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General Multivariate Iyengar Type Inequalities

GEORGE A. ANASTASSIOU

ABSTRACT. Here we give a variety of general multivariate Iyengar type inequalities for not necessarily radial func-
tions defined on the shell and ball. Our approach is based on the polar coordinates in RY, N > 2, and the related
multivariate polar integration formula. Via this method we transfer well-known univariate Iyengar type inequalities
and univariate author’s related results into general multivariate Iyengar inequalities.
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1. BACKGROUND
In the year 1938, Iyengar [5] proved the following interesting inequality:
Theorem 1.1. Let f be a differentiable function on [a,b] and | f' (x)| < My. Then

b e i
[ 1@ o-w @@ so) < O TOET@)]

In 2001, X.-L. Cheng [4] proved that
Theorem 1.2. Let f € C? ([a,b]) and |f” (z)| < Ma. Then

(1.1)

b 1 1 3, o ,
(12) [ e 50-a) @+ F0)+ g 00 (7 B~ 1 (@)
M (b—a)
< 500 - S AL
where

2(f(b) = f(a))
(b—a)

In 1996, Agarwal and Dragomir [1] obtained a generalization of (1.1):

Theorem 1.3. Let f : [a,b] — R be a differentiable function such that for all = € [a,b] with M > m
we have m < f' (x) < M. Then

Ay = f'(a) - + f' ().

b
[ t@de=3 0= (f@)+£0)
() -

fla)=m(b—a))(M(b—a)=f(b)+[(a)

= 3 (M —m)

In [7], Qi proved the following:
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Theorem 1.4. Let f : [a,b] — R be a twice differentiable function such that for all x € [a,b] with
M > 0 we have |f" (x)| < M. Then

/f >+f<>>(b,aH@(f(b)ff'<a>><bfa>2
- (Z’T>(1—3Q)

where

( @+ 7 () 2 (19=£2))?
M2(b—a)? = (f(b) — f'(a)®
In 2005, Zheng Liu, [6], proved the following;:

Theorem 1.5. Let f : [a,b] — R be a differentiable function such that f' is integrable on [a, b] and for
all z € [a,b] with M > m we have

_f @)= f ()

2:

pr— <M andmﬁWSM.
Then
b 2
‘/ porar - LI o (L) (7 0) - 1/ (@) 0 - o
2 —m)(b—a)?
N L ]
where

(£ (@) + 1) — 2 (Ho=f))*
T L)) (1 (5)— f (@) — (PEM) (b))

Next we list some author’s related results, (here L ([a, b]) is the normed space of essentially
bounded functions over [a, b]):

Theorem 1.6. ([3]) Let n € N, f € AC™ ([a,b]) (ie. f"~1 € AC ([a,d]), absolutely continuous
functions). We assume that ") € L, ([a,D]). Then
(i)

P? =

(1.3)

LR PR
(n+1)!
forallt € [a,b],
(i) att = *£°, the right hand side 0f(1.3) is minimized, and we get:

(=o' -],

_ )k
(k _i ! L 2k+)1 [f(k) (a) + (_1)kf(k) (b)} ‘

||f " HLOO([a,b]) (b—a)"
(n+1)! n
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(i) if f*) (a) = f®) (b) = 0 forall k = 0,1,...,n — 1, then we obtain

L oy (0= )"
(n+1)! 2n

which is a sharp inequality,
(iv) more genemlly, for j=0,1,2,..., N €N, it holds

. 2 S (50) T [ @t v )] |
. ||f Znﬂﬁg[!a,b]) (b]—va) " [ (v =

@) if fB) (a) = f®) () =0,k =1,....,n — 1, from (1.4) we get:

@ (25

Hf M, b—a)\"
OO([a’b]) a n+1 s n+1
= (n+1)! ( N ) [J V=) }
forj=0,1,2,...N €N,
(vi) when N = 2and j = 1, (1.5) turns to

