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Abstract

Coincidence degree theory, also known Mawhin’s coincidence theory is very powerful
technique especially in existence of solutions problems in nonlinear equations. It has
especially so broad applications in the existence of periodic solutions of nonlinear
differential equations so that many researchers have used it for their investigations.
In coincidence degree, mainly existence of solutions of the operator equation in the
form Lx = Nx in an open and bounded set /2 in some Banach space was researched.
Here, L is a linear operator and N is a nonlinear operator satisfying some special
properties. In this study mainly the studies of Gaines and Mahwin are followed, the
statement of continuation theory in a coincidence degree theory was corrected and
the reason is expressed. A continuation theorem was expressed in different manner.
In order to help the researchers with their studies on this subject, the proof that
was provided by Gaines and Mawhin has now been presented with more detailed
explanation.

Keywords: Coincidence Degree Theory, L-compact operator, Homotopy Theory.

Ortiisen Derece Teorisi Uzerine Bazi Diizeltme ve
izahlar

Ozet

Gaines-Mawhin ortlisen derece teorisi olarak da bilinen Ortiisen derece teorisi, 6zel-
likle dogrusal olmayan denklemlerdeki ¢oziimiin varligi probleminde gii¢lii bir tek-
niktir. Ozellikle dogrusal olmayan diferansiyel denklemlerin periyodik ¢dziimlerinin
varliginin gosterilmesinde ¢ok genis bir uygulamasi oldugundan pek ¢ok arastirmact
calismalarinda bu metodu kullanmislardir. Ortiisen derece teorisinde, bir Banach
uzayindaki {1 agik ve smirl kiimesinde tanimli Lx = Nx formundaki bir operator
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denkleminin ¢oziimlerinin varlig1 arastirilir. Burada L bir dogrusal operator ve N
dogrusal olmayan bir operator olmak iizere L ve N bazi1 6zel kosullar1 saglayan ope-
ratorlerdir. Bu ¢aligmada esas olarak Gaines ve Mawhin’in calismalari takip edil-
mis, Ortiisen teorinin siirdiiriilebilirlik teoreminin ifadesindeki ikinci sonug diizel-
tilmis ve gerekgesi belirtilmis. Her ne kadar uygulamalarda birinci sonug kullanilsa
da bu ikincisinin diizeltilmesi de 6nemli bir calismadir. Bu siirdiiriilebilirlik teoremi
farkli bir sekilde ifade edilmistir. Gaines ve Mawhin’in ¢ok az izahla verdigi ispat
ilerideki ¢aligmalara yardimci olmak amaciyla yeterince detayli bir gekilde izah edil-
meye ¢aligilmustir.

Anahtar Kelimeler: Ortiisen Derece Teorisi, L-kompakt operator, Homotopi Teorisi.

1. Introduction

It is known that in a finite dimensional case, for an open and bounded
set 2 € R", for a continuous function f € c(17) and for a point
p € B™\f(812), the degree of f on 2 with respect to p, d(f.12.p),
is well defined. But unfortunately this is not the case in infinite
dimension for a continuous function f € €(£2). Luckily, in an arbitrary
Banach space X, Leray and Schauder proved that for an open and
bounded set 2 © X, for a compact operator M: 2 — X and for a point
p € X\(I — M)(912), the degree of compact perturpation of identity,
I — M, in 0 with respect to point p denoted by d{I — M, 2,p) is well
defined. One of the useful properties of degree theory is that if the
degree d(I — M, 2, p) # 0 then the equation (I — M)x = p has at least
one solution in £2. In particular if it is taken p = 0 € X\(I — M)(29n),
and if d(I — M, 2, 0) + 0then the compact operator M has at least one
fixed point in £2.

Gaines and Mawhin in [1] studied existence of a solution of an
operator equation
Lx = Nx (1)
defined on a Banach space X in an open and bounded set {2 using the
Leray-Schauder degree theory. But since the operator I — (L — N) is
not compact in general the need to define a compact operator M such
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that its set of fixed points in £2 would be equal to a solution set of
operator equation (1) in £2 aroused. In [1], the compact operator M is
given and the coincidence degree for the couple (L, N) in £2 is defined
by d[(L.N).2] =d[I —M,n,0]. Coincidence degree theory has
especially so broad applications in the existence of periodic solutions
of nonlinear differential equations so that many researchers have used
it for their investigations (see [2-20] and references therein).

