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A Bayesian Parameter Estimation Approach to Response Surface Optimization in 
Quality Engineering 

 

Elif Kozan*1, Onur Köksoy2 

Abstract  

In recent years, Bayesian analyses have become increasingly popular for solving industrial related 
problems. This paper illustrates the use of Bayesian methods in response surface methodology (RSM) in 
the context of “off-line quality” improvement. RSM and Bayesian Linear Regression - an approach which 
uses the prior information to make a more efficient inference - are considered together. Results from 
different estimators are compared for the first time ever. Bayesian linear regression uses the prior 
information in the high uncertainty state of the response function to make more efficient and more realistic 
inferences than can be obtained with classical regression. Several different values of the prior distribution  
of the parameter  and uncertainty analysis will be presented for comparative purposes. The effect of the 
change in the prior information and variances will be illustrated by using an example from the literature. 

Keywords: Response surface methodology, Bayesian regression, off-line quality control, experimental 
design, WinBUGS 

1. INTRODUCTION 

In general, the Bayesian approach is a special form 
of Bayes’ theorem, which was first introduced by 
Thomas Bayes [1]. Subsequently Laplace [16] 
presented the general form of Bayes’ theorem. In 
the 20th century, Laplace’s studies have received 
considerable attention from authors such as 
Keynes [11], Ramsey [21], and Savage [22]. 
Jeffreys [10] made some important contributions to 
the fundamental theory of Bayesian statistics. 
Metropolis et al. [17] introduced the Metropolis-
Hastings algorithm. Along with new technologies 
in computer sciences, this algorithm has been used 
to overcome the computational difficulties 
connected with integrals of problems involving 
Bayesian models. Hasting [8] introduced the 
Monte Carlo method for evaluating integrals as a 
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major tool for practical Bayesian inference. In 
addition, the development of techniques such as 
Markov chain Monte Carlo (MCMC) has greatly 
increased the applicability of the Bayesian 
approach. Goldstein [6] applied the Bayesian 
approach to regression problems. 

The development of fast computers made 
necessary calculations faster and pioneered the use 
of the Bayesian approach for a wide range of 
applications. Also, a review of the literature reveals 
that the estimation step becomes more powerful 
and more realistic when using prior model 
information. In Bayesian inference, the Bayes’ risk 
function includes both a posterior model of 
unknown parameters given the observation and a 
cost of error function. By minimizing this risk 
function, one easily obtains the point estimators 
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using Bayesian methodology. A couple of different 
methods are available for Bayesian estimation, 
including maximum a posteriori (MAP), minimum 
mean square error (MMSE), and Markov chain 
Monte Carlo algorithms. 

By utilizing Bayesian philosophy with a focus on 
quality purposes in RSM, it seems more realistic 
results might be obtained by comparison with the 
results of classical regression. Taguchi [12 ,25] 
presented a robust design method based on 
statistical experimental design and quality 
engineering concepts. This method, along with 
Taguchi’s philosophy, received a great deal of 
attention, but it seemed to have some statistical 
shortcomings. Box [2] has criticized Taguchi’s 
method and revealed its shortcomings. Based on 
his criticism, RSM, first presented by Box and 
Wilson [3], was popularized in the early 1990s as 
a tool for improving the quality. Vining and Myers 
[13,14,15,27] proposed an alternative off-line 
quality improvement approach (i.e., dual response 
approach) by combining RSM and the good 
properties of Taguchi’s method. This novel 
approach to RSM has become popular and is 
widely quoted in the literature. 

There are some studies available  related to the 
Bayesian approach for estimates of response 
surface model parameters. Steinberg[23]  
presented a Bayesian approach to empirical 
regression modeling in which theresponse function 
was represented by a power series expansion in 
Hermite polynomials. Chen[4] used Bayesian 
hierarchical regression modelling approach to dual 
response surface.  Moreover, Bayesian analysis 
provides inference about the uncertainty of the 
model parameters. Chen and Ye[5] applied the 
Bayesian hierarchical model on dual response 
surface to partially replicated designs and the 
performance of the Bayesian model was compared 
with least squares methods by using simulated data 
under various mean and variance models. Peterson 
et al.[20] presented a Bayesian predictive  
approach to multiresponse optimization 
experiments. Quesada et al. [24] presented a 
Bayesian approach and consist of maximizing the 
posterior predictive probability that the process 
satisfies a set of constraints on the responses. 
Türkşen’s study [26] was analyzed of response 

surface model parameters, which was obtained by 
using Bayesian approach and fuzzy approach, 
through interval analysis. 