(L5) ) U (@) + (N = 5) £ ()]

b—a (AR HLOO([a,b]) (b—a)"™
16) v - (150) @+ o) < sl O
(vii) when n = 1 (without any boundary conditions), we get from (1.6) that
b—a / (b — a)Q
7)da (f @)+ F O] < 1 oo

a similar to Iyengar inequality (1.1).
We mention here L; ([a, b]) is the normed space of integrable functions over [a, b]).
Theorem 1.7. ([3]) Let f € AC™ ([a,b]), n € N. Then
(i)

1.7)

79 (@) (8 = )+ (=1)5 1) (5) (b — )]

dx —
kZ:O (k+1)!
Hf(n) HLl([a,b])

n!
forallt € [a,b],
(i) att = 2L, the right hand side of(1.7) is minimized, and we get:

[(t—a)" +(b—-1)"],

1 (b . a)k-‘rl
(k: + 1) 2k+1

78 (@) + (=D} O ()] |

Hf " HLl([a,b]) (b —a)"

= n! on—1 "
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(iii) if f*) (a) = f*) (b) = 0, forall k = 0,1,...,n — 1, we obtain

/abf(a:)dm

which is a sharp inequality,
(iv) more generally, for j = 0,1,2,..., N € N, it holds

< Hf(n)HLl([a,b]) (b—a)"

n! on—1 "

(1.8)

/abf e (e (b_zva)kﬂ [0 (@) + (1 (7 = g <b>]|

k=0

||f(n)HL1([ab]) b—a\" ., 7
o ( ~ ) "+ (N =34)",

@) if f® (a) = fF) () =0,k =1,....,n — 1, from (1.8) we get:

(1.9)

/abf(x)dx— (bj_va) [ (a)+ (N =3) f(0)]

£, b—a\"
([a,b]) a o n
N —
o (N)[J+( MR
forj=0,1,2,...N €N,
(vi) when N = 2and j = 1, (1.9) turns to

- Hf(n)HLl([a,b]) (b—a)"
= n! on—1 7

b —a
(1.10) [ r@a-L5 2 @+ s o)

(vii) when n = 1 (without any boundary conditions), we get from (1.10) that

[ 1@ (5 v o)

<z, (e 0 —a)-

We mention here L, ([a, b]) is the normed space of functions f such that |f|? is integrable over
[a,b])

Theorem 1.8. ([3]) Let f € AC™ ([a,b]), n € N; p,q > Lsuch that L + L = 1,and f™) € L, ([a,b]).
Then

(i)

(1.11) CES]

£ ot
(n—1)! <n+%> (p(n—1)41)

forallt € [a,b],

[ $@rde =3 e [ @ - 1 )6
@ k=0

[t =)™ + -],

=
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(ii) att = “EL, the right hand side of (1.11) is minimized, and we get:

—a k+1
> > g [P @+ (04 ) ‘
17 HLq([a,bD (b—a)*ts

1 ’

(n—1)! (n+ ;) (p(n—1)+1)5 2" 3
(iii) if f*) (a) = f®) (b) =0, forall k = 0,1, ...,n — 1, we obtain
|f(n)HLq([a,b]) (b—a)"t>
C(n—1)! (n—i— %) (p(n—1)+1)7 2"

b

which is a sharp inequality,
(iv) moregenemlly,forj =0,1,2,..., N € N, it holds

12 2T S () 0 @ e r 5 0 ) |
[P HLq([a,b]) b—a\"tr gl _ ynd
(n—1)!(n+;)(p(n—1)+1)é( N ) [j+ W J>+}’

(@) if fF) (a) = f®) (b)) =0,k =1,....,n — 1, from (1.12) we get:

