Ir,Tr,Gb,Gm,C,Sm,Sh,Z1,Z2,B)T ,
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A(x) =



−a1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
a2 −a3 0 0 0 0 0 0 0 0 0 0 0 0 0
0 α1 −a4 0 0 0 0 0 0 0 0 0 0 0 0
0 0 a5 −a6 0 0 a7 0 0 0 0 0 0 0 0
0 0 0 0 −a8 0 0 0 0 0 0 0 0 0 0
0 0 0 0 a9 −a10 0 0 0 0 0 0 0 0 0
0 0 0 0 0 α2 −a11 0 0 0 0 0 0 0 0
0 0 0 0 0 0 a12 −a13 0 0 0 0 0 0 0
0 0 0 0 0 0 0 a14 −a15 0 0 0 0 0 0
0 0 0 0 0 0 0 0 α3 −a16 0 0 0 0 0
0 0 0 0 0 0 0 0 0 r3δ3 −a17 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −a18 0 0 0
0 a19 a20 0 0 0 0 0 0 0 0 a21 −µz1 0 0
0 0 0 a22 0 a23 a24 a25 0 0 0 0 0 −µz2 0
0 0 0 a26 0 0 0 0 0 0 0 a27 0 0 −µb


where

a1 =
β1Sh

1+ k1B
+µh, a2 =

β1Sh

1+ k1B
, a3 = α1 +µih +

σihZ1

1+πihIh
, a4 = δ1 +µth +

σthZ1

1+πthTh
,

a5 =
r1δ1

1+ c1Z1
, a6 = µm +

β2R
1+ k2B

+
σmZ2

1+πmM
, a7 =

pr2δ2

1+ c2Z2
, a8 =

β2M
1+ k2B

+µr,

a9 =
β2M

1+ k2B
, a10 = α2 +µir +

σirZ2

1+πirIr
, a11 = δ2 +µtr +

σtrZ2

1+πtrTr
, a12 =

(1− p)r2δ2

1+ c2Z2
,

a13 =qω +µgb +
σgbZ2

1+πgbGb
, a14 =

ρqω
1+ k3B

, a15 = α3 +µgm, a16 = δ3 +µc, a17 = aν +µsm,

a18 =
β1H

1+ k1B
+µsh +

σshZ1

1+πshSh
, a19 =

εihZ1

1+πihIh
, a20 =

εthZ1

1+πthTh
, a21 =

εshZ1

1+πshSh
,

a22 =
εmZ2

1+πmM
, a23 =

εirZ2

1+πirIr
,a24 =

εtrZ2

1+πtrTr
, a25 =

εgbZ2

1+πgbGb
, a26 =

η2MZ2

1+πmM
,

a27 =
η1ShZ1

1+πshSh
(2)

and F is a column vector given by

F = (Λh,0,0,0,Λr,0,0,0,0,0,0,abν ,Λz1 ,Λz2 ,0)
T

It is observed that A(x) is Meltzer matrix since all its off diagonal elements are non negative, for x ∈ R15
+ and F ≥ 0.

Therefore, the system (1a)-(1o) is positively invariant in R15
+ , meaning that an arbitrary trajectory of the sytstem started in

R15
+ remains there forever. Also F is Lipschitz continous. Hence, a unique maximal solution exists and so

D = {(H, Ih,Th,M,R, Ir,Tr,Gb,Gm,C,Sm,Sh,Z1,Z2,B)≥ 0 ∈ R15
+ }

is the feasible region for the model. Thus, the model (1a)-(1o) is epidemiologically and mathematically wellposed in the
region D .
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3.2 Malaria Free Equilibrium (MEF) and Basic Reproduction Number, R0

In absence of malaria infection, all variables representing infectious classes are zeros. Thus the MFE of the system (1a)-
(1o) is

E0 =

(
Λh

µh
,0,0,

Λr

µr
,0,0,0,0,0,0,0,

Λz1

µz1

,
Λz2

µz2

,0
)

We calculate basic reproduction number, R0 for the model (1a)-(1o) using the next generation matrix method [21]. In this
method, R0 is given by the spectral radius ρ(FV−1), of next generation matrix FV−1 where F and V are transmission
and transition matrices given by

F =



0 0 0 0 0 0 0 0 0 β1
Λh

µh
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 β2
Λr

µr
0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 ρqω 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0



