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Abstract
Coincidence degree theory, also known Mawhin’s coincidence theory is very powerful 
technique especially in existence of solutions problems in nonlinear equations. It has 
especially so broad applications in the existence of periodic solutions of nonlinear 
differential equations so that many researchers have used it for their investigations. 
In coincidence degree, mainly existence of solutions of the operator equation in the 
form  in an open and bounded set  in some Banach space was researched. 
Here,  is a linear operator and  is a nonlinear operator satisfying some special 
properties. In this study mainly the studies of Gaines and Mahwin are followed, the 
statement of continuation theory in a coincidence degree theory was corrected and 
the reason is expressed. A continuation theorem was expressed in different manner. 
In order to help the researchers with their studies on this subject, the proof that 
was provided by Gaines and Mawhin has now been presented with more detailed 
explanation.
Keywords: Coincidence Degree Theory, -compact operator, Homotopy Theory.

Örtüşen Derece Teorisi Üzerine Bazı Düzeltme ve 
İzahlar

Özet
Gaines-Mawhin örtüşen derece teorisi olarak da bilinen örtüşen derece teorisi, özel-
likle doğrusal olmayan denklemlerdeki çözümün varlığı probleminde güçlü bir tek-
niktir. Özellikle doğrusal olmayan diferansiyel denklemlerin periyodik çözümlerinin 
varlığının gösterilmesinde çok geniş bir uygulaması olduğundan pek çok araştırmacı 
çalışmalarında bu metodu kullanmışlardır. Örtüşen derece teorisinde, bir Banach 
uzayındaki  açık ve sınırlı kümesinde tanımlı  formundaki bir operatör 
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denkleminin çözümlerinin varlığı araştırılır. Burada  bir doğrusal operatör ve  
doğrusal olmayan bir operatör olmak üzere  ve  bazı özel koşulları sağlayan ope-
ratörlerdir. Bu çalışmada esas olarak Gaines ve Mawhin’in çalışmaları takip edil-
miş, örtüşen teorinin sürdürülebilirlik teoreminin ifadesindeki ikinci sonuç düzel-
tilmiş ve gerekçesi belirtilmiş. Her ne kadar uygulamalarda birinci sonuç kullanılsa 
da bu ikincisinin düzeltilmesi de önemli bir çalışmadır. Bu sürdürülebilirlik teoremi 
farklı bir şekilde ifade edilmiştir. Gaines ve Mawhin’in çok az izahla verdiği ispat 
ilerideki çalışmalara yardımcı olmak amacıyla yeterince detaylı bir şekilde izah edil-
meye çalışılmıştır.
Anahtar Kelimeler: Örtüşen Derece Teorisi, -kompakt operatör, Homotopi Teorisi.

1. Introduction

It is known that in a finite dimensional case, for an open and bounded 
set , for a continuous function  and for a point 

, the degree of  on  with respect to , ,  
is well defined. But unfortunately this is not the case in infinite 
dimension for a continuous function . Luckily, in an arbitrary 
Banach space , Leray and Schauder proved that for an open and 
bounded set , for a compact operator  and for a point 

, the degree of compact perturpation of identity, 
, in  with respect to point  denoted by  is well 

defined. One of the useful properties of degree theory is that if the 
degree  then the equation  has at least 
one solution in . In particular if it is taken ,  
and if  then the compact operator  has at least one 
fixed point in .

Gaines and Mawhin in [1] studied existence of a solution of an 
operator equation

� (1)
defined on a Banach space  in an open and bounded set  using the 
Leray-Schauder degree theory. But since the operator  is 
not compact in general the need to define a compact operator  such 
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that its set of fixed points in  would be equal to a solution set of 
operator equation (1) in  aroused. In [1], the compact operator  is 
given and the coincidence degree for the couple  in  is defined 
by . Coincidence degree theory has 
especially so broad applications in the existence of periodic solutions 
of nonlinear differential equations so that many researchers have used 
it for their investigations (see [2-20] and references therein).

The aim of this paper is to make an effort to understand, to explain 
and to correct generalized continuation theorem for coincidence 
degree given and proven densely in [1]. In this study, the theory that 
was given in [1] tried to explain. Besides proofs of some results that 
their proofs not given [1] is given. Namely, proofs of Lemma 1 and 
2 and proofs of Lemmas 4-6 are given. In the proof of generalized 
continuation theorem, Theorem 7, important contributions are made to 
make the proof much more understandable and so that it can improved 
by interested researchers. Also an important contribution it is done in 
this study is that one expresion of result of generalized continuation 
theorem is corrected and given in the statement of Theorem 7 and the 
reason is explained after Theorem 8 of Gaines and Mawhin. The last 
contribution is that first two assumption of generalized continuation 
theorem is unified and given in Theorem 9.