.13 oyde = (U0 if @+ (V= 3) 7 )
Hf(n)HLq([a,b]) b—a\""F [, 1 angl
<n—1>!(n+;)<p(n_1)+1>é( ) e,

forj=0,1,2,..,N € N,
(vi) when N = 2and j = 1, (1.13) turns to

Hf(n)HLq([a,b]) (b— a)"JW%
(n—1)! (n + %) (p(n—1)+1)r 2"3

(vii) when n = 1 (without any boundary conditions), we get from (1.14) that

/abf(x)dx_ (b;a) (f (@) + f(b)] < ”f<|11<[a)b ) (b 21})%.
We need

Remark 1.1. We define the ball B (0,R) = {z e RV : [z| <R} C RN, N > 2, R > 0, and the
sphere

(1.14)

b —a
[ 1@ s o) <

SN=Vi={z eRY : |z| =1},

where |-| is the Euclidean norm. Let dw be the element of surface measure on S™~' and

w —/ dw = 272
Ve T T
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is the area of SN 1.
For x € RN — {0} we can write uniquely x = rw, wherer = |z| > 0and w = £ € SN, |w| = 1.

Note that fB(O,R) dy = “’NJ\?N is the Lebesgue measure on the ball, that is the volume of B (0, R), which
N
exactly is Vol (B (0, R)) = F’T(zﬂ}flv)
2
Following [8, pp. 149-150, exercise 6], and [9, pp. 87-88, Theorem 5.2.2] we can write for F' :
B (0, R) — R a Lebesgue integrable function that

(1.15) /B(OyR)F(.r) dx = /SN?1 (/ORF(TW) TN_Id’I“) dw,

and we use this formula a lot.

Typically here the function f : B (0, R) — R is not radial. A radial function f is such that there exists

a function g with f (x) = g (r), where r = |z|, r € [0, R], forall z € B (0, R).

We need

Remark 1.2. Let the spherical shell A := B (0, Ry) — B(0,R;),0 < Ry < Ry, ACRN, N > 2,
x € A. Consider that f : A — R is not radial. A radial function f is such that there exists a function
gwith f (z) = g(r), r = |z|, 7 € [R1, R, for all x € A. Here x can be written uniquely as x = rw,
wherer = |x| > 0andw = T € SN=L |w| = 1, see ([8], p. 149-150 and [2], p. 421), furthermore for
F : A — Ra Lebesque integrable function we have that

Ry
(1.16) /AF(m) dx:/SN_l ( ; F (rw) rN—ldr> dw.

Here

wy (RY — RY) =% (RY — RN
Vol (4) = N . ) _ F((]\2[+1)1)
2

In this article we derive general multivariate Iyengar type inequalities on the shell and ball of
RN, N > 2, for not necessarily radial functions. Our results are based on Theorems 1.1-1.8.

2. MAIN RESULTS

We present the following non-radial multivariate Iyengar type inequalities:
We start with

Theorem 2.9. Let the spherical shell A := B(0,R3) — B(0,R1),0 < Ry < Ry, A C RN, N > 2.
Consider f : A — R that is not necessarily radial, and that f € C* (A). Assume that ‘W’ < M,
forall s € [Ry, Ry, and for all w € SN~ where M, > 0.

Then
Ry — R
J sy - (e [ pmeae s my

SN-—-1

[ (Raw) dw) ‘

Min% (By — Ri)® fon o (f (Row) RY ™ = f (Raw) BY ') do
S ah |



70 G. A. Anastassiou

Proof. Here f (sw)sV¥~1 € C' ([R1, R2]), N > 2, forallw € SN¥~1. By (1.1) we get

Ro
(s0) sN s % (Ry — Ry) (f (Riw) RY L + f (Row) RY 1)
Ry
< M, (R2 — R1)2 _ (f (sz) RéV71 B f(R1w) R{V71)2 =\ (OJ),

4 4M,

forallw e SN-1,
Equivalently, we have
Ro 1
—1 () < (sw)sN~tds — 5 (B2 = Ri) (f (Riw) RY ™! + f (Row) RY™Y) < Ay (w),
Ri

forallw e SN-1,
Hence it holds

R>
- / A (w)dw < / ( (sw) SN_lds) dw
SN-—-1 SN—-1 Rl

1 N-1 N-1
— 2 (Ry- d
(Ry — Ry) (Rl /SN71 [ (Riw)dw + Ry /

2 SN-1

< / A1 (w) dw.
SN-—-1

That is (by (1.16))