(3)

and

V =



v1 0 0 0 0 0 0 0 0 0
−α1 v2 0 0 0 0 0 0 0 0

0 −v3 v4 0 −v5 0 0 0 0 0
0 0 0 v6 0 0 0 0 0 0
0 0 0 −α2 v7 0 0 0 0 0
0 0 0 0 −v8 v9 0 0 0 0
0 0 0 0 0 0 v10 0 0 0
0 0 0 0 0 0 −α3 v11 0 0
0 0 0 0 0 0 0 −v12 v13 0
0 0 0 0 0 0 0 0 0 v14



(4)

respectively, where

v1 =α1 +µih +
σihΛz1

µz1

, v2 = δ1 +µth +
σthΛz1

µz1

, v3 =
r1δ1µz1

µz1 + c1Λz1

, v4 = β2
Λr

µr
+

σmΛz2

µz2

+µm

v5 =
pr2δ2µz2

µz2 + c2Λz2

, v6 = α2 +µir +
σirΛz2

µz2

, v7 = δ2 +
σtrΛz2

µz2

+µtr, v8 =
(1− p)r2δ2µz2

µz2 + c2Z2
,

v9 =qω +µgb +
σgbΛz2

µz2

, v10 = α3 +µgm, v11 = δ3 +µc, v12 = r3δ3, v13 = aν +µsm,

v14 =β1
Λh

µh
+

σshΛz1

µz1

+µsh (5)
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From (4) we obtained the inverse, V−1, of V given by

V−1 =



1
v1

0 0 0 0 0 0 0 0 0
α1

v2v1

1
v2

0 0 0 0 0 0 0 0

v3α1

v4v2v1

v3

v4v2

1
v4

v5α2

v7v6v4

v5

v7v4
0 0 0 0 0

0 0 0
1
v6

0 0 0 0 0 0

0 0 0
α2

v7v6

1
v7

0 0 0 0 0

0 0 0
α2v8

v9v7v6

v8

v9v7

1
v9

0 0 0 0

0 0 0 0 0 0
1

v10
0 0 0

0 0 0 0 0 0
α3

v11v10

1
v11

0 0

0 0 0 0 0 0
v12α3

v13v11v10

v12

v113v11

1
v13

0

0 0 0 0 0 0 0 0 0
1

v14



(6)

Hence, from (3) and (6), we have

FV−1 =



0 0 0 0 0 0 0 0 0 A1

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

A2 A3 A4 A5 A6 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 A7 A8 A9 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0



(7)

A1 =
β1Λh

v14µh
, A2 =

β2α1v3Λr

v4v2v1µr
, A3 =

β2v3Λr

v4v2µr
, A4 =

β2Λr

v4µr
, A5 =

β2Λrv5α2

v7v6v4µr
,

A6 =
β2v5Λr

v7v4µr
, A7 =

ρqωv8α2

v9v7v6
, A8 =

ρqωv8

v9v7
, A9 =

ρqω
v9

(8)

The basic reproduction number, R01, is the dorminant eigenvalue of F1V−1
1 . Hence using equations (7) and (8), we obtain

only one nonzero eigenvalue which is A5. Thus, the basic reproduction number, R0 is given by

R0 =

[
β2r0

β2r0 +σmz0 +µm

][
α2

α2 +µir +σirz0

][
1

δ2 +µtr +σtrz0

][
pr2δ2

1+ c2z0

]
(9)

where r0 =
Λr

µr
and z0 =

Λz2

µz2

are values of R and Z2 at malaria-free equilibrium, respectively.

From equation (9), the term
(

β2r0

β2r0 +σmz0 +µm

)
is the proportion of RBCs that a merozite introduced into entirely

susceptile RBC population infects before it dies (either naturally or cleared by immune cells), while the term
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(
α2

α2 +µir +σirz0

)
represents the proportion of infected RBCs that progress to schizonts before dying and the term(

1
δ2 +µtr +σtrz0

)
is an average duration a schizont spends before it burst or cleared by immune cells and

(
pr2δ2

1+ c2z0

)
is number of merozoites produced by a schizont when it bursts.

