

General Multivariate Iyengar Type Inequalities

GEORGE A. ANASTASSIOU

ISSN 2651-2939

ABSTRACT. Here we give a variety of general multivariate Iyengar type inequalities for not necessarily radial functions defined on the shell and ball. Our approach is based on the polar coordinates in \mathbb{R}^N , $N \geq 2$, and the related multivariate polar integration formula. Via this method we transfer well-known univariate Iyengar type inequalities and univariate author's related results into general multivariate Iyengar inequalities.

Keywords: Iyengar inequality, Polar coordinates, Not necessarily radial function, Shell, Ball.

2010 Mathematics Subject Classification: 26D10, 26D15.

1. Background

In the year 1938, Iyengar [5] proved the following interesting inequality:

Theorem 1.1. Let f be a differentiable function on [a, b] and $|f'(x)| \leq M_1$. Then

(1.1)
$$\left| \int_{a}^{b} f(x) dx - \frac{1}{2} (b - a) (f(a) + f(b)) \right| \leq \frac{M_{1} (b - a)^{2}}{4} - \frac{(f(b) - f(a))^{2}}{4M_{1}}.$$

In 2001, X.-L. Cheng [4] proved that

Theorem 1.2. Let $f \in C^2([a,b])$ and $|f''(x)| \leq M_2$. Then

(1.2)
$$\left| \int_{a}^{b} f(x) dx - \frac{1}{2} (b - a) (f(a) + f(b)) + \frac{1}{8} (b - a)^{2} (f'(b) - f'(a)) \right|$$

$$\leq \frac{M_{2}}{24} (b - a)^{3} - \frac{(b - a)}{16M_{2}} \Delta_{1}^{2},$$

where

$$\Delta_1 = f'(a) - \frac{2(f(b) - f(a))}{(b - a)} + f'(b).$$

In 1996, Agarwal and Dragomir [1] obtained a generalization of (1.1):

Theorem 1.3. Let $f:[a,b] \to \mathbb{R}$ be a differentiable function such that for all $x \in [a,b]$ with M > m we have $m \le f'(x) \le M$. Then

$$\left| \int_{a}^{b} f(x) dx - \frac{1}{2} (b-a) (f(a) + f(b)) \right|$$

$$\leq \frac{(f(b) - f(a) - m(b-a)) (M(b-a) - f(b) + f(a))}{2 (M-m)}.$$

In [7], Qi proved the following:

Received: 22 January 2019; Accepted: 27 March 2019; Published Online: 29 March 2019

*Corresponding author: G. A. Anastassiou; ganastss@memphis.edu

DOI: 10.33205/cma.543560

Theorem 1.4. Let $f:[a,b] \to \mathbb{R}$ be a twice differentiable function such that for all $x \in [a,b]$ with M > 0 we have $|f''(x)| \le M$. Then

$$\left| \int_{a}^{b} f(x) dx - \frac{(f(a) + f(b))}{2} (b - a) + \frac{(1 + Q^{2})}{8} (f'(b) - f'(a)) (b - a)^{2} \right|$$

$$\leq \frac{M (b - a)^{3}}{24} (1 - 3Q^{2}),$$

where

$$Q^{2} = \frac{\left(f'(a) + f'(b) - 2\left(\frac{f(b) - f(a)}{b - a}\right)\right)^{2}}{M^{2}(b - a)^{2} - \left(f'(b) - f'(a)\right)^{2}}.$$

In 2005, Zheng Liu, [6], proved the following:

Theorem 1.5. Let $f:[a,b] \to \mathbb{R}$ be a differentiable function such that f' is integrable on [a,b] and for all $x \in [a,b]$ with M > m we have

$$m \leq \frac{f'\left(x\right) - f'\left(a\right)}{x - a} \leq M \text{ and } m \leq \frac{f'\left(b\right) - f'\left(x\right)}{b - x} \leq M.$$

Then

$$\left| \int_{a}^{b} f(x) dx - \frac{(f(a) + f(b))}{2} (b - a) + \left(\frac{1 + P^{2}}{8} \right) (f'(b) - f'(a)) (b - a)^{2} - \left(\frac{1 + 3P^{2}}{48} \right) (m + M) (b - a)^{3} \right| \le \frac{(M - m) (b - a)^{3}}{48} (1 - 3P^{2}),$$

where

$$P^{2} = \frac{\left(f'(a) + f'(b) - 2\left(\frac{f(b) - f(a)}{b - a}\right)\right)^{2}}{\left(\frac{M - m}{2}\right)^{2} (b - a)^{2} - \left(f'(b) - f'(a) - \left(\frac{m + M}{2}\right)(b - a)\right)^{2}}.$$

Next we list some author's related results, (here $L_{\infty}([a,b])$ is the normed space of essentially bounded functions over [a,b]):

Theorem 1.6. ([3]) Let $n \in \mathbb{N}$, $f \in AC^n([a,b])$ (i.e. $f^{(n-1)} \in AC([a,b])$, absolutely continuous functions). We assume that $f^{(n)} \in L_{\infty}([a,b])$. Then

(i)

(1.3)
$$\left| \int_{a}^{b} f(x) dx - \sum_{k=0}^{n-1} \frac{1}{(k+1)!} \left[f^{(k)}(a) (t-a)^{k+1} + (-1)^{k} f^{(k)}(b) (b-t)^{k+1} \right] \right| \\ \leq \frac{\left\| f^{(n)} \right\|_{L_{\infty}([a,b])}}{(n+1)!} \left[(t-a)^{n+1} + (b-t)^{n+1} \right],$$

for all $t \in [a, b]$,

(ii) at $t = \frac{a+b}{2}$, the right hand side of (1.3) is minimized, and we get:

$$\left| \int_{a}^{b} f(x) dx - \sum_{k=0}^{n-1} \frac{1}{(k+1)!} \frac{(b-a)^{k+1}}{2^{k+1}} \left[f^{(k)}(a) + (-1)^{k} f^{(k)}(b) \right] \right|$$

$$\leq \frac{\left\| f^{(n)} \right\|_{L_{\infty}([a,b])}}{(n+1)!} \frac{(b-a)^{n+1}}{2^{n}},$$

(iii) if
$$f^{(k)}(a) = f^{(k)}(b) = 0$$
 for all $k = 0, 1, ..., n - 1$, then we obtain
$$\left| \int_{a}^{b} f(x) \, dx \right| \leq \frac{\left\| f^{(n)} \right\|_{L_{\infty}([a,b])}}{(n+1)!} \frac{(b-a)^{n+1}}{2^{n}}$$

which is a sharp inequality,

(iv) more generally, for $j = 0, 1, 2, ..., N \in \mathbb{N}$, it holds

$$(1.4) \qquad \left| \int_{a}^{b} f(x) dx - \sum_{k=0}^{n-1} \frac{1}{(k+1)!} \left(\frac{b-a}{N} \right)^{k+1} \left[j^{k+1} f^{(k)}(a) + (-1)^{k} (N-j)^{k+1} f^{(k)}(b) \right] \right| \\ \leq \frac{\left\| f^{(n)} \right\|_{L_{\infty}([a,b])}}{(n+1)!} \left(\frac{b-a}{N} \right)^{n+1} \left[j^{n+1} + (N-j)^{n+1} \right],$$

(v) if $f^{(k)}(a) = f^{(k)}(b) = 0$, k = 1, ..., n - 1, from (1.4) we get:

(1.5)
$$\left| \int_{a}^{b} f(x) dx - \left(\frac{b-a}{N} \right) [jf(a) + (N-j) f(b)] \right| \\ \leq \frac{\left\| f^{(n)} \right\|_{L_{\infty}([a,b])}}{(n+1)!} \left(\frac{b-a}{N} \right)^{n+1} \left[j^{n+1} + (N-j)^{n+1} \right]$$

for $j = 0, 1, 2, ..., N \in \mathbb{N}$,

(vi) when N=2 and j=1, (1.5) turns to

(1.6)
$$\left| \int_{a}^{b} f(x) \, dx - \left(\frac{b-a}{2} \right) (f(a) + f(b)) \right| \leq \frac{\left\| f^{(n)} \right\|_{L_{\infty}([a,b])}}{(n+1)!} \frac{(b-a)^{n+1}}{2^{n}},$$

(vii) when n = 1 (without any boundary conditions), we get from (1.6) that

$$\left| \int_{a}^{b} f(x) dx - \left(\frac{b-a}{2} \right) (f(a) + f(b)) \right| \le ||f'||_{[a,b],\infty} \frac{(b-a)^{2}}{4},$$

a similar to Iyengar inequality (1.1).

We mention here $L_1([a,b])$ is the normed space of integrable functions over [a,b]).