[ (Row) dw)

) leMl (Rs — R)?  Jone (f (Row) RY ™' — f (Ryw) R{VT)? dW]

o (5) n
< [rwa-Tg R (men [ pmredos B[ f (R
A SN-—-1 SN-1
W%Ml (RQ*Rl)Q _ fsN—l (f (RQW) Rév_l _f(le) R{V_l)de
Y e |
proving the claim. O

We continue with

Theorem 2.10. Let the spherical shell A := B (0, Ry) — B(0,R1),0 < Ry < Ry, ACRN, N > 2.
Consider f : A — R that is not necessarily radial, and that f € C? (A). Assume that ‘%’ < Moy,

forall s € [Ry, Ry, and for all w € SN~ where My > 0.
Set

f(Row) RY ™' — f (Riw) RY 1)
Ry — Ry

Ay (W) = (f (sw) s¥ 1) (Ry) — 2(

+  (f(sw) SNfl)/ (Ry), Ywe SN~L



General Multivariate Iyengar Type Inequalities 71

Then

Ry) (R{Vl/swf(le) dw+R§V’1/SN71f(R2w) dw)
(R — Ry)?

o BB (s (e [ (7)Y () ]

w|Z

n (R2 Rl) / 2
< A7 (w) dw.
- I‘( 16 M, SN-1 ! ( )

Proof. Here f (sw) sV =1 € C? ([R1, R2]), N > 2, forallw € SN~1. By (1.2) we get

Ra

Mo

1 (e R’ -

NE

; f(sw)s™Ntds — % (R — Ry) (f (Riw) RY ™' + f (Raw) RY 1)
= (7 (55 (o) = (7 ) ' ()
M2
<
Y

forallw e SN-L,
Equivalently, we have

(R2 — Ry)® —

Ry
- W) < 1 (sw) sV lds — (F> — Bi)
Ry 2

b = R (7 () 8% (o) = (£ () s¥ ) (R)) < e (@),

forallw € SN-1,

Hence it holds
Ro
- / A2 (W) dw < / ( f (sw) 5N1d5> dw
SN-1 SN-1 Ry
- (RQ;R” (R{Vl f (Ryw) dw + RY ! / f (Row) dw)
SN—l SN—l

+ S (Flsw) sV (Raydw — [ (f (sw) sV (Ra) dw
8 gN-1 sN-1

Ao (W) dw.
< [ W
That is (by (1.16))

7'('% M2
a r(ﬂ)ﬁ(

Ry—R
32—31)3—( > 1)/ A? (W) dw
2 SN 1

[ rway- T (e [ pmedo s [ ) o)

s Ry s s [ (705 (1) ]

SN-1

IN

R, — R
Mz Ry — Ryt - 126M21) /SN?lAf(w)dw,

IN
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proving the claim. O
We give

Theorem 2.11. Let the spherical shell A := B (0,R2) — B(0,R;),0 < Ry < Ry, ACRN, N > 2.
Consider f : A — R that is not necessarily radial, and that f € C* (A). Let M > m and assume that

m < % < M, forall s € [Ry, Ry], and for all w € SN~1.

Then
Rl) (R{“ /SN f (Baw) dw +RY! /SN  (Row) dw)‘
< W/SM [(f (Row) RY ™! — f (Riw) RY ™' —m (Ry — Ry))
x (M (Ry— Ry) — [ (Row) RY ™" + f (Riw) RY ") ] dw.
Proof. Similar to the proof of Theorem 2.9 by using Theorem 1.3 and (1.16). O
We give

Theorem 2.12. Let the spherical shell A := B (0, Ry) — B(0,R1),0 < Ry < Ry, ACRN, N > 2.
Consider f : A — R that is not necessarily radial, and that f € C? (A). Assume that ‘%’ < Ms,

forall s € [Ry, Ro], and for all w € SN~ where M3 > 0.
Set

Qf (w

I

forallw e SN-1.