3.3 Local Stability of MFE

The Jacobian matrix of the system (1a)-(1o) evaluated at malaria-free equilibrium, E0, is

J(E0) =



−µh 0 0 0 0 0 0 0 0 0 0 −u1 0 0 0
0 −u2 0 0 0 0 0 0 0 0 0 u1 0 0 0
0 α1 −u3 0 0 0 0 0 0 0 0 0 0 0 0
0 0 u4 −u5 0 0 u6 0 0 0 0 0 0 0 0
0 0 0 −u7 −µr 0 0 0 0 0 0 0 0 0 0
0 0 0 u7 0 −u8 0 0 0 0 0 0 0 0 0
0 0 0 0 0 α2 −u9 0 0 0 0 0 0 0 0
0 0 0 0 0 0 u10 −u11 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ρqω −u12 0 0 0 0 0 0
0 0 0 0 0 0 0 0 α3 −u13 0 0 0 0 0
0 0 0 0 0 0 0 0 0 r3δ3 −u14 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −u15 0 0 0
0 u16 u17 0 0 0 0 0 0 0 0 u18 −µz1 0 0
0 0 0 u19 0 u20 u21 u22 0 0 0 0 0 −µz2 0
0 0 0 u23 0 0 0 0 0 0 0 u24 0 0 −µb


where

u1 =β1
Λh

µh
, u2 = α1 +µih +σih

Λz1

µz1

, u3 = δ1 +µth +σth
Λz1

µz1

, u4 =
r1δ1µz1

µz1 + c1Λz1

,

u5 =β2
Λr

µr
+σm

Λz2

µz2

+µm, u6 =
pr2δ2µz2

µz2 + c2Λz2

, u7 = β2
Λr

µr
, u8 = µir +α2 +σir

Λz2

µz2

u9 =δ2 +µtr +σtr
Λz2

µz2

, u10 =
(1− p)r2δ2µz2

µz2 + c2Λz2

, u11 = qω +µgb +σgb
Λz2

µz2

, u12 = α3 +µgm,

u13 =δ3 +µc, u14 = aν +µsm, u15 = β1
Λh

µh
+σsh

Λz1

µz1

+µsh, u16 = εih
Λz1

µz1

, u17 = εth
Λz1

µz1

,

u18 =εsh
Λz1

µz1

, u19 = εm
Λz2

µz2

, u20 = εir
Λz2

µz2

, u21 = εtr
Λz2

µz2

, u22 = εgb
Λz2

µz2

, u22 = εsh
Λz1

µz1

,

u23 =η2
Λz2

πmµz2

, u24 = η1
Λz1

πshµz1

(10)

Local stability of a MFE, E0, is determined by using the signs of real part of eigenvalues of J(E0). The MFE is locally
assympotically stable if and only if all eigenvalues of J(E0) have negative real parts. Clearly, six eigenvalues
−µh, −µr, −u14, −µz1 , −µz2 and − µb are negative. The other nine eigenvalues are obtained from a reduced 9× 9
submatrix, J1(E0), given by
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J1(E0) =



−u2 0 0 0 0 0 0 0 u1

α1 −u3 0 0 0 0 0 0 0
0 u4 −u5 0 u6 0 0 0 0
0 0 u7 −u8 0 0 0 0 0
0 0 0 α2 −u9 0 0 0 0
0 0 0 0 u10 −u11 0 0 0
0 0 0 0 0 ρqω −u12 0 0
0 0 0 0 0 0 α3 −u13 0
0 0 0 0 0 0 0 0 −u15


From eighth column of J1(E0) we observe that other eigenvalue is −u13 which is also negative. Further reduction of this,
leads us to 8×8 submatrix given by

J2(E0) =



−u2 0 0 0 0 0 0 u1

α1 −u3 0 0 0 0 0 0
0 u4 −u5 0 u6 0 0 0
0 0 u7 −u8 0 0 0 0
0 0 0 α2 −u9 0 0 0
0 0 0 0 u10 −u11 0 0
0 0 0 0 0 ρqω −u12 0
0 0 0 0 0 0 0 −u15


from which another eigenvalue −u12 is obtained. Another reduction leads a 7×7 submatrix given

J3(E0) =



−u2 0 0 0 0 0 u1

α1 −u3 0 0 0 0 0
0 u4 −u5 0 u6 0 0
0 0 u7 −u8 0 0 0
0 0 0 α2 −u9 0 0
0 0 0 0 u10 −u11 0
0 0 0 0 0 0 −u15


And from J3(E0) above we obtained another eigenvalue −u11, and a new reduced matrix is