The aim of this paper is to make an effort to understand, to explain
and to correct generalized continuation theorem for coincidence
degree given and proven densely in [1]. In this study, the theory that
was given in [1] tried to explain. Besides proofs of some results that
their proofs not given [1] is given. Namely, proofs of Lemma 1 and
2 and proofs of Lemmas 4-6 are given. In the proof of generalized
continuation theorem, Theorem 7, important contributions are made to
make the proof much more understandable and so that it can improved
by interested researchers. Also an important contribution it is done in
this study is that one expresion of result of generalized continuation
theorem is corrected and given in the statement of Theorem 7 and the
reason is explained after Theorem 8§ of Gaines and Mawhin. The last
contribution is that first two assumption of generalized continuation
theorem is unified and given in Theorem 9.

2. Material and Method

Let X and Z be two normed space, DomL is the domain of the operator
L, L:DomL — Z be a linear operator. Assume that the operators
P:X — X and @: Z — Z are linear projection operators such that the
chain

P:X— X, LDomlLcX <2 @Q:Z— £

is exact. That is the conditions ImP = KerlL and ImL = Ker@ are
satisfied. Here ImP and ImL respectively indicate image of the
operators P and L, KerL and Ker@ respectively indicate kernels of
the operators P and L. Beside this, restriction of the linear operator
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L on DomL n KerP, the operator Lp: DomL NnKerP — ImL is an

algebraic isomorfizm [2]. Furthermore, the operators K = L' and

Definition 1: Let X and £ be two normed space, 2 X is an open
and bounded subset of X, 17 is a closure of the £2. Assume that the
operators L:DomL © X = Z and N: 1 c X — Z satisfy the following
condtions:

i) L is linear and ImL is a closed subset of Z,

ii) The vector spaces Kerl and CokerL = Z/ImL are finite
dimensional vector spaces and dimKerL = dimCokerL,

iii) The operator N:2 X — Z is a continuous operator and
II: Z — CokerL such that IT(z) = z + ImL, the operator [IN (12)
is a bounded operator.

iv) The operator K ;N: NcX—Zisa compact operator on 12 .

a) If the operator L satisfes the conditions (i) and (ii) then L is

called a Fredholm operator of index zero.

b) If the operator N satisfes the conditions (iii) and (iv) then N is

called L — compact operator.

Lemma 1: Let L:DomL © X — Z be a Fredholm operator of index
zero and the operator
N*:0x[01]—=2Z
(x,A) = N*(x,4)
be a L —compact operator on 2 % [0,1] with N*(.,1) = N.
Let ¥ € ImL be any element, for A € [0, 1] let us consider the family
of equations
Lx = AN*(x,A) + v, Ae [0,1]. @)
Therefore for any 4 € (0, 1] the set of solutions of equation (2) is equal
the set of solutions of equation
Lx=QN"(x,A) + A(I —Q)N"(x, 1) + v. (3)
And for A = 0, any solution of the eqaution (3) is also a solution of the
equation (2).
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Proof: Let A €]0,1].
Since any =z€Z can be written in the form
z=Qz+ (I—@)z and since N*(x,A) EZ then the equality
N*(x,4) = @N*(x,4) + (I — @Q)N*(x, A) holds. Therefore if we write
the last equality in the equation (2) then it is obtained the equation

Lx =4 QN*(x,A) + Al —Q)N*(x,A) + v, 4)
that is the equation
Lx+ 0= AQN*(x, ) + A(I— QIN*(x, 1) + v (35

is obtained. Since Z can be written by a direct sum as
Z = KerQ®ImQ@ = ImL@HIm@ and Lx € ImL = Ker@ and v € ImL,
AI—Q@)N*(x,4) € KerQ, @N*(x,A) € Im@ and because of the
uniqueness of indicating with direct sum, the equation (5) is equivalent
to the system of equations

0= AQN*(x,4), Lx = A(I — Q)N*(x,A) + v. (6)
Since 4 # 0, this system of equations (6) is equivalent to equation (3).
If =0 then the equation (3) turns into the form Lx = @N*(x,0) + v.
Again because of uniqueness of indicating with direct sum, this turns
into the system of equation 0 = QN*(x,0) and Lx = ¥. From here
the result is trivial. Therefore the proof is completed.

Lemma 2: Let ¥ € ImL be an arbitrary but fixed point and L™
be an inverse image of the operator L then the linear space L™ {v} is a
finite dimensional space.