)
F () 871 (Ba) + (F (sw) sV () — 2 (LR KR 2 )
M3 (Rz = Ba)® = ((f (s) sV 1) (Ra) = (f (sw) sN=1) (Ra))’]

Then
SN—1 SN—1
(R — R - )
QTH /SN_l (1+ Qi W) ((f (sw) sV 1) (Ry) — (f (sw) sV 1) (Rl)> dw
3
24 .
Proof. Similar to the proof of Theorem 2.10 by using Theorem 1.4 and (1.16). 0

We continue with
Theorem 2.13. Here all as in Theorem 2.9, and let M1 > m.. Assume that

o ()™ <x£ :g@w) S (R

and , ,
(f (sw) s 1) " (Ry) — (f (sw) s™ )" ()
Rg — X

mi S SMla

forall x € [Ry, Ry), forall w € SN—1,
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Set
P} (w)

[( (5 s () + (7 () s 1)' (Ry) — (e ]
(Migm0) (Ry = Ru)? = [(f (sw) sV 1) (Ra) = (f (sw) sV =1 (By) = (2520 (R — Ra)]”
forallw e SN-1.

Then
Ry — Iy N-1 N-1
f(y)dy — 5 R} f (Ryw) dw + R) F (Row) dw
A SN-1 SN—1
Ry — Ry)? ) /
+ (281)/51\,1 (14 P (w)) ((f (sw) sV 1) (Ra) — (f (sw) sV ) (R1)) d
3
RLLE LR (my +M1)/ (1+3P%(w)) dw
48 gN-1
3
< Qhom) (B - R / (1—3P% (W) dw.
43 gN-1
Proof. Similar to the proof of Theorem 2.10 by using Theorem 1.5 and (1.16). 0
We present

Theorem 2.14. Consider f : A — R be Lebesgue integrable, which is not necessarily radial. Assume
that f (sw) V=1 € AC™ ([Ry, Ry)) (ie. (f (sw) sN‘l)("_l) € AC ([R1, Rz)) absolutely continuous
functions), for all w € SN~', N > 2. We assume that (f (sw) stl)(n) € Lo ([R1, R2)), for all
w € SN There exists K1 > 0 such that H (f (sw) sN‘l)(n)‘ < Ky, where s € [Ry, Rs),

Loo([R1,R2])
forallw e SN-1.
Then
(i)
—"_1 1 SwW SN71 (k) w - kol

@17) |/Af(y)dy > e (o, G ) o as) )

s ([ e ) mae) (R0

2% K n n
S Ry R R

forallt € [Ry, Ro],
(ii) att = B1tB2 the right hand side of (2.17) is minimized, and we get:

n—1 _ k+1
[rwar-¥ B [ (s ) )
k

k=0

b [ e ) (ma

~—

7'('% K1 (RQ - Rl)nJrl
I (&) (n+1) 2n—1 ’

<
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Giii) if (f (s0) ¥ )P (Ry) = (F (s0) ¥ D)W (Ry) = 0, for all w € SV, (e, LU
vanish on 0B (0, R1) and 0B (0, R2)) forall k = 0,1, ...,n — 1, we obtain

™ Ki (Ry—Ry)"™
dy| <
/Af(y) y‘r(g) 1) TES I

which is a sharp inequality,
(iv) more generally, for j = 0,1,2,..., N € N, it holds

/Af(y)dy—zz_‘; (kil)! (RZ)J;Rl) { A </S w) sV (Rl)dw)
VN e O R dw)H

_ 271_ K1 <R2R1>n+1 |:]n+1 n+1:|
S @)+ N

&

(2.18)