This study aims to apply Bayesian estimation 
methods to RSM with a focus area of quality 
improvement. The research will consider various 
Bayesian estimates and  investigate their effects 
of using a prior model on the mean and variance 
responses. Different estimators generate different 
solutions depending on the influence of the 
selected prior information. 

The rest of this paper is organized as follows: In 
the following section a brief overview of selected 
Bayesian estimation methods is presented. An 
estimation process of common regression 
coefficients of data modeling, linked to a 
discussed Bayesian estimation method, is put 
forward in Section 3. The next section illustrates 
the findings and offers a brief discussion of 
experimental design, including Bayesian analyses 
to RSM. Finally, the paper ends with a 
conclusion. 

2. BAYESIAN PARAMETER ESTIMATION 

In terms of the Bayesian approach, point 
estimation of a parameter vector θ is usually the 
mean of the posterior distribution based on 
minimization of the following Bayesian 
conditional risk function:  

𝑅൫𝜽෡|𝒚൯ = ∫ 𝐶൫𝜽෡, 𝜽൯𝑓(𝜽|𝒚) 𝑑𝜽
𝜽

  (2.1) 

where 𝐶൫𝜽෡, 𝜽൯ is the cost function and 𝑓(𝜽|𝒚) is 
the posterior density of θ, given an observation 
vector y. More methods to find Bayesian 
estimators will be presented. The reader is 
referred to Vaseghi (2000) for details. 

2.1. Maximum a posteriori estimation (MAP) 

The MAP method is based on maximization of the 
posterior distribution. According to this method, 
the cost function is assumed to be uniformly 
distributed, defined as, 

𝐶൫𝜽෡, 𝜽൯ = 1 − 𝛿൫𝜽෡, 𝜽൯ (2.2) 
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where  𝛿൫𝜽෡, 𝜽൯ is the Kronecker delta function. 
Then, the conditional risk function is given by, 

𝑅൫𝜽෡|𝒚൯
ெ஺௉

= ∫ (1 − 𝛿൫𝜽෡, 𝜽൯)𝑓(𝜽|𝒚)𝑑𝜽
𝜽

 (2.3) 

By using equation (2.3), when the posterior 
function 𝑓(𝜽|𝒚) attains a maximum, the 
minimum Bayesian risk can be achieved (see 
Figure 2.1 in [28]). Hence, the MAP estimator is 
given in equation (2.4). Here, the MAP estimator 
is the mode of the posterior distribution. 

        𝜽෡ெ஺௉ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑓(𝜽|𝒚) =
𝑎𝑟𝑔𝑚𝑎𝑥[𝑓(𝒚|𝜽) 𝑓(𝜽)]    (2.4) 

 

 

Figure 2.1 The Bayesian cost function for the MAP 
estimate 

  

2.2. Minimum mean square error estimation 
(MMSE) 

The MMSE method minimizes the mean square 
error cost function. The conditional risk function 
is 

𝑅൫𝜽෡|𝒚൯
ெெௌா

= 𝐸 ቀ൫𝜽෡ − 𝜽൯
ଶ

ቚ𝒚ቁ = ∫ (𝜽෡ −
𝜽

𝜽)ଶ𝑓(𝜽|𝒚)𝑑𝜽                               (2.5) 

By minimizing equation (2.5) with respect to 
parameter 𝜽, the MMSE estimator is obtained as 

𝜽෡ெெௌா = ∫ 𝜽𝑓(𝜽|𝒚)𝑑𝜽
𝜽

              (2.6) 

Figure 2.2, taken from [28], illustrates the mean 
square error cost function and the Bayesian 
estimate: 

                            

 

Figure 2.2 Bayesian cost function graph for the MMSE 
estimate 

 

2.3. Estimation of parameters using  MCMC 
by WinBUGS 

As the third estimation strategy, the posterior 
distribution is obtained by the MCMC method in 
WinBUGS, which was created in the 1990s as a 
free software package. WinBUGS uses Gibbs 
sampling as a special case of the Metropolis-
Hastings algorithm. 