Proof: It is known that dimCokerl = dimEerL = n < oo,
If v =0 since dimL™ {y} = dimL™ {0}=dimKerL = n < @ then the
space L™ {y} is a finite dimensional space.
For the case ¥ #0 consider any points x,x3 € L={v}. Using
linearity of L, L{x—x,)=L(x)—L(xg)=y—y=0 is
satisfied. Thus x —x, € KerL. That is any element x € L™{y}
is also an element x € xy+ KerL, hence L™{v}=x,+ KerL.
Here the space xy+ Kerl is an affin space of KerL . Since
dim L™ {y} = dim{ x, + KerL} = dimKerL =n < o | hence the
proof is completed.
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Theorem 3: (see [1]) (The property of invariance of coincidence
degree under homotopy) Let L be a Fredholm operator of index zero,
N-nx[01]—=Z
(x,4) = N(x, 1)
be an L-compact operator on n % [0,1] and
0€[L—N(,2)](domL n 80) .

Therefore the value of coincidence degree d[(L.N(.,4)).2] is
independent of the value of 4 € [0, 1].

In order to show continuation theorem for the coincidence theory,

first the following lemmas will be expressed and proven.

Lemma 4: Assume that the operators L and N*as in above.
Therefore the homotopy N (x, 1) defined by
N(x,A) = @QN*(x,A) + (I — QIN*(x, ) + ¥ (7)
for A € [0,1] is L-compact.

Proof: In order to show that the homotopy N(x,4) is L
-compact for any 4 € [0,1], by the definition of L-compactness
given in Definition 1, it should be shown that for any A € [0, 1] the
operator N(.,A): 2 € X — Z is continuous and with T: Z — CokerL,
I(z) = z + ImL the operator TN (ﬁ, A) is bounded and the operator
KpoN(.,A):2CcX > Z is a compact operator on 2. In the right
hand side of equation (7), the operators @ and N*(x,4) appear. It is
given that the projection operator @ is continuous and for A € [0, 1]
the operator N*(x,4) is given that L-compact therefore continuous.
Hence for any 4 € [0, 1] the homotopy N(x, 4) is continuous.

Now let us show that the operator IIN(x, 4) is bounded on the set
1. From the equation (7) the equation
NN(x,X) = OQN*(x,A) + All(I — Q)N*(x,A) + Iy (8)
is obtained. Since ¥ € ImL then Ty = 0 and since Im(I — @) = Ker@
and KerQ =ImL then Im(/— @) =ImL therefore the equality
AlI(I —@)N*(x,A) = 0 is obtained. Hence in order to show that
the operator [TN(x, ) is bounded on the set 12 it is enough to show
that the operator IIQN*(x,4) is bounded on the set 2. Namely:
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Since the operator N*(x,4) is L-compact, by the definition of L
-compactness the operator ITN*(x,4) is bounded on the set 2. Since
the linear vector space £ can be written direct sum of ImL and Img
as Z = KerQ@®ImQ = ImL@BImQ then the set N*(2,1) € Z is also

can be written as N*(2,1) = ([N* (2,A)nImL)B(N* (2, A)nImQ)}

. Thus the set IN*(2,1) = I(N*(2,2)nImQ) is a bounded set.
Because the equalities

on*(@2,2) = @ (v (@, A)nimL)&(N* (2, ) nImQ) )
= ¢ ((v*(@.2)nKer@)®(N*(@, 2)nmQ) ) = @(N* (2, 2)nImQ) = N* (1, 1) NImQ 9)

are satisfed, the set TQN*(£2, 1) is a bounded set. Hence boundedness
of the operator IIN (x, 1) on the set 22 has been shown.