N
2

(@ if (f (sw0) sV ) (R)) = (f (sw) sV )P (R )—Oforallw € SN (i LULDTT)

vanish on 0B (0, Ry) and OB (0, Ry)) for k = 1,...,n — 1, from (2.18) we get:

y)dy (32—Rl> { RN~ 1( leﬂle)dw)
' <N-j>Rs—1</SN1f<sz>dw>H r
e

K, Ry — R\ il | (o
() e
forj=0,1,2,...,N €N,

(vi) when N =2and j =1, (2.19) turns to

ey | [ soay- (BF) (R [ pmeaermi [ pas )]

< W% K1 (RQ —Rl)n+1
- (§) n+1) 2n—1 ’
(vii) when n = 1 (without any boundary conditions), we get from (2.20) that

y)dy — <R2 ; Rl) <Rf[1 /SN_1 f(Rw)dw + Révfl /SN_1 f (Row) dw)‘

(2.19)

T2 Ky 2
< Ry —Ry)”.
> or (%) ( 2 1)
Proof. Similar to the proof of Theorem 2.9. We apply Theorem 1.6 along with (1.16). O

We continue with

Theorem 2.15. Consider f : A — R be Lebesgue integrable, which is not necessarily radial.
Assume that f (sw)s™ 1 € AC™([Ry,Rz]) (ie. (f (sw) stl)(nil) € AC([R1,R,)]) abso-
lutely continuous functions), for all w € SN=1"N > 2. Here there exists Ko > 0 such that

N—l)(") < Ko, where s € [Ry, Ry), forall w € SN—1,
L1([R17R2])

H(f (sw)s

Then
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(i)
SR N-1y () k41
@21) ‘ [ 0w-% gy ([, G @) ¢ - m)
w0 ([ e )Y ) ) (R - 0
SN—-1
27’('% K n n
< @ﬁ[( —R)" 4+ (Re = 1),
forallt € [Ry, Ro],
(ii) att = BtB2 the right hand side of (2.21) is minimized, and we get:

(Ry — R)""! o
y)dy — (k—|— 1! ok+1 {/SN_l (f (sw) sV 1) (Ry) dw

+ (-1 /SN ) (f(S(,J) N-— 1)(k) (Rg)dw}

7% Ky (Ro—R1)"
ST e
k sw)sN—1
Giii) if (f (s0) ¥ )P (Ry) = (F (s0) ¥ D)W (Ry) = 0, for all w € SV, (e, 22"
vanish on OB (0, Ry) and 0B (0, Rg)) forall k = 0,1, ...,n — 1, we obtain
W% K2 (R2 - Rl)n
< =

y) dy‘ -7 (%) n! n—2

b

which is a sharp inequality,
(iv) more generally, for j = 0,1,2,

.. N €N, it holds
n—1 k+1
! (R""Rl) [jk“ (/ (f(sw)sN_l)(k)(Rl)dw)
SN*I

(2.22) ‘/Af(y)dy_,; o (e
P (N_j)kJrl </SN1 (f (sw) sN—l)(k) (R) duw H

QW% KQ RQ*Rl " -n X7 AT
< tig () b m-a),

(@ if (f (sw) N1 (Ry) =
vanish on 0B (0, Ry) and 0B (0, R)) for k =1, ...,

[rwa- (BB e ([ s )

+ <N—j>R¥1(LN_1f<R2W>dW>]\ <§>

B (B -0,

N-1\(®) _ N-1 i, O(fw)s™T)
(f (sw) sN=1) (Ry) = 0, forall w € SN, (ie. 5F
n — 1, from (2.22) we get:

(2.23)

N

forj=0,1,2,...,N €N,
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(vi) when N =2and j = 1, (2.23) turns to

iy () (R [ e [ piras)

7% Ky (Ry— R)"
NIRRT

(2.24)

<

(vii) when n = 1 (without any boundary conditions), we get from (2.24) that

iy () (w0 [ s m s [ preas)