Theorem 1.7. ([3]) Let $f \in AC^n$ ([a, b]), $n \in \mathbb{N}$. Then (i)

(1.7)
$$\left| \int_{a}^{b} f(x) dx - \sum_{k=0}^{n-1} \frac{1}{(k+1)!} \left[f^{(k)}(a) (t-a)^{k+1} + (-1)^{k} f^{(k)}(b) (b-t)^{k+1} \right] \right|$$

$$\leq \frac{\left\| f^{(n)} \right\|_{L_{1}([a,b])}}{n!} \left[(t-a)^{n} + (b-t)^{n} \right],$$

for all $t \in [a, b]$,

(ii) at $t = \frac{a+b}{2}$, the right hand side of (1.7) is minimized, and we get:

$$\left| \int_{a}^{b} f(x) dx - \sum_{k=0}^{n-1} \frac{1}{(k+1)!} \frac{(b-a)^{k+1}}{2^{k+1}} \left[f^{(k)}(a) + (-1)^{k} f^{(k)}(b) \right] \right|$$

$$\leq \frac{\left\| f^{(n)} \right\|_{L_{1}([a,b])}}{n!} \frac{(b-a)^{n}}{2^{n-1}},$$

(iii) if $f^{(k)}(a) = f^{(k)}(b) = 0$, for all k = 0, 1, ..., n - 1, we obtain

$$\left| \int_{a}^{b} f(x) dx \right| \leq \frac{\|f^{(n)}\|_{L_{1}([a,b])}}{n!} \frac{(b-a)^{n}}{2^{n-1}},$$

which is a sharp inequality,

(iv) more generally, for $j = 0, 1, 2, ..., N \in \mathbb{N}$, it holds

$$(1.8) \qquad \left| \int_{a}^{b} f(x) dx - \sum_{k=0}^{n-1} \frac{1}{(k+1)!} \left(\frac{b-a}{N} \right)^{k+1} \left[j^{k+1} f^{(k)}(a) + (-1)^{k} (N-j)^{k+1} f^{(k)}(b) \right] \right|$$

$$\leq \frac{\left\| f^{(n)} \right\|_{L_{1}([a,b])}}{n!} \left(\frac{b-a}{N} \right)^{n} \left[j^{n} + (N-j)^{n} \right],$$

(v) if $f^{(k)}(a) = f^{(k)}(b) = 0$, k = 1, ..., n - 1, from (1.8) we get:

(1.9)
$$\left| \int_{a}^{b} f(x) dx - \left(\frac{b-a}{N} \right) [jf(a) + (N-j) f(b)] \right| \\ \leq \frac{\left\| f^{(n)} \right\|_{L_{1}([a,b])}}{n!} \left(\frac{b-a}{N} \right)^{n} [j^{n} + (N-j)^{n}],$$

for $j = 0, 1, 2, ..., N \in \mathbb{N}$, (vi) when N = 2 and j = 1, (1.9) turns to

(1.10)
$$\left| \int_{a}^{b} f(x) dx - \frac{(b-a)}{2} (f(a) + f(b)) \right| \leq \frac{\left\| f^{(n)} \right\|_{L_{1}([a,b])}}{n!} \frac{(b-a)^{n}}{2^{n-1}},$$

(vii) when n = 1 (without any boundary conditions), we get from (1.10) that

$$\left| \int_{a}^{b} f(x) dx - \left(\frac{b-a}{2} \right) (f(a) + f(b)) \right| \le ||f'||_{L_{1}([a,b])} (b-a).$$

We mention here $L_q([a,b])$ is the normed space of functions f such that $|f|^q$ is integrable over [a,b]

Theorem 1.8. ([3]) Let $f \in AC^n([a,b])$, $n \in \mathbb{N}$; p,q > 1 such that $\frac{1}{p} + \frac{1}{q} = 1$, and $f^{(n)} \in L_q([a,b])$. Then

(*i*)

$$(1.11) \qquad \left| \int_{a}^{b} f(x) dx - \sum_{k=0}^{n-1} \frac{1}{(k+1)!} \left[f^{(k)}(a) (t-a)^{k+1} + (-1)^{k} f^{(k)}(b) (b-t)^{k+1} \right] \right| \\ \leq \frac{\left\| f^{(n)} \right\|_{L_{q}([a,b])}}{(n-1)! \left(n + \frac{1}{p} \right) (p(n-1) + 1)^{\frac{1}{p}}} \left[(t-a)^{n+\frac{1}{p}} + (b-t)^{n+\frac{1}{p}} \right],$$

for all $t \in [a, b]$,

(ii) at $t = \frac{a+b}{2}$, the right hand side of (1.11) is minimized, and we get:

$$\left| \int_{a}^{b} f(x) dx - \sum_{k=0}^{n-1} \frac{1}{(k+1)!} \frac{(b-a)^{k+1}}{2^{k+1}} \left[f^{(k)}(a) + (-1)^{k} f^{(k)}(b) \right] \right|$$

$$\leq \frac{\left\| f^{(n)} \right\|_{L_{q}([a,b])}}{(n-1)! \left(n + \frac{1}{p} \right) (p(n-1) + 1)^{\frac{1}{p}}} \frac{(b-a)^{n+\frac{1}{p}}}{2^{n-\frac{1}{q}}},$$

(iii) if $f^{(k)}(a) = f^{(k)}(b) = 0$, for all k = 0, 1, ..., n - 1, we obtain

$$\left| \int_{a}^{b} f(x) dx \right| \leq \frac{\left\| f^{(n)} \right\|_{L_{q}([a,b])}}{(n-1)! \left(n + \frac{1}{p} \right) \left(p(n-1) + 1 \right)^{\frac{1}{p}}} \frac{(b-a)^{n+\frac{1}{p}}}{2^{n-\frac{1}{q}}},$$

which is a sharp inequality,

(iv) more generally, for $j = 0, 1, 2, ..., N \in \mathbb{N}$, it holds

$$(1.12) \qquad \left| \int_{a}^{b} f(x) dx - \sum_{k=0}^{n-1} \frac{1}{(k+1)!} \left(\frac{b-a}{N} \right)^{k+1} \left[j^{k+1} f^{(k)}(a) + (-1)^{k} (N-j)^{k+1} f^{(k)}(b) \right] \right|$$

$$\leq \qquad \frac{\left\| f^{(n)} \right\|_{L_{q}([a,b])}}{(n-1)! \left(n + \frac{1}{p} \right) (p(n-1) + 1)^{\frac{1}{p}}} \left(\frac{b-a}{N} \right)^{n+\frac{1}{p}} \left[j^{n+\frac{1}{p}} + (N-j)^{n+\frac{1}{p}} \right],$$

(v) if $f^{(k)}(a) = f^{(k)}(b) = 0$, k = 1, ..., n - 1, from (1.12) we get:

$$\left| \int_{a}^{b} f(x) dx - \left(\frac{b-a}{N} \right) \left[jf(a) + (N-j) f(b) \right] \right|$$

$$\leq \frac{\left\| f^{(n)} \right\|_{L_{q}([a,b])}}{(n-1)! \left(n + \frac{1}{p} \right) (p(n-1) + 1)^{\frac{1}{p}}} \left(\frac{b-a}{N} \right)^{n+\frac{1}{p}} \left[j^{n+\frac{1}{p}} + (N-j)^{n+\frac{1}{p}} \right],$$

for $j = 0, 1, 2, ..., N \in \mathbb{N}$,

(vi) when N = 2 and j = 1, (1.13) turns to

$$(1.14) \quad \left| \int_{a}^{b} f(x) \, dx - \frac{(b-a)}{2} \left(f(a) + f(b) \right) \right| \leq \frac{\left\| f^{(n)} \right\|_{L_{q}([a,b])}}{\left(n-1 \right)! \left(n + \frac{1}{p} \right) \left(p(n-1) + 1 \right)^{\frac{1}{p}}} \frac{(b-a)^{n+\frac{1}{p}}}{2^{n-\frac{1}{q}}},$$

(vii) when n = 1 (without any boundary conditions), we get from (1.14) that

$$\left| \int_a^b f\left(x\right) dx - \left(\frac{b-a}{2}\right) \left(f\left(a\right) + f\left(b\right)\right) \right| \leq \frac{\|f'\|_{L_q([a,b])}}{\left(1 + \frac{1}{p}\right)} \frac{\left(b-a\right)^{1 + \frac{1}{p}}}{2^{\frac{1}{p}}}.$$

We need

Remark 1.1. We define the ball $B(0,R) = \{x \in \mathbb{R}^N : |x| < R\} \subseteq \mathbb{R}^N$, $N \ge 2$, R > 0, and the sphere

$$S^{N-1} := \left\{ x \in \mathbb{R}^N : |x| = 1 \right\},\,$$

where $|\cdot|$ is the Euclidean norm. Let $d\omega$ be the element of surface measure on S^{N-1} and

$$\omega_N = \int_{S^{N-1}} d\omega = \frac{2\pi^{\frac{N}{2}}}{\Gamma\left(\frac{N}{2}\right)}$$

is the area of S^{N-1} . For $x \in \mathbb{R}^N - \{0\}$ we can write uniquely $x = r\omega$, where r = |x| > 0 and $\omega = \frac{x}{r} \in S^{N-1}$, $|\omega| = 1$. Note that $\int_{B(0,R)} dy = \frac{\omega_N R^N}{N}$ is the Lebesgue measure on the ball, that is the volume of B(0,R), which exactly is $Vol\left(B\left(0,R\right)\right) = \frac{\pi^{\frac{N}{2}}R^{N}}{\Gamma\left(\frac{N}{2}+1\right)}$.