Now in order to show that the homotopy operator N(x,4) for
any A € [0, 1] is L-compact, lastly let us show that for any A € [0, 1]
the operator K, p,o‘i';r- (x,):RCX =2Z is compact on 1. Because
Kpo = Kp(I— @) then
KpoN(x,2) = Kp(I— Q)QN"(x,2) + 1K, (I — QU — @QN*(x,2) + K, (1 — @)y (10)
can be  written. Since here ¥ €ImL =Ker@  then
Kp(I — @)y =Kpy. Since constant operator is compact thus
the operator Kz(I — @)y is compact. Since the operator @ is
a projection operator hence I — @ is also projection operator.
So that (I-Q)I—-Q)=({I—-Q)*=(I—g) holds, since
Ko(I—Q)I—QIN*(x,A) =K;(I —QIN*(x,4) = KpoN"(x,4)
and by our assumption the operator Kp oN*(x,4) is compact on 12
then the part AK,(I— @)(I —@)N*(x,4) is also compact operator
on . Beside this, since (I — Q)@ =Q — Q> =Q — @ = 0 then we
have Kp(I — @Q)QN*(x,A) = 0, so that in this case also the operator
Kp(I —@)@N*(x,4) is compact on 0. Since sum of the compact
operators is also compact, we have that for any 4 € [0, 1] the operator
KpoN(x,A): 2 € X — Z is compact on the set 2 . As a result the proof
of Lemma 4 is completed.
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Lemma 5: Assume that the operators L and N*as in above,
¥ € ImL is any number and A:CokerL — KerL is any isomorphism.
Hence the following equalities hold:

a) d[{—AION*(.+Kpy, 0)}xerr, (—Kpy + 2) NKerL, 0]
= +d[{IN* (. 4Ky, 0)}ger, (—Kpy + 2) N KerL,0] (11)

b) d[{lIN*(.4+Kp¥, 0)} e, (—Kpy + 02) NKerL,0]
= d[IN* (x,0);-1,3. 2 N L™{y}, 0] (12)
Proof:
a) Now to an expression
d[{—AON* (4 K5y, 0)}xers, (—Kpy + 2) N KerL, 0] (13)
productrulein Browerdegreeisapplied. Namely; here since the mapping
~ A:CokerL — KerL is any isomorphism then (-4)7*{0} = {0}, so
that if we take the set V © CokerL, any open and bounded set which
contains 0, then by the product rule the expression (13) is equal to
expression
=d[-A,V,0 |d[{IN*(.+Kp¥, 00} xere. (—Kpy + 2) N KerL,0]. (14)
Because of degree of linear isomorphism *1 then we have
d[—ﬂ, L’,ﬁ] = *1, hence in this case the expression (14) is equal to
expression
= +d[{IN* (. +Kp7,0)}xer, (—Kpy + 2) N KerL,0] (15)
which is same with (11).
b) In the expression of d[{IIN* (.+Kz¥, 0)}xes. (—Kpy + 2) NKerL, 0]
since
x € (—Kpy+ 0)nKerl = (—Lz'y+ 2) N KerL
= x € (—Lp'v+ 0) ve x € KerL
= xENvex € (—Ly'y+ Kerl)
=xeNvex e L™ {y}
are satisfied. Then the equality
d[IN*(.4+Kpy, 0)jger. (—Kp¥ + 2) NKerL,0]
=d[lIN"(x,0) 1,3, 2 N L™ {3}, 0]
holds. In this way the proof of Lemma 5 is completed.
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Lemma 6: The operator
M*(.,0) = P + (Al + K 5 )(QN* (., 0) +¥) can be written in the
form M*(.,0) = P + AIIN*(.,0) + K v.

Proof: By definition the open expression of operator M*(.,0) is
M*(.,0) =P+ (Al + K 4 )(QN*(.,0) +¥)
=P + AIQN*(.,0) + Ally + Kp QN *(.,0) + Kp .

Here since ¥ EImLy €EImL then Iy =00y =0 and A0 =0
A0 = 0 and beside this, since

v EImL = KerQ thus Kpov=Kp(I —Q)v=Kpy —K; Qv =Kpy.
Therefore the equalites

M*(.,0) =P+ ANQN*(.,0) + 0+ K, (I —Q)@N"(.,0) + K (I — Q)¥y
=P+ ANQN*(.,0) + K, (@ —Q*)N*(.,0) + K,y — K,Qvy

=P+ AIQN*(.,0) + K,(Q — Q)N*(.,0) + K,y — 0

=P+ AQN*(.,0) + K, ¥

are obtained.

But since AMIN*(.,0) can be written in the form
AIIN*(.,0) = AIIQN*(.,0) + AIT(I — Q)N*(.,0) and
KerQ = ImL hence [1(I — Q) =0 and this also follows that we
have AINN*(.,0)=ANQN*(.,0). In this way the expression
M*(.,0) =P+ AIIN*(.,0) + K,y is obtained. Thus, the proof of
Lemma 6 is completed.