2. Material and Method

Let  and  be two normed space,  is the domain of the operator 
,  be a linear operator. Assume that the operators 

 and  are linear projection operators such that the 
chain

, , 
is exact. That is the conditions  and  are 
satisfied. Here  and  respectively indicate image of the 
operators  and ,  and  respectively indicate kernels of 
the operators  and . Beside this, restriction of the linear operator 
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 on , the operator  is an 
algebraic isomorfizm [2]. Furthermore, the operators  and 

 are defined.

Definition 1: Let  and  be two normed space,  is an open 
and bounded subset of ,  is a closure of the . Assume that the 
operators  and satisfy the following 
condtions:
i)	  is linear and  is a closed subset of ,
ii)	� The vector spaces  and  are finite 

dimensional vector spaces and ,
iii)	� The operator  is a continuous operator and 

 such that , the operator  
is a bounded operator.

iv)	 The operator  is a compact operator on  .
a)	� If the operator  satisfes the conditions (i) and (ii) then  is 

called a Fredholm operator of index zero.
b)	� If the operator  satisfes the conditions (iii) and (iv) then  is 

called  compact operator.

Lemma 1: Let  be a Fredholm operator of index 
zero and the operator

be a compact operator on  with .
Let  be any element, for  let us consider the family 
of equations

� (2)
Therefore for any  the set of solutions of equation (2) is equal 
the set of solutions of equation

� (3)
And for , any solution of the eqaution (3) is also a solution of the 
equation (2).
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Proof: Let .
Since any  can be written in the form 

 and since  then the equality 
 holds. Therefore if we write 

the last equality in the equation (2) then it is obtained the equation
,� (4)

that is the equation
� (5)

is obtained. Since  can be written by a direct sum as 
 and  and ,  

,  and because of the 
uniqueness of indicating with direct sum, the equation (5) is equivalent 
to the system of equations

, .� (6)
Since , this system of equations (6) is equivalent to equation (3).
If 𝜆=0 then the equation (3) turns into the form . 
Again because of uniqueness of indicating with direct sum, this turns 
into the system of equation  and . From here 
the result is trivial. Therefore the proof is completed.

Lemma 2: Let  be an arbitrary but fixed point and  
be an inverse image of the operator  then the linear space  is a 
finite dimensional space.

Proof: It is known that  .
If  since  then the 
space  is a finite dimensional space.
For the case  consider any points . Using 
linearity of ,  is 
satisfied. Thus . That is any element  
is also an element , hence .  
Here the space  is an affin space of  . Since 

, hence the 
proof is completed.
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Theorem 3: (see [1]) (The property of invariance of coincidence 
degree under homotopy) Let  be a Fredholm operator of index zero,

be an -compact operator on  and 
 .

Therefore the value of coincidence degree  is 
independent of the value of .

In order to show continuation theorem for the coincidence theory, 
first the following lemmas will be expressed and proven.

Lemma 4: Assume that the operators  and as in above. 
Therefore the homotopy  defined by

� (7)
for  is -compact.

Proof: In order to show that the homotopy  is 
-compact for any , by the definition of -compactness 
given in Definition 1, it should be shown that for any  the 
operator  is continuous and with , 

 the operator  is bounded and the operator 
 is a compact operator on . In the right 

hand side of equation (7), the operators  and  appear. It is 
given that the projection operator  is continuous and for  
the operator  is given that -compact therefore continuous. 
Hence for any  the homotopy  is continuous.

Now let us show that the operator  is bounded on the set 
. From the equation (7) the equation

� (8)
is obtained. Since  then  and since  
and  then  therefore the equality 

 is obtained. Hence in order to show that 
the operator  is bounded on the set  it is enough to show 
that the operator  is bounded on the set . Namely: 
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Since the operator  is -compact, by the definition of 
-compactness the operator  is bounded on the set . Since 
the linear vector space  can be written direct sum of  and  
as  then the set  is also 
can be written as 

. Thus the set  is a bounded set. 
Because the equalities

 � (9)
are satisfed, the set  is a bounded set. Hence boundedness 
of the operator  on the set  has been shown.