Following [8, pp. 149-150, exercise 6], and [9, pp. 87-88, Theorem 5.2.2] we can write for F: $B(0,R) \to \mathbb{R}$ a Lebesque integrable function that

(1.15)
$$\int_{B(0,R)} F(x) dx = \int_{S^{N-1}} \left(\int_0^R F(r\omega) r^{N-1} dr \right) d\omega,$$

and we use this formula a lot.

Typically here the function $f: \overline{B(0,R)} \to \mathbb{R}$ *is not radial. A radial function* f *is such that there exists* a function g with f(x) = g(r), where r = |x|, $r \in [0, R]$, for all $x \in \overline{B(0, R)}$.

We need

Remark 1.2. Let the spherical shell $A := B(0,R_2) - \overline{B(0,R_1)}$, $0 < R_1 < R_2$, $A \subseteq \mathbb{R}^N$, $N \ge 2$, $x \in \overline{A}$. Consider that $f: \overline{A} \to \mathbb{R}$ is not radial. A radial function f is such that there exists a function g with f(x) = g(r), r = |x|, $r \in [R_1, R_2]$, for all $x \in A$. Here x can be written uniquely as $x = r\omega$, where r = |x| > 0 and $\omega = \frac{x}{r} \in S^{N-1}$, $|\omega| = 1$, see ([8], p. 149-150 and [2], p. 421), furthermore for $F: \overline{A} \to \mathbb{R}$ a Lebesgue integrable function we have that

(1.16)
$$\int_{A} F(x) dx = \int_{S^{N-1}} \left(\int_{R_1}^{R_2} F(r\omega) r^{N-1} dr \right) d\omega.$$

Here

$$Vol(A) = \frac{\omega_N (R_2^N - R_1^N)}{N} = \frac{\pi^{\frac{N}{2}} (R_2^N - R_1^N)}{\Gamma(\frac{N}{2} + 1)}.$$

In this article we derive general multivariate Iyengar type inequalities on the shell and ball of \mathbb{R}^N , $N \geq 2$, for not necessarily radial functions. Our results are based on Theorems 1.1-1.8.

2. MAIN RESULTS

We present the following non-radial multivariate Iyengar type inequalities: We start with

Theorem 2.9. Let the spherical shell $A := B(0, R_2) - \overline{B(0, R_1)}$, $0 < R_1 < R_2$, $A \subseteq \mathbb{R}^N$, $N \ge 2$. Consider $f: \overline{A} \to \mathbb{R}$ that is not necessarily radial, and that $f \in C^1(\overline{A})$. Assume that $\left|\frac{\partial f(s\omega)}{\partial s}\right| \leq M_1$, for all $s \in [R_1, R_2]$, and for all $\omega \in S^{N-1}$, where $M_1 > 0$. Then

$$\left| \int_{A} f\left(y\right) dy - \frac{\left(R_{2} - R_{1}\right)}{2} \left(R_{1}^{N-1} \int_{S^{N-1}} f\left(R_{1}\omega\right) d\omega + R_{2}^{N-1} \int_{S^{N-1}} f\left(R_{2}\omega\right) d\omega \right) \right|$$

$$\leq \frac{M_{1}\pi^{\frac{N}{2}} \left(R_{2} - R_{1}\right)^{2}}{2\Gamma\left(\frac{N}{2}\right)} - \frac{\int_{S^{N-1}} \left(f\left(R_{2}\omega\right) R_{2}^{N-1} - f\left(R_{1}\omega\right) R_{1}^{N-1}\right)^{2} d\omega}{4M_{1}}.$$

Proof. Here $f(s\omega)$ $s^{N-1} \in C^1([R_1, R_2])$, $N \ge 2$, for all $\omega \in S^{N-1}$. By (1.1) we get

$$\left| \int_{R_{1}}^{R_{2}} f(s\omega) \, s^{N-1} ds - \frac{1}{2} \left(R_{2} - R_{1} \right) \left(f\left(R_{1}\omega \right) R_{1}^{N-1} + f\left(R_{2}\omega \right) R_{2}^{N-1} \right) \right|$$

$$\leq \frac{M_{1} \left(R_{2} - R_{1} \right)^{2}}{4} - \frac{\left(f\left(R_{2}\omega \right) R_{2}^{N-1} - f\left(R_{1}\omega \right) R_{1}^{N-1} \right)^{2}}{4M_{1}} =: \lambda_{1} \left(\omega \right),$$

for all $\omega \in S^{N-1}$. Equivalently, we have

$$-\lambda_{1}\left(\omega\right) \leq \int_{R_{1}}^{R_{2}} f\left(s\omega\right) s^{N-1} ds - \frac{1}{2} \left(R_{2} - R_{1}\right) \left(f\left(R_{1}\omega\right) R_{1}^{N-1} + f\left(R_{2}\omega\right) R_{2}^{N-1}\right) \leq \lambda_{1}\left(\omega\right),$$

for all $\omega \in S^{N-1}$.

Hence it holds

$$- \int_{S^{N-1}} \lambda_1(\omega) d\omega \leq \int_{S^{N-1}} \left(\int_{R_1}^{R_2} f(s\omega) s^{N-1} ds \right) d\omega$$

$$- \frac{1}{2} (R_2 - R_1) \left(R_1^{N-1} \int_{S^{N-1}} f(R_1 \omega) d\omega + R_2^{N-1} \int_{S^{N-1}} f(R_2 \omega) d\omega \right)$$

$$\leq \int_{S^{N-1}} \lambda_1(\omega) d\omega.$$

That is (by (1.16))

$$- \left[\frac{\pi^{\frac{N}{2}} M_1 (R_2 - R_1)^2}{2\Gamma(\frac{N}{2})} - \frac{\int_{S^{N-1}} \left(f(R_2 \omega) R_2^{N-1} - f(R_1 \omega) R_1^{N-1} \right)^2 d\omega}{4M_1} \right]$$

$$\leq \int_A f(y) dy - \frac{(R_2 - R_1)}{2} \left(R_1^{N-1} \int_{S^{N-1}} f(R_1 \omega) d\omega + R_2^{N-1} \int_{S^{N-1}} f(R_2 \omega) d\omega \right)$$

$$\leq \frac{\pi^{\frac{N}{2}} M_1 (R_2 - R_1)^2}{2\Gamma(\frac{N}{2})} - \frac{\int_{S^{N-1}} \left(f(R_2 \omega) R_2^{N-1} - f(R_1 \omega) R_1^{N-1} \right)^2 d\omega}{4M_1},$$

proving the claim.

We continue with

Theorem 2.10. Let the spherical shell $A := B(0, R_2) - \overline{B(0, R_1)}$, $0 < R_1 < R_2$, $A \subseteq \mathbb{R}^N$, $N \ge 2$. Consider $f : \overline{A} \to \mathbb{R}$ that is not necessarily radial, and that $f \in C^2(\overline{A})$. Assume that $\left|\frac{\partial^2 f(s\omega)}{\partial s^2}\right| \le M_2$, for all $s \in [R_1, R_2]$, and for all $\omega \in S^{N-1}$, where $M_2 > 0$. Set

$$\Delta_{1}(\omega) := \left(f(s\omega) \, s^{N-1} \right)'(R_{1}) - \frac{2 \left(f(R_{2}\omega) \, R_{2}^{N-1} - f(R_{1}\omega) \, R_{1}^{N-1} \right)}{R_{2} - R_{1}} + \left(f(s\omega) \, s^{N-1} \right)'(R_{2}), \ \forall \, \omega \in S^{N-1}.$$

Then

$$\left| \int_{A} f(y) \, dy - \frac{(R_{2} - R_{1})}{2} \left(R_{1}^{N-1} \int_{S^{N-1}} f(R_{1}\omega) \, d\omega + R_{2}^{N-1} \int_{S^{N-1}} f(R_{2}\omega) \, d\omega \right) \right|$$

$$+ \frac{(R_{2} - R_{1})^{2}}{8} \left[\int_{S^{N-1}} \left(f(s\omega) s^{N-1} \right)'(R_{2}) \, d\omega - \int_{S^{N-1}} \left(f(s\omega) s^{N-1} \right)'(R_{1}) \, d\omega \right] \right|$$

$$\leq \frac{\pi^{\frac{N}{2}}}{\Gamma\left(\frac{N}{2}\right)} \frac{M_{2}}{12} \left(R_{2} - R_{1} \right)^{3} - \frac{(R_{2} - R_{1})}{16M_{2}} \int_{S^{N-1}} \Delta_{1}^{2}(\omega) \, d\omega.$$