Theorem 7: (Generalized Continuation Theorem) Assume that the
operators L and N* as in above and ¥ € ImL is any number. Assume
also that the following conditions are satisfied:

1) Forany x € DomL N @12 and for any 4 € (0, 1)

Lx # AN*(x, 1) +v
2) Forany x € L™{y} N 80 i¢in

IN*(x,0) 0
3) d[AN*(.,0)|p3. 2 NL7{y},0] = 0.

Therefore the equation

Lx=Nx+y (16)
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has at least one solution on 12 . Beside this, whenever the equation (16)
does not have any solution on DemL 1 12 then for any 4 € [0,1] the
equation

Lx = AN*(x,A) + ¥ (17)
has at least one solution in £2.

Proof: In Lemma 2 we showed that space L™ {v} has a finite n
dimension, same with the dimension of CokerL. If basis for the spaces
L™{v} and CokerL are chosen and if a sign of the degree is taken with
respect to this orientation, then degree in the assumption 3) can be
considered as a clasical Brouwer degree from R™ to R™. For the detail
see Mawhin [3]. In Lemma 4 it is shown that the operator N(x, )
defined by
N(x,2) = QN*(x,A) + AT —QIN*(x, D) + v (18)
is L-compact for any 4 € [0,1]. Now to an homotopy operator
L — N(x,4) the theorem of invariance of coincidence degree under
homotopy given in Theorem 3 will be applied. In order to apply the
theorem of invariance of coincidence degree under homotopy, it is
needed to show that the operator L — N(x, 2) does not have any root
on domL N 812 for any 4 € [0,1]. Namely:

Assume that A € (0, 1). By the assumption 1), for any x € domL N 812
the inequality

Lx # AN (x,A) +v (19)
is satisfied. Therefore by the consequence of Lemma 1, for any
x € domL N @1 and for any A € (0, 1) the inequality

Lx # QN*(x,A) + A(I —QIN*(x,A) + ¥ (20)
is obtained.

The equation (20) for the case 4 = 0 is equivalent the system of
equation
Lx=vy ve QN'(x,0)=0.

Lx=v < xelL {yv} and

QN*(x,0) =0 = N*(x,0) EKerQ =ImL = IIN*(x,0) e I{ImL) =0
hold. Here 0, equivalence class of 0 in CokerL, hence for 4 = 0 the
equation (20) is equivalent to equation
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IIN*(x,0) = 0ve x € L™ {y}. (21)

But by the assumption 2) in this theorem the equation (21) does
not have any solution on 812 and therefore for any x € domL n o2
and for any 4 € [0,1]

Lx#= QN (x,A) + Al —Q)N*(x,A) + v (22)
and
Lx # AN*(x,A) +v (23)

are satisfied.

Now the case 4 = 1 is considered. There are two cases related the
equation
Lx=N*"(x,1)+y = N(x) + v. (the case 1=1) (24)
It does not have any solution on the boundary set DomL N @12 or it has
at least one solution on DomL n a1,

Assume that the equation (24) that is the equation (16) does not
have any solution on DomlL N @12, Therefore since by assumptions 1)
and 2) the inequality (25) is satisfied for any 4 € [0, 1] by the above
arguments for any A € [0, 1] and x € DomL N 912 the inequality
Lx # AN*(x,A) + ¥ (25)
holds. Thus by the Theorem 3 the value of coincidence degree
d[(L,N(.,4)).2] is independent from the value of 4 € [0,1] and
hence it is equal to its value at A = 0,

Now let us try to find the value of coincidence degree
d[(L,N(.,A)).2] at 2 = 0, that is let us try to find the value of degree
d[(L.N(.,1).2] =[(L,¥(.0).02] =d[(L,@N*(.,0) + y),02] = d[I — M*(.,0),2,0]. (26)
By the definition

M =P+ (Al + Ky ;)N

hence

M*(.,0) =P+ (Al + Ky 5 )(QN* (., 0) + ¥). 27)
But by the Lemma 6 the equality (27) can be written as

M*(.,0) =P+ AIIN"(.,0) + K v. (28)

Therefore we have
d[(L.N(.1)).0] =d[I—M*(.,0),0,0]
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=d[l —P — AIIN*(.,0) — Ky, 1,0].

If KerL = {0} then because KerL =ImP, P =0 is obtained.
But because of dimKerl = dimCokerLl =dim(Z/ImL) and
dim KerL = 0dim KerL = 0 then we have dim(Z/ImL) = 0 thus we
have ImL = Z hence II = 0 is obtained. Since £ = ImL = Ker then
Ker@ = Z hence this implies @ = 0.