J4(E0) =



−u2 0 0 0 0 u1

α1 −u3 0 0 0 0
0 u4 −u5 0 u6 0
0 0 u7 −u8 0 0
0 0 0 α2 −u9 0
0 0 0 0 0 −u15


We investigate the signs of other remaining six eigenvalues using the trace-determinant technique. If the trace and
determinat of J4(E0) are strictly negative and positive respectively, then all eigenvalues of J4(E0) have negative real
parts. The following results were obtained using MAPLE 12,

tr(J4(E0)) =− [u2 +u3 +u5 +u8 +u9 +u15]< 0 (11)
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and

det(J4(E0)) = (u2u3u15u5u8u9)(1−R0)> 0 (12)

where
R0 =

α2u6u7

u5u8u9

since the values of u′s given in equation (10) are all positive, then equation (12) is true only if

R0 < 1 (13)

Thus, all eigenvalues of J(E0) have negative real parts only R0 < 1. Hence, MFE is locally assymptotically stable provided
R0 < 1, which leads us to the following theorem.

Theorem 1. The malaria-free equilibrium, E0, of the model (1a)-(1o), is locally asymptotically stable when R0 < 1 and
unstable otherwise.

3.4 Global Stability of MFE

We applied the Meltzer matrix theory to establish the global stability of MFE as used in [5], [17] and [19] by expressing
the model (1a)-(1o) in the form  dXn

dt = A1(x)(Xn −XE0,n)+A12(x)Xe

dXe
dt = A2(x)Xe

where Xn is the vector of non-transmitting classes and Xe is the vector of transmitting classes. For our model, we have

Xn = (H, R, Z1, Z2,B) and Xe = (Ih, Th, M, Ir, Tr, Gb, Gm, C, Sm, Sh) (14)

XE0,n =

(
Λh

µh
,

Λr

µr
,

Λz1

µz1

,
Λz2

µz2

, 0
)

and A1(x) =


−µh 0 0 0 0

0 −µr 0 0 0
0 0 −µz1 0 0
0 0 0 −µz2 0
0 0 0 0 −µb

 (15)

A12(x) =


0 0 0 0 0 0 0 0 0 −d1

0 0 −d2 0 0 0 0 0 0 0
d3 d4 0 0 0 0 0 0 0 d5

0 0 d6 d7 d8 d9 0 0 0 0
0 0 d10 0 0 0 0 0 0 d11

 (16)

where

d1 =
β1H

1+ k1B
, d2 =

β2R
1+ k2B

, d3 =
εihZ1

1+πihIh
, d4 =

εthZ1

1+πthTh
, d5 =

εshZ1

1+πshSh
,

d6 =
εmZ2

1+πmM
, d7 =

εirZ2

1+πirIr
, d8 =

εirZ2

1+πtrTr
,d9 =

εgbZ2

1+πgbGb
, d10 =

η2Z2

1+πmM
,

d11 =
η1Z1

1+πshSh
(17)
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and

A2(x) =



−w1 0 0 0 0 0 0 0 0 w2

α1 −w3 0 0 0 0 0 0 0 0
0 w4 −w5 0 w6 0 0 0 0 0
0 0 w7 −w8 0 0 0 0 0 0
0 0 0 α2 −w9 0 0 0 0 0
0 0 0 0 w10 −w11 0 0 0 0
0 0 0 0 0 w12 −w13 0 0 0
0 0 0 0 0 0 α3 −w14 0 0
0 0 0 0 0 0 0 w15 −w16 0
0 0 0 0 0 0 0 0 w17 −w18



(18)

where

w1 =α1 +µih +
σihZ1

1+πihIh
, w2 =

β1H
1+ k1B

, w3 = δ1 +µth +
σthZ1

1+πthTh
, w4 =

r1δ1

1+ c1Z1
,

w5 =
β2R

1+ k2B
+µm +

σmZ2

1+πmM
, w6 =

pr2δ2

1+ c2Z2
, w7 =

β2R
1+ k2B

, w8 = α2 +µir +
σirZ2

1+πirIr
,

w9 =δ2 +µtr +
σtrZ

1+πtrTr
, w10 =

(1− p)r2δ2

1+ c2Z2
, w11 = qω +µgb +

σgbZ2

1+πgbGb
, w12 =

ρqω
1+ k3B

,

w13 =α3 +µgm, w14 = δ3 +µc, w15 = r3δ3, w16 = aν +µsm, w17 =
abν
Ih

,

w18 =
β1H

1+ k1B
+

σshZ1

1+πshSh
+µsh (19)