Proof. Here $f\left(s\omega\right)s^{N-1}\in C^{2}\left(\left[R_{1},R_{2}\right]\right)$, $N\geq2$, for all $\omega\in S^{N-1}$. By (1.2) we get

$$\left| \int_{R_{1}}^{R_{2}} f(s\omega) \, s^{N-1} ds - \frac{1}{2} \left(R_{2} - R_{1} \right) \left(f\left(R_{1}\omega \right) R_{1}^{N-1} + f\left(R_{2}\omega \right) R_{2}^{N-1} \right) \right.$$

$$\left. + \left. \frac{1}{8} \left(R_{2} - R_{1} \right)^{2} \left(\left(f\left(s\omega \right) s^{N-1} \right)'(R_{2}) - \left(f\left(s\omega \right) s^{N-1} \right)'(R_{1}) \right) \right| \right.$$

$$\leq \left. \frac{M_{2}}{24} \left(R_{2} - R_{1} \right)^{3} - \frac{\left(R_{2} - R_{1} \right)}{16M_{2}} \Delta_{1}^{2} \left(\omega \right) =: \lambda_{2} \left(\omega \right),$$

for all $\omega \in S^{N-1}$.

Equivalently, we have

$$- \lambda_{2}(\omega) \leq \int_{R_{1}}^{R_{2}} f(s\omega) s^{N-1} ds - \frac{(R_{2} - R_{1})}{2} \left(f(R_{1}\omega) R_{1}^{N-1} + f(R_{2}\omega) R_{2}^{N-1} \right)$$

$$+ \frac{1}{8} (R_{2} - R_{1})^{2} \left(\left(f(s\omega) s^{N-1} \right)'(R_{2}) - \left(f(s\omega) s^{N-1} \right)'(R_{1}) \right) \leq \lambda_{2}(\omega) ,$$

for all $\omega \in S^{N-1}$.

Hence it holds

$$- \int_{S^{N-1}} \lambda_{2}(\omega) d\omega \leq \int_{S^{N-1}} \left(\int_{R_{1}}^{R_{2}} f(s\omega) s^{N-1} ds \right) d\omega$$

$$- \frac{(R_{2} - R_{1})}{2} \left(R_{1}^{N-1} \int_{S^{N-1}} f(R_{1}\omega) d\omega + R_{2}^{N-1} \int_{S^{N-1}} f(R_{2}\omega) d\omega \right)$$

$$+ \frac{(R_{2} - R_{1})^{2}}{8} \left[\int_{S^{N-1}} \left(f(s\omega) s^{N-1} \right)'(R_{2}) d\omega - \int_{S^{N-1}} \left(f(s\omega) s^{N-1} \right)'(R_{1}) d\omega \right]$$

$$\leq \int_{S^{N-1}} \lambda_{2}(\omega) d\omega.$$

That is (by (1.16))

$$\begin{split} & - \left[\frac{\pi^{\frac{N}{2}}}{\Gamma\left(\frac{N}{2}\right)} \frac{M_2}{12} \left(R_2 - R_1\right)^3 - \frac{(R_2 - R_1)}{16M_2} \int_{S^{N-1}} \Delta_1^2\left(\omega\right) d\omega \right] \\ & \leq \int_A f\left(y\right) dy - \frac{(R_2 - R_1)}{2} \left(R_1^{N-1} \int_{S^{N-1}} f\left(R_1\omega\right) d\omega + R_2^{N-1} \int_{S^{N-1}} f\left(R_2\omega\right) d\omega \right) \\ & + \frac{(R_2 - R_1)^2}{8} \left[\int_{S^{N-1}} \left(f\left(s\omega\right) s^{N-1}\right)'\left(R_2\right) d\omega - \int_{S^{N-1}} \left(f\left(s\omega\right) s^{N-1}\right)'\left(R_1\right) d\omega \right] \\ & \leq \frac{\pi^{\frac{N}{2}}}{\Gamma\left(\frac{N}{2}\right)} \frac{M_2}{12} \left(R_2 - R_1\right)^3 - \frac{(R_2 - R_1)}{16M_2} \int_{S^{N-1}} \Delta_1^2\left(\omega\right) d\omega, \end{split}$$

72 G. A. Anastassiou

proving the claim.

We give

Theorem 2.11. Let the spherical shell $A := B(0, R_2) - \overline{B(0, R_1)}$, $0 < R_1 < R_2$, $A \subseteq \mathbb{R}^N$, $N \ge 2$. Consider $f : \overline{A} \to \mathbb{R}$ that is not necessarily radial, and that $f \in C^1(\overline{A})$. Let M > m and assume that $m \le \frac{\partial f(s\omega)}{\partial s} \le M$, for all $s \in [R_1, R_2]$, and for all $\omega \in S^{N-1}$.

$$\left| \int_{A} f(y) \, dy - \frac{(R_{2} - R_{1})}{2} \left(R_{1}^{N-1} \int_{S^{N-1}} f(R_{1}\omega) \, d\omega + R_{2}^{N-1} \int_{S^{N-1}} f(R_{2}\omega) \, d\omega \right) \right|$$

$$\leq \frac{1}{2(M-m)} \int_{S^{N-1}} \left[\left(f(R_{2}\omega) R_{2}^{N-1} - f(R_{1}\omega) R_{1}^{N-1} - m(R_{2} - R_{1}) \right) \right]$$

$$\times \left(M(R_{2} - R_{1}) - f(R_{2}\omega) R_{2}^{N-1} + f(R_{1}\omega) R_{1}^{N-1} \right) d\omega.$$

Proof. Similar to the proof of Theorem 2.9 by using Theorem 1.3 and (1.16).

We give

Theorem 2.12. Let the spherical shell $A := B(0, R_2) - \overline{B(0, R_1)}$, $0 < R_1 < R_2$, $A \subseteq \mathbb{R}^N$, $N \ge 2$. Consider $f : \overline{A} \to \mathbb{R}$ that is not necessarily radial, and that $f \in C^2(\overline{A})$. Assume that $\left|\frac{\partial^2 f(s\omega)}{\partial s^2}\right| \le M_3$, for all $s \in [R_1, R_2]$, and for all $\omega \in S^{N-1}$, where $M_3 > 0$. Set

$$\begin{split} &Q_{1}^{2}\left(\omega\right)\\ &:=\frac{\left[\left(f\left(s\omega\right)s^{N-1}\right)'\left(R_{1}\right)+\left(f\left(s\omega\right)s^{N-1}\right)'\left(R_{2}\right)-2\left(\frac{f\left(R_{2}\omega\right)R_{2}^{N-1}-f\left(R_{1}\omega\right)R_{1}^{N-1}}{R_{2}-R_{1}}\right)\right]^{2}}{\left[M_{3}^{2}\left(R_{2}-R_{1}\right)^{2}-\left(\left(f\left(s\omega\right)s^{N-1}\right)'\left(R_{2}\right)-\left(f\left(s\omega\right)s^{N-1}\right)'\left(R_{1}\right)\right)^{2}\right]}, \end{split}$$

for all $\omega \in S^{N-1}$.

Then

$$\left| \int_{A} f(y) \, dy - \frac{(R_{2} - R_{1})}{2} \left(R_{1}^{N-1} \int_{S^{N-1}} f(R_{1}\omega) \, d\omega + R_{2}^{N-1} \int_{S^{N-1}} f(R_{2}\omega) \, d\omega \right) \right|$$

$$+ \frac{(R_{2} - R_{1})^{2}}{8} \int_{S^{N-1}} \left(1 + Q_{1}^{2}(\omega) \right) \left(\left(f(s\omega) s^{N-1} \right)'(R_{2}) - \left(f(s\omega) s^{N-1} \right)'(R_{1}) \right) d\omega \right|$$

$$\leq \frac{M_{3} \left(R_{2} - R_{1} \right)^{3}}{24} \int_{S^{N-1}} \left(1 - 3Q_{1}^{2}(\omega) \right) d\omega.$$

Proof. Similar to the proof of Theorem 2.10 by using Theorem 1.4 and (1.16).

We continue with

Theorem 2.13. Here all as in Theorem 2.9, and let $M_1 > m_1$. Assume that

$$m_1 \le \frac{\left(f(s\omega)\,s^{N-1}\right)'(x) - \left(f(s\omega)\,s^{N-1}\right)'(R_1)}{x - R_1} \le M_1,$$

and

$$m_1 \le \frac{\left(f\left(s\omega\right)s^{N-1}\right)'\left(R_2\right) - \left(f\left(s\omega\right)s^{N-1}\right)'\left(x\right)}{R_2 - x} \le M_1,$$

for all $x \in [R_1, R_2]$, for all $\omega \in S^{N-1}$.