Q@ =0, and K; = L™" implies that
d[(L,N(.0),02)] =dlI-Ly,0,0]. (29)

Assumption 2) puts the condition for any x € L™{y} nan,
IIN*(x,0) #+ 0.ButinthiscasesincelI = Othenforanyx € L™{v} n dn
we have IIN*(x,0) = 0. Thus in this case the assumption 2) can be
satisfied if and only if the condition L™ {v} N 82 = @ is satisfied.

Now let’s write the assumption 3) again:
d[IN*(.,0))~,3. 2 N L {y},0] # 0 (30)
Since ITN*(.,0) = 0 then the necessary and suffcient condition that
the inequality (30) holds is that 2N L™ {v} = @ . That is why,
if2 N L™ {yv} = 0 then d[0,0,0] = 0.

If2nL {y}#0thend[0,2NL {¥},0]=1=%0.

Since now we investigate the case KerL = {0}, because in this

case the linear operator L one-to-one and ¥ € ImL therefore we have

L'_‘E?} = {xu}-
NNl {y}=0
That is

D nL v} = {x,}
this means that L™'y = x; € 2.
Since the set 12 is a open set then x, € 2 but x, & @12, That is
L~ {yv}ndn =0.
That is assumption 2) and assumption 3) occur if and only if under
the condition L™ {y¥} N 82 = @. Therefore since 0 & (I — L™ {y})(91)
then the triple (I — L™y, 1n,0) is an admissiable triple.

Now again let us return to calculate the degree
d[(L.N(.0),0)] = d[I— Ly, 0,0]. 1)
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Because the equalities
dlI — L7y, n,0] = d[1,0,L7'y] = d[1, 1, x,] (32)
and x, € 2 then d[I, 2,x,] = 1.

As a result because of existence theorem and Theorem 3, for the
case KerL = {0}, for ¥ € ImL the equation

Lx = AN*(x,A) + v
for any 4 € [0,1] has at least one solution in £2.
Now let us consider the case KerL = {0}. Using the rule of invariance
of Leray-Schauder degree under translation and using its definiton the
equality
d[I —P — AIIN*(.,0) — Kpy,02,0] =d[I — P — AIN* (. +K,¥,0), K,y + 2,01 (33)
is satisfied . Since here
(I—P—AON*(.+K;y,0))(x) =0 = x— Px — AIIN*(x + K;¥,0) = 0 (34)
= Px+ AIIN*(x+ Kpv,0) =x (35)
and Px € ImP = KerL, AIIN*(x 4+ K;y,0) € KerL then x € KerL
. So that the domain of the expression (I — P — AIIN*(.+K,y,0))
becomes a subset of KerL . Hence we have
d[I —P — AIN*(.,0) — Kzy,02,0] =d[I — P — AIIN*(. +K,y,0),—K,y + 2,01 (36)
=d [[f — P— AIIN? (.+Kp}r,u))KEl_L, (—K,y+ 2)n KerL,ﬂ]- 37)
But on the set KerL = ImP we have (I — P) = 0 then this implies
= d[{—AIN*(.+Kpy,0)}gops, (—Kpy + 2) N KerL,0]. (38)
Beside by the result of Lemma 5 (a) the expression (38) is equal to
= +d[{IN* (. +Kpy,0)}ger, (—Kpy + 2) N KerL,0]. (39)
Moreover by the result of Lemma 5 (b) the expression (39) is equal to
= +d[IN* (x,0),-¢,3. 2 N L™y}, 0]. (40)

Since by the assumption 3) the degree
d[IIN* (x,0);-¢,3, 2 N L™{y},0] # 0. So that, because of existence
theorem and Theorem 3, for the case KerL # {0}, for ¥ € ImL the
equation

Lx = AN*(x,A) + v

for any 4 € [0,1] has at least one solution in £2.
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Therefore beside the assumptions 1) and 2) if we assume that the
equation (16) or (24) does not have any solution on DomL N 92 then
for ¥ € ImL the equation

Lx = AN*(x,A) + v
for any A € [0,1] has at least one solution in £2. Hence the second part
of Theorem 7 is proved. In particular for A = 1, if we assume that
the equation (16) does not have any solution on DomL N 912 then for
v € ImL the equation

Lx=N"(x,1)+v=N(x)+vy
has at least one solution in £2. So this indicates first part of Theorem 7 for
the case the equation (16) does not have any solution on DomlL N a2,
But if the equation (16) does have a solution on DemlL N 812, then the
first part of Theorem 7 still clearly holds, however because in this case
the necessary condition for the homotopy does not hold, we cannot
apply Theorem 3, so that we cannot talk about the existence of solution
of equation (17) for A € [0,1]. In this case equation (16) has a solution
on DomL N d£2. This completes the proof of Theorem 7.