Let 𝑓൫𝜃୨ ห 𝜽\௝ , 𝐲൯ be the full conditional posterior 
distribution, where 𝜽 is the parameter vector such 
as 𝜽\௝ୀ = (𝜃ଵ , … , 𝜃௝ିଵ , 𝜃௝ାଵ … , 𝜃ௗ )

் and 𝒚 =

(𝑦ଵ, 𝑦ଶ, … , 𝑦௡)் be the vector of length 𝑛 of the 
response data. For a particular state of the 
chain 𝜃(௧), the new parameter values have been 
obtained by Gibbs sampling as follows [19]: 

𝜃ଵ
(௧)

~𝑓ቀ𝜃ଵቚ𝜃ଶ
(௧ିଵ)

, 𝜃ଷ
(௧ିଵ)

, … , 𝜃௣
(௧ିଵ)

, 𝒚ቁ, 

  𝜃ଶ
(௧)

~𝑓ቀ𝜃ଶቚ𝜃ଵ
(௧)

, 𝜃ଷ
(௧ିଵ)

, … , 𝜃௣
(௧ିଵ)

, 𝒚ቁ,   

 𝜃ଷ
௧~𝑓ቀ𝜃ଵቚ𝜃ଵ

(௧)
, 𝜃ଷ

(௧ିଵ)
, … , 𝜃௣

(௧ିଵ)
, 𝒚ቁ, 

 𝜃௣
(௧)

~𝑓ቀ𝜃௣ቚ𝜃ଶ
(௧)

, 𝜃ଷ
(௧)

, … , 𝜃௣ିଵ
(௧)

, 𝒚ቁ 

After these generations, the Monte Carlo error 
might be observable. This error represents the 
standard error of the estimation made by the 
Markov chain algorithm. Therefore the iteration 
continues until this error becomes less than 0.05 
(e.g., as small as possible). 
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3. BAYESIAN ESTIMATION OF 
REGRESSION MODELS 

Bayesian estimation and data modeling constitute 
a useful method, as it can be used in a wide range 
of areas, including signal processing, computer 
vision processes, genome data analysis, and 
industrial applications. 

Regression modeling defines the functional 
relationship between a dependent random variable 
and another set of independent variables. Let 𝒚 = 
(𝑦ଵ, … , 𝑦௡)் be the 𝑛-dimensional column vector, 
and let 𝐗 be the 𝑛x𝑝 matrix whose ith row is 𝑥௜. 
Then the classical regression assumption is 

                                           
{𝐲|𝐗, 𝛃, 𝜎ଶ}~𝑚𝑢𝑙𝑡𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒 𝑛𝑜𝑟𝑚𝑎𝑙(𝐗𝛃, 𝜎ଶ𝐈) 
(3.1) 

where 𝐈 and 𝜎ଶ are the 𝑝x𝑝 identity matrix and 
variance of the model, respectively. The sampling 
density of the data, as a function of parameter 
vector β, is 

𝑝{𝒚|𝐗, 𝛃, 𝜎ଶ} ∝ 𝑒
{ି

భ

మ഑మൣ𝐲𝐓𝐲ିଶ𝛃𝐓𝐗𝐓𝒚ା𝛃𝐓𝐗𝐓𝐗𝛃൧}
 (3.2) 

if 𝛃~𝑚𝑢𝑙𝑡𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒 𝑛𝑜𝑟𝑚𝑎𝑙 ൫𝛃𝟎 = 𝛃௣௥௜௢௥  , 𝚺𝟎 =

𝚺𝒑𝒓𝒊𝒐𝒓൯, then 

𝑝(𝛃|𝐲, 𝐗, 𝜎ଶ) ∝ 𝑝(𝐲|𝛃, 𝐗, 𝜎ଶ)𝑝(𝛃) =

𝑒
{𝛃𝐓൬𝚺𝟎

ష𝟏𝜷𝟎ା
𝐗𝐓𝐲

഑మ ൰ି
భ

మ
 𝜷𝑻(𝚺𝟎

ష𝟏
ା

𝐗𝐓𝐗

഑మ )𝛃}
 (3.3) 