Set

$$\begin{split} P_{1}^{2}\left(\omega\right) \\ &= \frac{\left[\left(f\left(s\omega\right)s^{N-1}\right)'\left(R_{1}\right) + \left(f\left(s\omega\right)s^{N-1}\right)'\left(R_{2}\right) - 2\left(\frac{f\left(R_{2}\omega\right)R_{2}^{N-1} - f\left(R_{1}\omega\right)R_{1}^{N-1}}{R_{2} - R_{1}}\right)\right]^{2}}{\left(\frac{M_{1} - m_{1}}{2}\right)^{2}\left(R_{2} - R_{1}\right)^{2} - \left[\left(f\left(s\omega\right)s^{N-1}\right)'\left(R_{2}\right) - \left(f\left(s\omega\right)s^{N-1}\right)'\left(R_{1}\right) - \left(\frac{m_{1} + M_{1}}{2}\right)\left(R_{2} - R_{1}\right)\right]^{2}}, \\ \textit{for all } \omega \in S^{N-1}. \end{split}$$

Then

$$\left| \int_{A} f(y) \, dy - \left(\frac{R_{2} - R_{1}}{2} \right) \left(R_{1}^{N-1} \int_{S^{N-1}} f(R_{1}\omega) \, d\omega + R_{2}^{N-1} \int_{S^{N-1}} f(R_{2}\omega) \, d\omega \right) \right|$$

$$+ \frac{\left(R_{2} - R_{1} \right)^{2}}{8} \int_{S^{N-1}} \left(1 + P_{1}^{2}(\omega) \right) \left(\left(f(s\omega) \, s^{N-1} \right)'(R_{2}) - \left(f(s\omega) \, s^{N-1} \right)'(R_{1}) \right) d\omega$$

$$- \frac{\left(R_{2} - R_{1} \right)^{3}}{48} \left(m_{1} + M_{1} \right) \int_{S^{N-1}} \left(1 + 3P_{1}^{2}(\omega) \right) d\omega \right|$$

$$\leq \frac{\left(M_{1} - m_{1} \right) \left(R_{2} - R_{1} \right)^{3}}{48} \int_{S^{N-1}} \left(1 - 3P_{1}^{2}(\omega) \right) d\omega .$$

Proof. Similar to the proof of Theorem 2.10 by using Theorem 1.5 and (1.16).

We present

Theorem 2.14. Consider $f: \overline{A} \to \mathbb{R}$ be Lebesgue integrable, which is not necessarily radial. Assume that $f(s\omega) s^{N-1} \in AC^n([R_1,R_2])$ (i.e. $(f(s\omega) s^{N-1})^{(n-1)} \in AC([R_1,R_2])$ absolutely continuous functions), for all $\omega \in S^{N-1}$, $N \geq 2$. We assume that $(f(s\omega) s^{N-1})^{(n)} \in L_{\infty}([R_1,R_2])$, for all $\omega \in S^{N-1}$. There exists $K_1 > 0$ such that $\|(f(s\omega) s^{N-1})^{(n)}\|_{L_{\infty}([R_1,R_2])} \leq K_1$, where $s \in [R_1,R_2]$, for all $\omega \in S^{N-1}$.

(i)

$$(2.17) \qquad \left| \int_{A} f(y) \, dy - \sum_{k=0}^{n-1} \frac{1}{(k+1)!} \left[\left(\int_{S^{N-1}} \left(f(s\omega) \, s^{N-1} \right)^{(k)} (R_1) \, d\omega \right) (t - R_1)^{k+1} \right] + (-1)^k \left(\int_{S^{N-1}} \left(f(s\omega) \, s^{N-1} \right)^{(k)} (R_2) \, d\omega \right) (R_2 - t)^{k+1} \right] \right|$$

$$\leq \frac{2\pi^{\frac{N}{2}}}{\Gamma\left(\frac{N}{2}\right)} \frac{K_1}{(n+1)!} \left[(t - R_1)^{n+1} + (R_2 - t)^{n+1} \right],$$

for all $t \in [R_1, R_2]$,

(ii) at $t = \frac{R_1 + R_2}{2}$, the right hand side of (2.17) is minimized, and we get:

$$\left| \int_{A} f(y) \, dy - \sum_{k=0}^{n-1} \frac{1}{(k+1)!} \frac{(R_{2} - R_{1})^{k+1}}{2^{k+1}} \left[\int_{S^{N-1}} \left(f(s\omega) \, s^{N-1} \right)^{(k)} (R_{1}) \, d\omega \right] \right|$$

$$+ \left(-1 \right)^{k} \int_{S^{N-1}} \left(f(s\omega) \, s^{N-1} \right)^{(k)} (R_{2}) \, d\omega \right] \right|$$

$$\leq \frac{\pi^{\frac{N}{2}}}{\Gamma\left(\frac{N}{2}\right)} \frac{K_{1}}{(n+1)!} \frac{(R_{2} - R_{1})^{n+1}}{2^{n-1}},$$

(iii) if $(f(s\omega)s^{N-1})^{(k)}(R_1) = (f(s\omega)s^{N-1})^{(k)}(R_2) = 0$, for all $\omega \in S^{N-1}$, (i.e. $\frac{\partial^k (f(s\omega)s^{N-1})}{\partial s^k}$ vanish on $\partial B(0,R_1)$ and $\partial B(0,R_2)$) for all k=0,1,...,n-1, we obtain

$$\left| \int_{A} f(y) \, dy \right| \le \frac{\pi^{\frac{N}{2}}}{\Gamma\left(\frac{N}{2}\right)} \frac{K_{1}}{(n+1)!} \frac{(R_{2} - R_{1})^{n+1}}{2^{n-1}},$$

which is a sharp inequality,

(iv) more generally, for $j=0,1,2,...,\overline{N}\in\mathbb{N}$, it holds

$$(2.18) \quad \left| \int_{A} f(y) \, dy - \sum_{k=0}^{n-1} \frac{1}{(k+1)!} \left(\frac{R_{2} - R_{1}}{\overline{N}} \right)^{k+1} \left[j^{k+1} \left(\int_{S^{N-1}} \left(f(s\omega) \, s^{N-1} \right)^{(k)} (R_{1}) \, d\omega \right) \right. \\ + \quad \left. \left(-1 \right)^{k} \left(\overline{N} - j \right)^{k+1} \left(\int_{S^{N-1}} \left(f(s\omega) \, s^{N-1} \right)^{(k)} (R_{2}) \, d\omega \right) \right] \right| \\ \leq \quad \frac{2\pi^{\frac{N}{2}}}{\Gamma\left(\frac{N}{2}\right)} \frac{K_{1}}{(n+1)!} \left(\frac{R_{2} - R_{1}}{\overline{N}} \right)^{n+1} \left[j^{n+1} + \left(\overline{N} - j \right)^{n+1} \right],$$

(v) if $(f(s\omega) s^{N-1})^{(k)}(R_1) = (f(s\omega) s^{N-1})^{(k)}(R_2) = 0$, for all $\omega \in S^{N-1}$, (i.e. $\frac{\partial^k (f(s\omega) s^{N-1})}{\partial s^k}$ vanish on $\partial B(0, R_1)$ and $\partial B(0, R_2)$) for k = 1, ..., n-1, from (2.18) we get:

(2.19)
$$\left| \int_{A} f(y) \, dy - \left(\frac{R_{2} - R_{1}}{\overline{N}} \right) \left[j R_{1}^{N-1} \left(\int_{S^{N-1}} f(R_{1}\omega) \, d\omega \right) \right] \right|$$

$$+ \left(\overline{N} - j \right) R_{2}^{N-1} \left(\int_{S^{N-1}} f(R_{2}\omega) \, d\omega \right) \right] \left| \leq \frac{2\pi^{\frac{N}{2}}}{\Gamma\left(\frac{N}{2}\right)} \cdot \right|$$

$$\times \frac{K_{1}}{(n+1)!} \left(\frac{R_{2} - R_{1}}{\overline{N}} \right)^{n+1} \left[j^{n+1} + \left(\overline{N} - j \right)^{n+1} \right],$$

for $j=0,1,2,...,\overline{N}\in\mathbb{N},$

(vi) when $\overline{N} = 2$ and j = 1, (2.19) turns to

$$(2.20) \qquad \left| \int_{A} f(y) \, dy - \left(\frac{R_{2} - R_{1}}{2} \right) \left(R_{1}^{N-1} \int_{S^{N-1}} f(R_{1}\omega) \, d\omega + R_{2}^{N-1} \int_{S^{N-1}} f(R_{2}\omega) \, d\omega \right) \right|$$

$$\leq \frac{\pi^{\frac{N}{2}}}{\Gamma\left(\frac{N}{2}\right)} \frac{K_{1}}{(n+1)!} \frac{(R_{2} - R_{1})^{n+1}}{2^{n-1}},$$

(vii) when n = 1 (without any boundary conditions), we get from (2.20) that

$$\left| \int_{A} f(y) \, dy - \left(\frac{R_{2} - R_{1}}{2} \right) \left(R_{1}^{N-1} \int_{S^{N-1}} f(R_{1}\omega) \, d\omega + R_{2}^{N-1} \int_{S^{N-1}} f(R_{2}\omega) \, d\omega \right) \right|$$

$$\leq \frac{\pi^{\frac{N}{2}} K_{1}}{2\Gamma\left(\frac{N}{2}\right)} \left(R_{2} - R_{1} \right)^{2}.$$

Proof. Similar to the proof of Theorem 2.9. We apply Theorem 1.6 along with (1.16).