However, Gaines and Mawhin [1] expressed Therorem 7 in
the following way and this expresion is partly false, namely in the
second part of Thorem 8 there is an important absence of a condition.
Namely:

Theorem 8: Assume that the operators L and N* as in above and
v € ImL is any number. Assume also that assumptions 1), 2) and 3) of
Theorem 7 holds. Therefore the equation

Lx=Nx+vy (41)
has at least one solution on the set 2 and for any 4 € [0, 1] the equation
Lx =AN*(x,A) + v (42)

has at least on solution in £2.

Theorem 8 as a consequence says that the equation (41) which
is the equation (16) has at least one solution on 2 and for any
A € [0,1] the equation (42) which is the equation (17) has at least
one solution in £2. But this two expression sometimes cannot hold at
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the same time. Namely; the equation (41) has at least one solution
on 212 or does not have any solution on @.2. Beside the assumptions
1) and 2) if the equation (41) does not have any solution on 912,
the rule of invariance of coincidence degree under homotopy can be
applied like in the proof of Theorem 7. In this way it is shown that
for any 4 € [0, 1] the equation (42) does have a solution in 2. But,
however, if the equation (41) has a solution on 912, because of the
rule of invariance of coincidence degree under homotopy can not
be applied, then for any 4 € [0, 1] it can not be said anything about
existence of solution of equation (42) in £2 with this method. That
is this proof does not say anything about existence of solution of
equation (42) in 2 for 4 € [0, 1] under the condition equation (41)
has a solution on 82 . Because of this, the result of Theorem 8 should
be like the result of Theorem 7.

In fact assumption 2) in Theorem 7 or Theorem 8 is a special case
of assumption 1) for 4 = 0, so that assumption 1) and assumption 2)
can be unified as in the following theorem.

Theorem 9: Assume that the operators L and N* as in above and
v € ImL is any number. If the conditions

1) Forx € DomLnN dN and A € [0,1] igin

Lx # AN (x,A) + v

2) d[AN*(.,0) ;3 2NL {yv},0] =0
are satisfied, then the equation (41) has at least one solution on 2. And
whenever the equation (41) does not have any solution on DomL N 9.2
then for any A € [0, 1] the equation (42) does have at least one solution
on f2,

3. Results and Discussion

As a result, in this study it is seen that for ¥ € ImL the linear space
L={y} is a finite dimensional space; the homotopy N(x,4) defined
by N(x,A) = QN*(x,A) + A(I —Q)N*(x,A) + y for A€[0,1] is L
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~compact. The operator M*(.,0) = P + (Al + K, 5 )(QN*(.,0) +¥)
can be written in the form M*(.,0) = P + AIIN*(.,0) + K;v. Also
it is seen that in order the operator equation Lx = AN*(x,4) + v has
at least one solution in £2, the equation Lx = Nx + ¥ should not have
any solution on DomL N 212, this fact is not expressed in the study of
Gaines and Mawhin in [1] which is expressed in Theorem 8.

4. Conclusions

Generalized continuation theorem for coincidence degree given and
proven densely by Gaines and Mahwin in this paper explained in detail
and corrected. Besides the proofs of some results that their proofs not
given by them are given in this study. Namely, the proofs of Lemma 1
and 2 and proofs of Lemmas 4-6 are given. In the proof of generalized
continuation theorem, Theorem 7, important contributions to make
the proof much more understandable are made. Also it is explained
that in result of generalized continuation theorem, for the existence
of solution of the equation (42) it is necessary that the equation (41)
should not have any solution on the boundary set DomL N 92 with
respect to proof of generelized continuation theorem. So generalized
continuation theorem given by Gaines and Mahwin, here is corrected,
reason is explained and proof is given in detail. Lastly first two
assumption of generalized continuation theorem are unified and given
in Theorem 9.
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