Now in order to show that the homotopy operator  for 
any  is -compact, lastly let us show that for any  
the operator  is compact on . Because 

 then
� (10)

can be written. Since here  then 
. Since constant operator is compact thus 

the operator  is compact. Since the operator  is 
a projection operator hence  is also projection operator. 
So that  holds, since 

 
and by our assumption the operator  is compact on  
then the part  is also compact operator 
on . Beside this, since  then we 
have , so that in this case also the operator 

 is compact on . Since sum of the compact 
operators is also compact, we have that for any  the operator 

 is compact on the set  . As a result the proof 
of Lemma 4 is completed.
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Lemma 5: Assume that the operators  and as in above, 
 is any number and  is any isomorphism. 

Hence the following equalities hold:
a)	�   

� (11)

b)	�   
� (12)

Proof:
a) Now to an expression

� (13)
product rule in Brower degree is applied. Namely; here since the mapping 

 is any isomorphism then , so 
that if we take the set , any open and bounded set which 
contains , then by the product rule the expression (13) is equal to 
expression

.�(14)
Because of degree of linear isomorphism  then we have 

, hence in this case the expression (14) is equal to 
expression

� (15)
which is same with (11).

b)	 In the expression of  
since

are satisfied. Then the equality

holds. In this way the proof of Lemma 5 is completed.
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Lemma 6: The operator 
 can be written in the 

form .
Proof: By definition the open expression of operator  is

.
Here since  then  and 

 and beside this, since
 thus = . 

Therefore the equalites

are obtained.
But since  can be written in the form 

 and 
 hence  and this also follows that we 

have . In this way the expression 
 is obtained. Thus, the proof of 

Lemma 6 is completed.

Theorem 7: (Generalized Continuation Theorem) Assume that the 
operators  and as in above and  is any number. Assume 
also that the following conditions are satisfied:
1)	 For any  and for any 

2)	 For any  için

3)	 .
Therefore the equation

� (16)
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has at least one solution on  . Beside this, whenever the equation (16) 
does not have any solution on  then for any  the 
equation

� (17)
has at least one solution in .

Proof: In Lemma 2 we showed that space  has a finite n 
dimension, same with the dimension of . If basis for the spaces 

 and  are chosen and if a sign of the degree is taken with 
respect to this orientation, then degree in the assumption 3) can be 
considered as a clasical Brouwer degree from  to . For the detail 
see Mawhin [3]. In Lemma 4 it is shown that the operator  
defined by

� (18)
is -compact for any . Now to an homotopy operator 

 the theorem of invariance of coincidence degree under 
homotopy given in Theorem 3 will be applied. In order to apply the 
theorem of invariance of coincidence degree under homotopy, it is 
needed to show that the operator  does not have any root 
on  for any . Namely:
Assume that . By the assumption 1), for any  
the inequality

� (19)
is satisfied. Therefore by the consequence of Lemma 1, for any 

 and for any  the inequality
� (20)

is obtained.
The equation (20) for the case  is equivalent the system of 

equation

and 
 

hold. Here , equivalence class of 0 in , hence for  the 
equation (20) is equivalent to equation
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 ve .� (21)
But by the assumption 2) in this theorem the equation (21) does 

not have any solution on  and therefore for any  
and for any 

� (22)
and

� (23)
are satisfied.

Now the case  is considered. There are two cases related the 
equation

. (the case 𝜆=1)� (24)
It does not have any solution on the boundary set  or it has 
at least one solution on .

Assume that the equation (24) that is the equation (16) does not 
have any solution on . Therefore since by assumptions 1) 
and 2) the inequality (25) is satisfied for any  by the above 
arguments for any  and  the inequality

� (25)
holds. Thus by the Theorem 3 the value of coincidence degree 

 is independent from the value of  and 
hence it is equal to its value at .

Now let us try to find the value of coincidence degree 
 at , that is let us try to find the value of degree

.� (26)
By the definition

hence
.� (27) 

But by the Lemma 6 the equality (27) can be written as
.� (28)

Therefore we have
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.
If  then because ,  is obtained. 

But because of  and 
 then we have  thus we 

have  hence  is obtained. Since  then 
 hence this implies .

and  implies that
.� (29)

Assumption 2) puts the condition for any ,  
. But in this case since  then for any  

we have . Thus in this case the assumption 2) can be 
satisfied if and only if the condition  is satisfied.

Now let’s write the assumption 3) again:
� (30)

Since  then the necessary and suffcient condition that 
the inequality (30) holds is that  . That is why,
if  then .
If  then .

Since now we investigate the case , because in this 
case the linear operator  one-to-one and  therefore we have 

.