This result seemed to be proportional to a 
multivariate normal density, with 

         𝚺ெெௌா
∗ = 𝑣𝑎𝑟(𝛃|𝐲, 𝐗, 𝜎ଶ) = ( 𝚺𝟎

ି𝟏 +
𝐗𝐓𝐗

ఙమ
 )ିଵ       (3.4) 

and 

𝜷ெெௌா
∗ = 𝐸(𝛃|𝐲, 𝐗, 𝜎ଶ) = ( 𝚺𝟎

ିଵ +
𝐗𝐓𝐗

ఙమ
)ିଵ( 𝚺𝟎

ି𝟏𝜷𝟎 + 𝐗𝐓𝐲/𝜎ଶ)                  (3.5) 

      = 𝚺ெெௌா
∗ ቀ𝚺𝒑𝒓𝒊𝒐𝒓

ି𝟏𝜷𝒑𝒓𝒊𝒐𝒓 + ቀ
𝐗𝐓𝐗

ఙమ
ቁ 𝛃௖௟௔௦௦௜௖௔௟ቁ                                

If the elements of the prior precision matrix  𝚺𝟎
ି𝟏 

are small, then the conditional expectation 

𝐸(𝛃|𝐲, 𝐗, 𝜎ଶ) is approximately equal to the least 
squares estimate (known as MMSE). Also, the 
MAP estimators are defined as follows (see [9]): 

𝜷ெ஺௉
∗ = (𝚺𝒑𝒓𝒊𝒐𝒓

ିଵ𝜎ଶ + 𝐗𝐓𝐗)ିଵ𝑿𝑻𝑿𝛃௖௟௔௦௦௜௖௔௟ +

(𝚺௣௥௜௢௥
ିଵ𝜎ଶ + 𝑿𝑻𝑿)ିଵ𝜎ଶ𝚺௣௥௜௢௥

ିଵ𝛃௣௥௜௢௥     (3.6) 

and the variance-covariance matrix is 

    𝚺ெ஺௉
∗   = ൫𝚺𝒑𝒓𝒊𝒐𝒓

ିଵ𝜎ଶ +

𝑿𝑻𝑿൯
ିଵ

𝑿𝑻𝜎ଶ((𝚺𝒑𝒓𝒊𝒐𝒓
ିଵ𝜎ଶ + 𝑿𝑻𝑿)ିଵ𝑿𝑻)். 

(3.7) 

4. BAYESIAN APPROACH TO RESPONSE 
OPTIMIZATION 

Let us consider the experiment discussed in 
[7],[18]. The study involves three factors, 
namely 𝑋ଵ, 𝑋ଶ, and 𝑋ଷ. The goal is to find the 
combination of factor levels that maximizes the 
amount (in grams) of crystal growth. Table 4.1 
presents the experimental data. 

When RSM applies to the experimental setup, the 
second order estimated response surface is  

         𝑌෠௖௟௔௦௦௜௖௔௟ = 97.58 + 1.36𝑋ଶ −

1.49𝑋ଷ − 12.06𝑋ଶ
ଶ − 9.23𝑋ଷ

ଶ (4.1) 

According to this model, the optimum response is 
found at 𝑌෠௠௔௫ = 97.68 grams, which is illustrated 
in Figure 4.1 when the coded variables are x2 

= 0.05646 and x3 = −0.08097. 

Table 4.1 A central composite design of three 
variables 

Run 𝑥ଵ 𝑥ଶ 𝑥ଷ 𝑦 Run 𝑥ଵ 𝑥ଶ 𝑥ଷ 𝑦 
1 -1 -1 -1 66 11 0 -1.682 0 68 
2 -1 -1 1 70 12 0 1.682 0 63 
3 -1 1 -1 78 13 0 0 -1.682 65 
4 -1 1 1 60 14 0 0 1.682 82 
5 1 -1 -1 80 15 0 0 0 113 
6 1 -1 1 70 16 0 0 0 100 
7 1 1 -1 100 17 0 0 0 118 
8 1 1 1 75 18 0 0 0 88 
9 -1.682 0 0 100 19 0 0 0 100 
10 1.682 0 0 80 20 0 0 0 85 
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Figure 4.1 Response surface graph of maximum 
growth 