It can easily be observed from (15) that, all eigenvalues of A1 are real and negative.
So, the system

dXn

dt
= A1(x)(Xn −XE01,n)+A12(x)Xe

is globally assymptotically stable at E01. It can be observed from (18) and (19) that all off diagonal elements of A2 are
non-negative. Therefore, A2 is a Metzler matrix. To establish the global asymptotic stability of MFE, we have to show that
A2 is Metzler stable matrix (all its diagonal elements are negative) by proving the following lemma as described in [11]
and [13].

Lemma 1. Let M be a square Metzler matrix written in block form M =

(
M11 M12

M21 M22

)
with M11 and MM22 square matrices.

M is Metzler stable if and only if matrices M11 and M22 −M21M−1
11 M12 are Metzler stable.

From equation (18) we have M = A2,

M11 =


−w1 0 0 0 0
α1 −w3 0 0 0
0 w4 −w5 0 w6

0 0 w7 −w8 0
0 0 0 α2 −w9

 , M12 =


0 0 0 0 w2

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ,M21 =


0 0 0 0 w2

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


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and

M22 =


−w11 0 0 0 0
w12 −w13 0 0 0
0 α3 −w14 0 0
0 0 w15 −w16 0
0 0 0 w17 −w18


Hence,

M22 −M21M−1
11 M12 =



−w11 0 0 0
α1α2w10w7w4w2

w1w3(w5w8w9 −α2w6w7)
w12 −w13 0 0 0
0 α3 −w14 0 0
0 0 w15 −w16 0
0 0 0 w17 −w18


Clearly, M11 is Metzler stable matrix. But, M22 −M21M−1

11 M12 is Metzler stable matrix only if

α1α2w10w7w4w2

w1w3(w5w8w9 −α2w6w7)
≥ 0 (20)

It is observed that equation (20) holds only when

α2w6w7

w5w8w9
≤ 1 (21)

Substituting the expression of w5, w6, w7, w8 and w9 given in equation (19) evaluated at MFE, into equation (21) we
get

β2Λr
µr

α2
pr2δ2µz
µz+c2Λz(

β2Λr
µr

+µm + σmΛz
µz

)(
α2 +µir +

σirΛz
µz

)(
δ2 +µtr +

σtrΛz
µz

) = R0 ≤ 1 (22)

which leads us to the following theorem.

Theorem 2.A MFE, E0 of the model (1a)-(1o) is globally assymptotically stable in D if R0 ≤ 1 and unstable if R0 > 1

3.5 Existence and Stability of Malaria Infection Equilibrium

If R0 > 1, then Theorem 2 suggests the existence of malaria-infection equilibrium (MIE), which is given by

E∗ = (H∗, I∗h , T ∗
h , M∗, R∗, I∗r , T ∗

r , G∗
b, G∗

m, C∗, S∗m, S∗h, Z∗
1 , Z∗

2 , B∗)

Due to the complexity of the model system (1a)-(1o), it is found awkward to express MIE explicitly. Therefore, the
existence and stability are established numerically in the next section.

4 Numerical Simulations and Discussion

In this section, we perform some numerical simulations of the model (1a)-(1o), to illustrate the dynamics of model using
MATLAB symbolic package. In the simulation of this model, initial values are almost assummed to allow computer
executions, and their values are as listed in Table 3
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(a) Exo-erythrocytic cycle (b) Erythrocytic cycle

(c) Sporogonic cycle (d) Immune responses

Fig. 2: Variation of populations at Exo-erythrocytic, Erythrocytic, Sporogonic cycles and immune responses with time to
verify the existence of malaria infection equilibrium.

Table 3: Initial values of variables of the model (1a)-(1o)

Variable H Ih Th M R Ir Tr Gb Gm C Sm Sh Z1 Z2 B

Initial values 3000 0 0 2000 500000 0 1000 3000 1500 1000 2000 2000 10 10 0

The numerical values of parameters used for simulation of our model are listed in Table 2. These values are either
assumed or taken from some related studies among existing literature. The reason as to why some parameters values are
assumed is that, mathematical modelling on liver and/or mosquito stage dynamics of malaria infection have not yet been
done or the values found on existing literatures are not suitable for this model. However, our main concern is not on
accuracy of these parameter values, rather is on the effect of these parameters on basic reproduction number, which alerts
on how and where to target to eradicate or control the disease [6].