We continue with

Theorem 2.15. Consider $f: \overline{A} \to \mathbb{R}$ be Lebesgue integrable, which is not necessarily radial. Assume that $f(s\omega) s^{N-1} \in AC^n([R_1,R_2])$ (i.e. $(f(s\omega) s^{N-1})^{(n-1)} \in AC([R_1,R_2])$ absolutely continuous functions), for all $\omega \in S^{N-1}$, $N \geq 2$. Here there exists $K_2 > 0$ such that $\left\| \left(f(s\omega) s^{N-1} \right)^{(n)} \right\|_{L_1([R_1,R_2])} \leq K_2$, where $s \in [R_1,R_2]$, for all $\omega \in S^{N-1}$.

(2.21)
$$\left| \int_{A} f(y) \, dy - \sum_{k=0}^{n-1} \frac{1}{(k+1)!} \left[\left(\int_{S^{N-1}} \left(f(s\omega) \, s^{N-1} \right)^{(k)} (R_1) \, d\omega \right) (t - R_1)^{k+1} \right] \right|$$

$$+ \left(-1 \right)^{k} \left(\int_{S^{N-1}} \left(f(s\omega) \, s^{N-1} \right)^{(k)} (R_2) \, d\omega \right) (R_2 - t)^{k+1} \right] \right|$$

$$\leq \frac{2\pi^{\frac{N}{2}}}{\Gamma\left(\frac{N}{2}\right)} \frac{K_2}{n!} \left[(t - R_1)^n + (R_2 - t)^n \right],$$

for all $t \in [R_1, R_2]$, (ii) at $t = \frac{R_1 + R_2}{2}$, the right hand side of (2.21) is minimized, and we get:

$$\left| \int_{A} f(y) \, dy - \sum_{k=0}^{n-1} \frac{1}{(k+1)!} \frac{(R_{2} - R_{1})^{k+1}}{2^{k+1}} \left[\int_{S^{N-1}} \left(f(s\omega) \, s^{N-1} \right)^{(k)} (R_{1}) \, d\omega \right] \right|$$

$$+ \left(-1 \right)^{k} \int_{S^{N-1}} \left(f(s\omega) \, s^{N-1} \right)^{(k)} (R_{2}) \, d\omega \right]$$

$$\leq \frac{\pi^{\frac{N}{2}}}{\Gamma\left(\frac{N}{2}\right)} \frac{K_{2}}{n!} \frac{(R_{2} - R_{1})^{n}}{2^{n-2}},$$

(iii) if $\left(f\left(s\omega\right)s^{N-1}\right)^{(k)}\left(R_{1}\right)=\left(f\left(s\omega\right)s^{N-1}\right)^{(k)}\left(R_{2}\right)=0$, for all $\omega\in S^{N-1}$, (i.e. $\frac{\partial^{k}\left(f\left(s\omega\right)s^{N-1}\right)}{\partial s^{k}}$ vanish on $\partial B(0,R_1)$ and $\partial B(0,R_2)$) for all k=0,1,...,n-1, we obtain

$$\left| \int_{A} f\left(y\right) dy \right| \leq \frac{\pi^{\frac{N}{2}}}{\Gamma\left(\frac{N}{2}\right)} \frac{K_{2}}{n!} \frac{\left(R_{2} - R_{1}\right)^{n}}{2^{n-2}},$$

which is a sharp inequality,

(iv) more generally, for $j=0,1,2,...,\overline{N}\in\mathbb{N}$, it holds

$$(2.22) \quad \left| \int_{A} f(y) \, dy - \sum_{k=0}^{n-1} \frac{1}{(k+1)!} \left(\frac{R_{2} - R_{1}}{\overline{N}} \right)^{k+1} \left[j^{k+1} \left(\int_{S^{N-1}} \left(f(s\omega) \, s^{N-1} \right)^{(k)} (R_{1}) \, d\omega \right) \right. \\ + \quad \left. (-1)^{k} \left(\overline{N} - j \right)^{k+1} \left(\int_{S^{N-1}} \left(f(s\omega) \, s^{N-1} \right)^{(k)} (R_{2}) \, d\omega \right) \right] \right| \\ \leq \quad \frac{2\pi^{\frac{N}{2}}}{\Gamma\left(\frac{N}{2}\right)} \frac{K_{2}}{n!} \left(\frac{R_{2} - R_{1}}{\overline{N}} \right)^{n} \left[j^{n} + \left(\overline{N} - j \right)^{n} \right],$$

(v) if $(f(s\omega)s^{N-1})^{(k)}(R_1) = (f(s\omega)s^{N-1})^{(k)}(R_2) = 0$, for all $\omega \in S^{N-1}$, (i.e. $\frac{\partial^k (f(s\omega)s^{N-1})}{\partial s^k}$ vanish on $\partial B(0, R_1)$ and $\partial B(0, R_2)$) for k = 1, ..., n - 1, from (2.22) we get:

(2.23)
$$\left| \int_{A} f(y) \, dy - \left(\frac{R_{2} - R_{1}}{\overline{N}} \right) \left[j R_{1}^{N-1} \left(\int_{S^{N-1}} f(R_{1}\omega) \, d\omega \right) \right. \right.$$

$$\left. + \left(\overline{N} - j \right) R_{2}^{N-1} \left(\int_{S^{N-1}} f(R_{2}\omega) \, d\omega \right) \right] \right| \leq \frac{2\pi^{\frac{N}{2}}}{\Gamma\left(\frac{N}{2}\right)}$$

$$\times \frac{K_{2}}{n!} \left(\frac{R_{2} - R_{1}}{\overline{N}} \right)^{n} \left[j^{n} + \left(\overline{N} - j \right)^{n} \right],$$

for $j = 0, 1, 2, ..., \overline{N} \in \mathbb{N}$.

76 G. A. Anastassiou

(vi) when $\overline{N}=2$ and j=1, (2.23) turns to

$$(2.24) \qquad \left| \int_{A} f(y) \, dy - \left(\frac{R_{2} - R_{1}}{2} \right) \left(R_{1}^{N-1} \int_{S^{N-1}} f(R_{1}\omega) \, d\omega + R_{2}^{N-1} \int_{S^{N-1}} f(R_{2}\omega) \, d\omega \right) \right|$$

$$\leq \frac{\pi^{\frac{N}{2}}}{\Gamma\left(\frac{N}{2}\right)} \frac{K_{2}}{n!} \frac{\left(R_{2} - R_{1}\right)^{n}}{2^{n-2}},$$

(vii) when n=1 (without any boundary conditions), we get from (2.24) that

$$\left| \int_{A} f(y) \, dy - \left(\frac{R_{2} - R_{1}}{2} \right) \left(R_{1}^{N-1} \int_{S^{N-1}} f(R_{1}\omega) \, d\omega + R_{2}^{N-1} \int_{S^{N-1}} f(R_{2}\omega) \, d\omega \right) \right|$$

$$\leq \frac{2\pi^{\frac{N}{2}} K_{2}}{\Gamma\left(\frac{N}{2}\right)} \left(R_{2} - R_{1} \right).$$

Proof. Similar to the proof of Theorem 2.9. We apply Theorem 1.7 along with (1.16).