4.1 Bayesian MMSE estimator approach to 
response optimization 

Let the unknown 𝜷 parameter for the prior 
distribution of the model 
be  𝜷~𝑁𝑜𝑟𝑚𝑎𝑙(𝜷𝒑𝒓𝒊𝒐𝒓, 𝚺𝒑𝒓𝒊𝒐𝒓). Consider 
different prior means and variances on the 
parameters. For example the parameters 𝜷 have a 
multivariate normal prior distribution as used by 
Gilmour and Mead [7] with mean 𝛃𝒑𝒓𝒊𝒐𝒓 =

[100, 0, 0, −6, −6] and diagonal variance matrix 
with each element on the diagonal being 10. For 
illustration  𝜎ଶ = 1 was assumed [7]. Another 
assumption for mean 𝛃𝒑𝒓𝒊𝒐𝒓 =

[110, 0, 0, −6, −6] and diagonal variance matrix 
with each element on the diagonal being 1 also 
 𝜎ଶ = 158,7 was assumed. These assumptions 
were used in combination with each other.  Also, 
the classical coefficient vector from the classical 
regression is given as 𝛃௖௟௔௦௦௜௖௔௟. In Bayesian 
MMSE, the expected value model of the posterior 
distribution can be found by using equation (3.5), 
as follows: 

𝜷ெெௌா
∗ =

⎣
⎢
⎢
⎢
⎡

97.56355
1.35119

−1.48318
−12.02238
−9.21221 ⎦

⎥
⎥
⎥
⎤

 

and using equation (3.4), 

         𝚺ெெௌா
∗

=

⎣
⎢
⎢
⎢
⎡

0.11793
0
0

−0.05016
−0.05016

0
0.07268

0
0
0

0
0

0.07268
0
0

−0.05016
0
0

0.06795
0.00587

  −0.05016
0
0

0.00587
0.06795 ⎦

⎥
⎥
⎥
⎤

 

Using these results, the optimum response is 
found to be 𝑌෠௠௔௫ = 97.66 grams when the coded 
variables are x2 = 0.05619, and x3 = −0.08050. 

However, if one uses the classical regression 
estimator 𝜎ଶ = 158.7 rather than  𝜎ଶ = 1  in the 
MMSE estimation process, the optimum response 
becomes 𝑌෠௠௔௫ = 97.48 with x2 = 0.03221, and 
x3 = −0.04136. 

4.2 Bayesian MAP estimator approach to 
response optimization 

Second, consider the MAP estimator. For 
instance, the prior information is chosen as 
𝛃′௣௥௜௢௥ = [110, 0, 0, −6, −6] and the classical 
variance estimator is 𝜎2 = 158.7. The other 
assumptions mentioned in the previous section 
are applied for this estimator and the results are 
given in the final summary Table 4.3. In Bayesian 
MAP, by using the given prior information, the 
expected value model of the posterior distribution 
can be found by using equation (3.6), as follows:  

𝜷ெ஺௉
∗ =    

⎣
⎢
⎢
⎢
⎡
108.12898

0.10830
−0.11888
−7.66978
−7.40964 ⎦

⎥
⎥
⎥
⎤

     and using equation (3.7), 

 𝚺ெ஺௉
∗ =

⎣
⎢
⎢
⎢
⎡

0.08364
0
0

−0.04764
−0.04764

0
0.07324

0
0
0

0
0

0.07324
0
0

0.04764
0
0

0.10452
0.02099

  0.04764
0
0

0.02099
0.10452 ⎦

⎥
⎥
⎥
⎤

 

Using these results, the optimum response is 
found as 𝑌෠௠௔௫ = 108. 13 grams when the coded 
variables are x2 =0.00706, and x3 = −0.00802. 

4.3 Using  MCMC by WinBUGS approach to 
response optimization 

Finally, by using WinBUGS for the in prior 
informations. For instance  𝛃௣௥௜௢௥ =

[110, 0, 0, −6, −6] and 𝜎 2 = 158.7 ; the 
WinBUGS output is presented in Table 4.2. The 
other assumptions mentioned in section 4.1  are 
applied for this problem and the results are given 
in the final summary Table 4.3. Examining the 
model parameters in the output, the 
autocorrelation is a way of measuring the 
independence of the simulated values. According 
to Figure 4.2, no autocorrelation exists for the 
model parameters. 