We performed numerical simulations to establish the existence of malaria infection equilibrium (MIE) as stated earlier.
Figures 2a , 2b, 2c and 2d indicate that each variable varies with time and reaches a constant value (i.e., a value at MIE).
Therefore, Figure 2 proves the existence of malaria-infection equilibrium, E∗ for the model (1a) -(1o). Now, let us assess
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(a) S0
h = 1000,2000,8000,10000,15000 (b) H0 = 500,3000,5000,7500,10000

(c) I0
h = 0,500,3000,5000,10000 (d) T 0

h = 0,500,5000,10000,15000

Fig. 3: Variation of populations at Exo-erythrocytic, Erythrocytic, Sporogonic cycles and immune responses with time to
verify the existence of malaria infection equilibrium.

for stability of E∗. Figure 3 depicts that with different initial values, each variable in exo-erythrocytic cycle converges to
certain value (value at MIE).

Figure 4 shows that each variable of erythrocytic cycle converges to a certain steady value irrespective of initial value it
takes. The case is similar for variables of sporogonic cycle and for immune responses as indicated in Figure 5 and Figure
6 respectively. Therefore, with reference to Figures 3, 4, 5 and 6, we conclude that, malaria infection equilibrium, E∗ is,
globally asymptotically stable.

Moreover, this model indicates promising results on the control of malaria infection at the erythrocytic stages. From Figure
7 it is observed that inclusion of immune responses in the model has impact on increasing the number uRBCs and reducing
the number of iRBCs, merozoites and gametocytes. The minimum number of uRBCs to basic model (nonimmune) is
below 2× 10−5 cells per microlitre, while in this model where effects of immune responses are included, the minimal
number of uRBCs is found to be above 2×10−5 cells per microlitre as indicated in Figure 7a. On the other hand, maximal
number of iRBCs in nonimmune model and in a model with immune effect are approximately to 3.4×10−5 and 2.7×10−5

cells per microlitre respectively as illustrated in Figure 7b. In addition to that, there is noticable decrease in number of
merozoites and gametocytes (See Figures 7c and 7d respectively).
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(a) M0 = 0,2000,15000,30000,100000 (b) R0 = 10000,20000,50000,150000,500000

(c) I0
r = 0,10000,50000,100000,200000 (d) T 0

r = 0,1000,5000,20000,35000

(e) G0
b = 3000,5000,10000,80000,200000

Fig. 4: Numerical simulation to show global stability of MIE for variables in erythrocytic cycle.
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(a) G0
m = 500,1500,3000,15000,20000 (b) C0 = 1000,8000,15000,35000,100,000

(c) S0
m = 2000,15000,50000,7000,100,000

Fig. 5: Numerical simulation to show global stability of MIE for variables in Sporogonic cycle.

However, the immune responses have shown to have little or almost no effect on attacking liver stage malaria infection.
This is because there is unnoticable change in number of uHLCs and iHLCs even after immune system being included the
model as indicated in Figure 8. It can be observed that despite of very big change on value of k1 (efficiency of antibodies
to block invasion of hepatocytes by sporozoites) from 0.075/day to 0.9/day, but still the change on number of uHLCs
and iHLCs is almost negligible. The case is the same to sporozoites injected and hepatic schizonts. These results suggest
that at the liver stage is not a good target for intervetion using immune responses.

This finding supports the [15]’s argument that the function of antibodies to sporozoites is thought to be insignificant.
Furthermore, the immune responses has shown positive results on the sporogonic stages of malaria parasites as shown in
Figure 9. This implies that, the antibodies taken up by mosquito during the blood meal results on lysis of gametocytes
and prevent the development of parasites within mosquito. Consequently, it can lead us to a population of non-infectious
mosquitoes, and reduce further mosquito-human malaria transmission.