We continue with

Theorem 2.16. Let $p,q>1:\frac{1}{p}+\frac{1}{q}>1$. Consider $f:\overline{A}\to\mathbb{R}$ be Lebesgue integrable, which is not necessarily radial. Assume that $f\left(s\omega\right)s^{N-1}\in AC^{n}\left(\left[R_{1},R_{2}\right]\right)$ (i.e. $\left(f\left(s\omega\right)s^{N-1}\right)^{(n-1)}\in AC\left(\left[R_{1},R_{2}\right]\right)$ absolutely continuous functions), for all $\omega \in S^{N-1}$, $N \geq 2$. We assume that $(f(s\omega)s^{N-1})^{(n)} \in$ $L_{q}\left([R_{1},R_{2}]\right)$, for all $\omega\in S^{N-1}$. There exists $K_{3}>0$ such that $\left\|\left(f\left(s\omega\right)s^{N-1}\right)^{(n)}\right\|_{L_{q}\left([R_{1},R_{2}]\right)}\leq K_{3}$, where $s \in [R_1, R_2]$, for all $\omega \in S^{N-1}$. Then

(*i*)

(2.25)
$$\left| \int_{A} f(y) \, dy - \sum_{k=0}^{n-1} \frac{1}{(k+1)!} \left[\left(\int_{S^{N-1}} \left(f(s\omega) \, s^{N-1} \right)^{(k)} (R_1) \, d\omega \right) (t - R_1)^{k+1} \right] \right|$$

$$+ \left(-1 \right)^{k} \left(\int_{S^{N-1}} \left(f(s\omega) \, s^{N-1} \right)^{(k)} (R_2) \, d\omega \right) (R_2 - t)^{k+1} \right] \right|$$

$$\leq \frac{2\pi^{\frac{N}{2}}}{\Gamma\left(\frac{N}{2}\right)} \frac{K_3}{(n-1)! \left(n + \frac{1}{p} \right) (p(n-1) + 1)^{\frac{1}{p}}} \left[(t - R_1)^{n + \frac{1}{p}} + (R_2 - t)^{n + \frac{1}{p}} \right],$$

for all $t\in [R_1,R_2]$, (ii) at $t=\frac{R_1+R_2}{2}$, the right hand side of (2.25) is minimized, and we get:

$$\left| \int_{A} f(y) \, dy - \sum_{k=0}^{n-1} \frac{1}{(k+1)!} \frac{(R_{2} - R_{1})^{k+1}}{2^{k+1}} \right|$$

$$\times \left[\int_{S^{N-1}} \left(f(s\omega) \, s^{N-1} \right)^{(k)} (R_{1}) \, d\omega + (-1)^{k} \int_{S^{N-1}} \left(f(s\omega) \, s^{N-1} \right)^{(k)} (R_{2}) \, d\omega \right] \right|$$

$$\leq \frac{\pi^{\frac{N}{2}}}{\Gamma\left(\frac{N}{2}\right)} \frac{K_{3}}{(n-1)! \left(n + \frac{1}{p}\right) (p(n-1) + 1)^{\frac{1}{p}}} \frac{(R_{2} - R_{1})^{n + \frac{1}{p}}}{2^{n-1 - \frac{1}{q}}},$$

(iii) if $(f(s\omega)s^{N-1})^{(k)}(R_1) = (f(s\omega)s^{N-1})^{(k)}(R_2) = 0$, for all $\omega \in S^{N-1}$, (i.e. $\frac{\partial^k (f(s\omega)s^{N-1})}{\partial s^k}$ vanish on $\partial B(0,R_1)$ and $\partial B(0,R_2)$) for all k=0,1,...,n-1, we obtain

$$\left| \int_{A} f(y) \, dy \right| \leq \frac{\pi^{\frac{N}{2}}}{\Gamma\left(\frac{N}{2}\right)} \frac{K_{3}}{(n-1)! \left(n + \frac{1}{p}\right) \left(p(n-1) + 1\right)^{\frac{1}{p}}} \frac{\left(R_{2} - R_{1}\right)^{n + \frac{1}{p}}}{2^{n-1 - \frac{1}{q}}},$$

which is a sharp inequality,

(iv) more generally, for $j = 0, 1, 2, ..., \overline{N} \in \mathbb{N}$, it holds

$$(2.26) \quad \left| \int_{A} f(y) \, dy - \sum_{k=0}^{n-1} \frac{1}{(k+1)!} \left(\frac{R_{2} - R_{1}}{\overline{N}} \right)^{k+1} \left[j^{k+1} \left(\int_{S^{N-1}} \left(f(s\omega) \, s^{N-1} \right)^{(k)} (R_{1}) \, d\omega \right) \right. \\ + \quad \left. \left(-1 \right)^{k} \left(\overline{N} - j \right)^{k+1} \left(\int_{S^{N-1}} \left(f(s\omega) \, s^{N-1} \right)^{(k)} (R_{2}) \, d\omega \right) \right] \right| \\ \leq \quad \frac{2\pi^{\frac{N}{2}}}{\Gamma\left(\frac{N}{2}\right)} \frac{K_{3}}{(n-1)! \left(n + \frac{1}{n} \right) \left(p(n-1) + 1 \right)^{\frac{1}{p}}} \left(\frac{R_{2} - R_{1}}{\overline{N}} \right)^{n+\frac{1}{p}} \left[j^{n+\frac{1}{p}} + \left(\overline{N} - j \right)^{n+\frac{1}{p}} \right],$$

(v) if $(f(s\omega)s^{N-1})^{(k)}(R_1) = (f(s\omega)s^{N-1})^{(k)}(R_2) = 0$, for all $\omega \in S^{N-1}$, (i.e. $\frac{\partial^k (f(s\omega)s^{N-1})}{\partial s^k}$ vanish on $\partial B(0, R_1)$ and $\partial B(0, R_2)$) for k = 1, ..., n-1, from (2.26) we get:

$$(2.27) \qquad \left| \int_{A} f(y) \, dy - \left(\frac{R_{2} - R_{1}}{\overline{N}} \right) \left[j R_{1}^{N-1} \left(\int_{S^{N-1}} f(R_{1}\omega) \, d\omega \right) \right.$$

$$\left. + \left. \left(\overline{N} - j \right) R_{2}^{N-1} \left(\int_{S^{N-1}} f(R_{2}\omega) \, d\omega \right) \right] \right| \leq \frac{2\pi^{\frac{N}{2}}}{\Gamma\left(\frac{N}{2}\right)}$$

$$\times \frac{K_{3}}{(n-1)! \left(n + \frac{1}{p} \right) \left(p(n-1) + 1 \right)^{\frac{1}{p}}} \left(\frac{R_{2} - R_{1}}{\overline{N}} \right)^{n + \frac{1}{p}} \left[j^{n + \frac{1}{p}} + \left(\overline{N} - j \right)^{n + \frac{1}{p}} \right],$$

for $j = 0, 1, 2, ..., \overline{N} \in \mathbb{N}$,

(vi) when $\overline{N} = 2$ and j = 1, (2.27) turns to

$$(2.28) \qquad \left| \int_{A} f(y) \, dy - \left(\frac{R_{2} - R_{1}}{2} \right) \left(R_{1}^{N-1} \int_{S^{N-1}} f(R_{1}\omega) \, d\omega + R_{2}^{N-1} \int_{S^{N-1}} f(R_{2}\omega) \, d\omega \right) \right|$$

$$\leq \frac{\pi^{\frac{N}{2}}}{\Gamma\left(\frac{N}{2}\right)} \frac{K_{3}}{(n-1)! \left(n + \frac{1}{p}\right) (p(n-1) + 1)^{\frac{1}{p}}} \frac{(R_{2} - R_{1})^{n + \frac{1}{p}}}{2^{n-1 - \frac{1}{q}}},$$

(vii) when n = 1 (without any boundary conditions), we get from (2.28) that

$$\left| \int_{A} f(y) \, dy - \left(\frac{R_{2} - R_{1}}{2} \right) \left(R_{1}^{N-1} \int_{S^{N-1}} f(R_{1}\omega) \, d\omega + R_{2}^{N-1} \int_{S^{N-1}} f(R_{2}\omega) \, d\omega \right) \right|$$

$$\leq \frac{2^{\frac{1}{q}} \pi^{\frac{N}{2}} K_{3}}{\Gamma\left(\frac{N}{2}\right) \left(1 + \frac{1}{p}\right)} \left(R_{2} - R_{1} \right)^{1 + \frac{1}{p}}.$$

Proof. Similar to the proof of Theorem 2.9. We apply Theorem 1.8 along with (1.16).

We continue with results on the ball. We present

Theorem 2.17. Consider $f: \overline{B(0,R)} \to \mathbb{R}$ be Lebesgue integrable, which is not necessarily radial. Assume that $f(s\omega) s^{N-1} \in AC([0,R])$, for all $\omega \in S^{N-1}$, $N \geq 2$. We further assume

that $\frac{\partial f(s\omega)s^{N-1}}{\partial s} \in L_{\infty}([0,R])$, for all $\omega \in S^{N-1}$. Suppose there exists $M_1 > 0$ such that $\left\|\frac{\partial f(s\omega)s^{N-1}}{\partial s}\right\|_{\infty,(s\in[0,R])} \leq M_1$, for all $\omega \in S^{N-1}$. Then

(*i*)

$$(2.29) \qquad \left| \int_{B(0,R)} f(y) \, dy - \left(\int_{S^{N-1}} f(R\omega) \, d\omega \right) R^{N-1} \left(R - t \right) \right| \leq \frac{\pi^{\frac{N}{2}} M_1}{\Gamma\left(\frac{N}{2}\right)} \left[t^2 + \left(R - t \right)^2 \right],$$

for all $t \in [0, R]$,

(ii) at $t = \frac{R}{2}$, the right hand side of (2.29) is minimized, and we get:

$$\left| \int_{B(0,R)} f\left(y\right) dy - \left(\int_{S^{N-1}} f\left(R\omega\right) d\omega \right) \frac{R^N}{2} \right| \leq \frac{\pi^{\frac{N}{2}} M_1 R^2}{2\Gamma\left(\frac{N}{2}\right)},$$