That is

this means that .
Since the set  is a open set then  but  . That is

.
That is assumption 2) and assumption 3) occur if and only if under 

the condition . Therefore since  
then the triple  is an admissiable triple.
Now again let us return to calculate the degree

.� (31)
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Because the equalities
� (32)

and  then .
As a result because of existence theorem and Theorem 3, for the 

case , for  the equation

for any  has at least one solution in .
Now let us consider the case . Using the rule of invariance 
of Leray-Schauder degree under translation and using its definiton the 
equality

� (33)
is satisfied . Since here

� (34)
� (35)

and ,  then 
. So that the domain of the expression  
becomes a subset of . Hence we have

� (36)

.� (37)
But on the set  we have  then this implies

.� (38)
Beside by the result of Lemma 5 (a) the expression (38) is equal to

.� (39)
Moreover by the result of Lemma 5 (b) the expression (39) is equal to

.� (40)
Since by the assumption (3) the degree 

. So that, because of existence 
theorem and Theorem 3, for the case , for  the 
equation

for any  has at least one solution in .
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Therefore beside the assumptions 1) and 2) if we assume that the 
equation (16) or (24) does not have any solution on  then 
for  the equation

for any  has at least one solution in . Hence the second part 
of Theorem 7 is proved. In particular for , if we assume that 
the equation (16) does not have any solution on  then for 

 the equation

has at least one solution in . So this indicates first part of Theorem 7 for 
the case the equation (16) does not have any solution on .
But if the equation (16) does have a solution on , then the 
first part of Theorem 7 still clearly holds, however because in this case 
the necessary condition for the homotopy does not hold, we cannot 
apply Theorem 3, so that we cannot talk about the existence of solution 
of equation (17) for . In this case equation (16) has a solution 
on . This completes the proof of Theorem 7.

However, Gaines and Mawhin [1] expressed Therorem 7 in 
the following way and this expresion is partly false, namely in the 
second part of Thorem 8 there is an important absence of a condition. 
Namely:

Theorem 8: Assume that the operators  and as in above and 
 is any number. Assume also that assumptions 1), 2) and 3) of 

Theorem 7 holds. Therefore the equation
� (41)

has at least one solution on the set  and for any  the equation
� (42)

has at least on solution in .
Theorem 8 as a consequence says that the equation (41) which 

is the equation (16) has at least one solution on  and for any 
the equation (42) which is the equation (17) has at least 

one solution in . But this two expression sometimes cannot hold at 
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the same time. Namely; the equation (41) has at least one solution 
on  or does not have any solution on . Beside the assumptions 
1) and 2) if the equation (41) does not have any solution on , 
the rule of invariance of coincidence degree under homotopy can be 
applied like in the proof of Theorem 7. In this way it is shown that 
for any  the equation (42) does have a solution in . But, 
however, if the equation (41) has a solution on , because of the 
rule of invariance of coincidence degree under homotopy can not 
be applied, then for any  it can not be said anything about 
existence of solution of equation (42) in  with this method. That 
is this proof does not say anything about existence of solution of 
equation (42) in  for  under the condition equation (41) 
has a solution on  . Because of this, the result of Theorem 8 should 
be like the result of Theorem 7.

In fact assumption 2) in Theorem 7 or Theorem 8 is a special case 
of assumption 1) for , so that assumption 1) and assumption 2) 
can be unified as in the following theorem.

Theorem 9: Assume that the operators  and as in above and 
 is any number. If the conditions

1)	 For  and  için

2)	
are satisfied, then the equation (41) has at least one solution on . And 
whenever the equation (41) does not have any solution on  
then for any  the equation (42) does have at least one solution 
on .

3. Results and Discussion

As a result, in this study it is seen that for  the linear space 
 is a finite dimensional space; the homotopy  defined 

by  for  is 
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-compact. The operator  
can be written in the form . Also 
it is seen that in order the operator equation  has 
at least one solution in , the equation  should not have 
any solution on , this fact is not expressed in the study of 
Gaines and Mawhin in [1] which is expressed in Theorem 8.

4. Conclusions

Generalized continuation theorem for coincidence degree given and 
proven densely by Gaines and Mahwin in this paper explained in detail 
and corrected. Besides the proofs of some results that their proofs not 
given by them are given in this study. Namely, the proofs of Lemma 1 
and 2 and proofs of Lemmas 4-6 are given. In the proof of generalized 
continuation theorem, Theorem 7, important contributions to make 
the proof much more understandable are made. Also it is explained 
that in result of generalized continuation theorem, for the existence 
of solution of the equation (42) it is necessary that the equation (41) 
should not have any solution on the boundary set  with 
respect to proof of generelized continuation theorem. So generalized 
continuation theorem given by Gaines and Mahwin, here is corrected, 
reason is explained and proof is given in detail. Lastly first two 
assumption of generalized continuation theorem are unified and given 
in Theorem 9.
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