Since the immune responses are mostly stimulated by infection and in most cases last within a short period of time, we
have assessed the impact of lifespan of immune cells on the elimination (reduction) of malaria infection. The results show
that the lifespan varies inversely with number of infected RBCs, merozoites and gametocytes as depicted in Figures 10b,
10c and 10d respectively. In the other hand, from Figure 10a we observed that the lifespan of immune cells has great
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(a) Z0
1 = 0,10,50,80,150 (b) Z0

2 = 0,10,35,80,100

(c) B0 = 0,50,100,120,150

Fig. 6: Numerical simulation to show global stability of MIE for variables for immune responses.

influence on the number of uninfected RBCs. It shows that the number of uRBCs increases with immune cells’ lifespan.
Hence, using Figure 10 we argue that introducing a long-term immunity may significantly reduce the infection.
With reference to basic reproduction number, R0; as expressed in equation (9) it is noted that R0 can be made less
than or equal to unity by: decreasing the infection rate, β2 of uRBCs by merozoites; increasing death rates of iRBCs,
blood-schizonts and merozoites; increasing the rates at which iRBCs, blood-schizonts and merozoites are cleared by
immune cells; and increasing the rate at which immune cells suppress the production of merozoites from blood-schizonts.
Therefore, any biological means that can be implemented to facilitate these may have impact on development of control
strategies.

5 Conclusion

In this work, we have formulated and analyzed a mathematical model for the in-human host and in-human dynamics of
malaria parasite with immune responses. In this model, we include the effect of immune responses to block invasion of
sporozoites and merozoites on hepatic liver cells and red blood cells respectively. The effect of immune responses to
inhibit the production of merozoites from both liver and blood cells was included. Additionally, the model incudes terms
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(a) Uninfected RBCs (b) Infected RBCs

(c) Merozoites (d) Gametocytes

Fig. 7: Effects of immune responses on uninfected RBCs, infected RBCs, merozoites and gametocytes.

(a) Unifected HLCs (b) Infected HLCs

Fig. 8: Graphs of liver-stage dynamics showing effect of immune responses.
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(a) Gametes (b) Oocysts

(c) Sporozoites in mosquito

Fig. 9: Effects of antibodies taken up by mosquito during the blood meal on gametes, oocysts and sporozoites.

for influence of immune responses on clearance of both parasites and infected cells. Finally, we include the term for
effect of antibodies on gametocytes picked-up during the blood meal. In all cases immune response are described using
the nonlinear-bounded Michaelis-Menten-Monod function.

A positive invariant region, where the model is epidemiologically (variables biological interpretation meaningful) and
mathematically (always a unique bounded solution exists) well-posed was established. Using the next generation
method, basic reproduction number R0, of the model was computed. Also, existence and stability of two non-negative
equilibrium points: malaria free equilibrium (MFE) and malaria infection equlibrium (MIE) were established.
Furthermore, we proved that MFE is locally asymptotically stable if R0 < 1 and globally asymptotically stable (GAS) if
R0 ≤ 1. In addition to that, we noted that the impact of immune cells to suppress production of merozoites is higher than
that of antibodies to block invasion of sporozoites and merozoites into liver and blood cells respectively. This is because
none of k′s, efficiency of antibodies to inhibit invasion appeared into the expression of R0, while one of the c′s (c2),
efficiency of immune cells to suppress production of merozoites does appear.

Numerical simulations prove the existence of MIE, which is GAS irrespective of the initial values do state variables
have. Moreover, in comparison with the results of [19], our results revealed that including immunity has significant
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(a) Uninfected RBCs (b) Infected RBCs

(c) Merozoites (d) Gametocytes

Fig. 10: Effects of life span of immune responses on uRBCs, iRBCs, merozoites and gametocytes. Arrows are in direction
of increasing life span (1/µz2) of immune responses against blood stage infection.

influence on lowering infection at blood and mosquito stages. An increase on number of uninfected cells, and a decrease
on number of infected cells and free parasite were noted. Also, antibodies picked-up by mosquito seems to have an effect
on reducing the number of parasites within mosquito.

Based on the above results, this study suggests that the a combined drug therapy should be boosted so as to improve their
ability to suppress parasite’s production in bloodstream. Also, causing lysis to gametocytes is of great importance in
preventing parasite’ development in mosquito as it may lead us to a population of non-infectious mosquito. Hence,
reduce mosquito-human infection.

Our work is an example on how mathematical models can be used to get insight of complex systems like malaria life
cycle. Therefore, it provides basis for mathematical models to study the in-host and in-mosquito dynamics malaria and
immunity. In future work we propose the extension this model by incorporating the effect of antimalaria drugs.
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