(iii) if $f(R\omega) = 0$, for all $\omega \in S^{N-1}$, (i.e. $f(\omega)$ vanishes on $\partial B(0,R)$), we obtain

$$\left| \int_{B(0,R)} f(y) \, dy \right| \le \frac{\pi^{\frac{N}{2}} M_1 R^2}{2\Gamma\left(\frac{N}{2}\right)},$$

which is a sharp inequality,

(iv) more generally, for $j = 0, 1, 2, ..., \overline{N} \in \mathbb{N}$, it holds

$$(2.30) \quad \left| \int_{B (0,R)} f(y) \, dy - \frac{R^N}{\overline{N}} \left(\overline{N} - j \right) \int_{S^{N-1}} f(R\omega) \, d\omega \right| \leq \frac{\pi^{\frac{N}{2}} M_1}{\Gamma\left(\frac{N}{2}\right)} \left(\frac{R}{\overline{N}} \right)^2 \left[j^2 + \left(\overline{N} - j \right)^2 \right],$$

(v) when $\overline{N} = 2$ and j = 1, (2.30) turns to

$$\left| \int_{B(0,R)} f\left(y\right) dy - \frac{R^N}{2} \int_{S^{N-1}} f\left(R\omega\right) d\omega \right| \leq \frac{\pi^{\frac{N}{2}} M_1 R^2}{2\Gamma\left(\frac{N}{2}\right)}.$$

Proof. Same as the proof of Theorem 2.14, just set there $R_1 = 0$ and $R_2 = R$ and use (1.15).

We continue with

Theorem 2.18. Consider $f: \overline{B(0,R)} \to \mathbb{R}$ be Lebesgue integrable, which is not necessarily radial. Assume that $f(s\omega) s^{N-1} \in AC([0,R])$, for all $\omega \in S^{N-1}$, $N \ge 2$. Suppose there exists $M_2 > 0$ such that $\left\|\frac{\partial f(s\omega) s^{N-1}}{\partial s}\right\|_{L_1([0,R])} \le M_2$, for all $\omega \in S^{N-1}$.

Then

(*i*)

$$\left| \int_{B(0,R)} f(y) \, dy - \left(\int_{S^{N-1}} f(R\omega) \, d\omega \right) R^{N-1} \left(R - t \right) \right| \leq \frac{2\pi^{\frac{N}{2}} M_2 R}{\Gamma\left(\frac{N}{2}\right)},$$

for all $t \in [0, R]$,

(ii) if $f(R\omega) = 0$, for all $\omega \in S^{N-1}$, (i.e. $f(\omega)$ vanishes on $\partial B(0,R)$) from (2.31), we obtain

$$\left| \int_{B(0,R)} f(y) \, dy \right| \le \frac{2\pi^{\frac{N}{2}} M_2 R}{\Gamma\left(\frac{N}{2}\right)},$$

which is a sharp inequality,

(iii) more generally, for $j = 0, 1, 2, ..., \overline{N} \in \mathbb{N}$, it holds

$$\left| \int_{B(0,R)} f(y) \, dy - \frac{R^N}{\overline{N}} \left(\overline{N} - j \right) \int_{S^{N-1}} f(R\omega) \, d\omega \right| \le \frac{2\pi^{\frac{N}{2}} M_2 R}{\Gamma\left(\frac{N}{2}\right)},$$

(iv) when $\overline{N} = 2$ and j = 1, (2.32) turns to

$$\left| \int_{B(0,R)} f(y) \, dy - \frac{R^N}{2} \int_{S^{N-1}} f(R\omega) \, d\omega \right| \le \frac{2\pi^{\frac{N}{2}} M_2 R}{\Gamma\left(\frac{N}{2}\right)}.$$

Proof. Same as the proof of Theorem 2.15, just set there $R_1 = 0$ and $R_2 = R$ and use (1.15). \square We continue with

Theorem 2.19. Let $p,q>1: \frac{1}{p}+\frac{1}{q}=1$. Consider $f:\overline{B(0,R)}\to\mathbb{R}$ be Lebesgue integrable, which is not necessarily radial. Assume that $f(s\omega)\,s^{N-1}\in AC([0,R])$, for all $\omega\in S^{N-1}$, $N\geq 2$. We further assume that $\frac{\partial f(s\omega)s^{N-1}}{\partial s}\in L_q([0,R])$, for all $\omega\in S^{N-1}$. Suppose there exists $M_3>0$ such that $\left\|\frac{\partial f(s\omega)s^{N-1}}{\partial s}\right\|_{L_q([0,R])}\leq M_3$, for all $\omega\in S^{N-1}$.

(*i*)

(2.33)
$$\left| \int_{B(0,R)} f(y) \, dy - \left(\int_{S^{N-1}} f(R\omega) \, d\omega \right) R^{N-1} (R-t) \right|$$

$$\leq \frac{2\pi^{\frac{N}{2}} M_3}{\Gamma\left(\frac{N}{2}\right) \left(1 + \frac{1}{p}\right)} \left[t^{1 + \frac{1}{p}} + (R-t)^{1 + \frac{1}{p}} \right],$$

for all $t \in [0, R]$,

(ii) at $t = \frac{R}{2}$, the right hand side of (2.33) is minimized, and we get:

$$\left| \int_{B(0,R)} f(y) \, dy - \left(\int_{S^{N-1}} f(R\omega) \, d\omega \right) \frac{R^N}{2} \right| \le \frac{2^{\frac{1}{q}} \pi^{\frac{N}{2}} M_3 R^{1+\frac{1}{p}}}{\Gamma\left(\frac{N}{2}\right)},$$

(iii) if $f(R\omega) = 0$, for all $\omega \in S^{N-1}$, (i.e. $f(\cdot \omega)$ vanishes on $\partial B(0,R)$), we obtain

$$\left| \int_{B(0,R)} f(y) \, dy \right| \le \frac{2^{\frac{1}{q}} \pi^{\frac{N}{2}} M_3 R^{1+\frac{1}{p}}}{\Gamma\left(\frac{N}{2}\right)},$$

which is a sharp inequality,

(iv) more generally, for $j=0,1,2,...,\overline{N}\in\mathbb{N}$, it holds

(2.34)
$$\left| \int_{B(0,R)} f(y) \, dy - \frac{R^N}{\overline{N}} \left(\overline{N} - j \right) \int_{S^{N-1}} f(R\omega) \, d\omega \right|$$

$$\leq \frac{2\pi^{\frac{N}{2}} M_3}{\left(1 + \frac{1}{p} \right) \Gamma\left(\frac{N}{2} \right)} \left(\frac{R}{\overline{N}} \right)^{1 + \frac{1}{p}} \left[j^{1 + \frac{1}{p}} + \left(\overline{N} - j \right)^{1 + \frac{1}{p}} \right],$$

(v) when $\overline{N} = 2$ and j = 1, (2.34) turns to

$$\left| \int_{B(0,R)} f(y) \, dy - \frac{R^N}{2} \int_{S^{N-1}} f(R\omega) \, d\omega \right| \le \frac{2^{\frac{1}{q}} \pi^{\frac{N}{2}} M_3 R^{1+\frac{1}{p}}}{\left(1 + \frac{1}{p}\right) \Gamma\left(\frac{N}{2}\right)}.$$

80 G. A. Anastassiou

Proof. Same as the proof of Theorem 2.16, just set there $R_1 = 0$ and $R_2 = R$ and use (1.15).

REFERENCES

- [1] R. P. Agarwal, S. S. Dragomir: An application of Hayashi's inequality for differentiable functions, Computers Math. Applic., 6 (1996), 95-99.
- [2] G. A. Anastassiou: Fractional Differentiation Inequalities, Research Monograph, Springer, New York, 2009.
- [3] G. A. Anastassiou: General Iyengar type inequalities, submitted, 2018.
- [4] Xiao-Liang Cheng: The Iyengar-type inequality, Applied Math. Letters 14 (2001), 975-978.
- [5] K. S. K. Iyengar: Note on an inequality, Math. Student 6, (1938), 75-76.
- [6] Zheng Liu: Note on Iyengar's inequality, Univ. Beograd Publ. Elektrotechn. Fak., Ser. Mat. 16 (2005), 29-35.
- [7] F. Qi: Further generalizations of inequalities for an integral, Univ. Beograd Publ. Elektrotechn. Fak., Ser. Mat. 8 (1997), 79-83.
- [8] W. Rudin: Real and Complex Analysis, International Student edition, Mc Graw Hill, London, New York, 1970.
- [9] D. Stroock: A Concise Introduction to the Theory of Integration, Third Edition, Birkhaüser, Boston, Basel, Berlin, 1999.

DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF MEMPHIS, MEMPHIS, TN 38152, U.S.A.

E-mail address: ganastss@memphis.edu