-2
0

30

60

-2

2

2

0

100

y

3x

2x
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Table 4.2 Posterior summaries of the regression 
parameters 

 

   (a)

   (b)

   (c) 

   (d)

   (e) 

Figure 4.2 Plots for the autocorrelation functions of 
the chains: (a) 𝛽଴, (b) 𝛽ଵ, (c) 𝛽ଶ, (d) 𝛽ଷ, (e) 𝛽ସ 

Using these Bayesian regression coefficients 
obtained by WinBUGS, the optimum response is 
found as 𝑌෠௠௔௫ = 103.12 grams when the coded 
variables are x2 = 0.02731, and x3 = −0.03230. 

The output in Figure 4.3 gives a trace of the actual 
values of the chain and information about 
simulation convergences. It seems the Markov 
chain quickly converges to the final distribution. 
Also, according to the Kernel density plots with 
3000 sample sizes in Figure 4.4, one realizes that 
the posterior distributions of the parameters are 
close to the normal density. 

   (a)

   (b)

   (c) 

   (d)

   (e) 

Figure 4.3 Convergence plots for the parameter chains: (a) 
𝛽଴, (b) 𝛽ଵ, (c) 𝛽ଶ, (d) 𝛽ଷ, (e) 𝛽ସ 

   (a)

   (b)

   (c) 

    (d)

   (e) 

Figure 4.4 Plots for the posterior pdfs of the parameter 
chains: (a) 𝛽଴, (b) 𝛽ଵ, (c) 𝛽ଶ, (d) 𝛽ଷ, (e) 𝛽ସ 
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4.4. Final summary 

The summary results about the mean and the 
variance of posterior distributions and the 
optimum response values based on different prior 
information are given in Table 4.3 

 

Table 4.3. Optimum response values for different 
prior information and different variance 

 
 Bayesian Regression with RSM 

Prior 
Expectation 

Prior 
Variance
𝚺𝒑𝒓𝒊𝒐𝒓   

𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙) 

Varianc
e 

Respons
e 
(MMSE
) 

Response(MA
P) 

Response 
(WinBUG
S) 

𝛃𝒑𝒓𝒊𝒐𝒓

= [𝟏𝟎𝟎, 𝟎, 𝟎, 
−𝟔, −𝟔] 
 

1  
 
 
𝜎ଶ

= 158.7 

99.16 99.16 99.14 

10 97.48 97.48 97.5 

𝛃𝒑𝒓𝒊𝒐𝒓

= [𝟏𝟏𝟎, 𝟎, 𝟎, 
−𝟔, −𝟔] 
 

1 108.14 108.14 108.1 

10 103.10 103.13 103.12 

      

𝛃𝒑𝒓𝒊𝒐𝒓

= [𝟏𝟎𝟎, 𝟎, 𝟎, 
−𝟔, −𝟔] 
 

1  
 
 
𝜎ଶ = 1 
 

97.52 97.52 97.52 

10 97.66 97.66 97.66 

𝛃𝒑𝒓𝒊𝒐𝒓

= [𝟏𝟏𝟎, 𝟎, 𝟎, 
−𝟔, −𝟔] 
 

1 98.55 98.55 98.54 

10 97.78 97.78 97.78 

5. CONCLUSION 

In this article, the application of  Bayesian 
methods to RSM is studied. Bayesian regression 
estimators are obtained by using various priors  
and two different variance assumptions (see Table 
4.3). These estimators are utilized as Bayesian 
regression estimators and their posterior 
information is revealed. Then, RSM is applied to 
such posterior information and a comparison is 
made between these emerging results and the 
results obtained by classical RSM. 

According to the comparison results, where the 
situations of the prior variance (𝚺𝒑𝒓𝒊𝒐𝒓 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙) 
are smaller, then the estimated Bayesian 
responses are generally bigger than the classical 
responses. However, the higher prior expected 
value (𝛃௣௥௜௢௥)  assigns, the higher estimated 
Bayesian responses compared with the classical 
method. In other words, the prior information 
must be chosen carefully, otherwise this leads to 

different solutions rather than the one obtained by 
the classical response surface method. 
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