27’1’% K2
< ——~ (R — Ry).
r(%)
Proof. Similar to the proof of Theorem 2.9. We apply Theorem 1.7 along with (1.16). (]

We continue with

Theorem 2.16. Letp,q > 1: %-ﬁ-% > 1. Consider f : A — R be Lebesgue integrable, which is not nec-
essarily radial. Assume that f (sw) sV~ € AC™ ([Ry, Rs)) (ie. (f (sw) sN_l)(n_l) € AC ([R1, R2))
absolutely continuous functions), for all w € SN=1, N > 2. We assume that (f (sw) stl)(") €
Ly ([R1, Ra)), for all w € SN=1. There exists K3 > 0 such that H (f (sw) sN—l)(n) < K3,

Lg([R1,Rz]) —
where s € [Ry, Ry), forall w € SN~
Then

(i)

(2.25)

k+11)! K/SN (f (sw) sV 1) ™ (Rl)dw) (t - Ry
k=0

(L e )P e ) (R 0™

K3
) (n—1)! ( +%)(p(n—1)+1)%

+ (=

—_
~—

-

< [t = R)™5 + (R — )" 7]

M‘Z w\z

(

forallt € [Ry, Rg],
(i) at t = $1LB2 the right hand side of (2.25) is minimized, and we get:

1 (RQ _ Rl)k?-‘rl
(k T 2k

x [ /S () sN-1)< N (Ry) do + (-1)* /S C(flewysv " (Rz>dw}

y) dy —

< 71—% K3 (R2 7R1)n+%
TP @t ) em-nrns 27
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k N-1
Giii) if (f (s0) ¥ )P (Ry) = (F (s0) ¥ D)W (Ry) = 0, for all w € SV, (e, LU
vanish on 0B (0, R1) and 0B (0, R2)) forall k = 0,1, ...,n — 1, we obtain

™ K (R2*Rl)n+%
'/Af(y)dy'SF(?)n_l (n+;)?p<n—1>+1>i S

which is a sharp inequality,
(iv) more generally, for j = 0,1,2, ..., N € N, it holds

/Af(y)dy—ZZ_j: T (R"’J_VRI)W ([ e )
b =) ([ Gt ) )]

< Ry~ Ri\"* el (A"
I %) ("—1)!<”+,1;)zp(n—1)+1)é< N ) [] + +(N j) }’

(2.26)

<

@ i (f (sw) sN )5 (Ry) = (f (sw0) s -1) ™ (Rg) — 0 forallw € SN, (e, ZUED"T)
vanish on 0B (0, Ry) and 0B (0, Ry)) for k = 1,...,n — 1, from (2.26) we get:

2.27) ' /A f(y)dy — (RZNRl) [J'RlN 1( f () dw)
]

+ (N—j)Ry (/ f (Row) dw) ’
SN-—-1

K n ~7 ‘n-&-%
’ (nl)!<"+§)g()(n1)+1)i< N > [+ V=) }

forj=0,1,2,..,N € N,
(vi) when N =2and j =1, (2.27) turns to

(228) ' [rway- () (mr [ smeaor R [ s dw)‘

n¥ Ks (Ry — Ry)"'#
FE -0 (n+ ) eo-n+nr 2777

(vii) when n = 1 (without any boundary conditions), we get from (2.28) that

[rwar- (B30 (e [ pmeae s mY [ g )|

271'2

)

2iny K. 1
T 1) 31 (Ry — Ry)'to
ry)(1+3)
Proof. Similar to the proof of Theorem 2.9. We apply Theorem 1.8 along with (1.16). O

We continue with results on the ball. We present

Theorem 2.17. Consider f : B(0,R) — R be Lebesgue integrable, which is not necessarily ra-
dial. Assume that f (sw)sN~1 € AC([0,R)), for all w € SN=1, N > 2. We further assume
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df(éW)s ! N-1 ;
that € Lo ([0,R]), for all w € S™~'. Suppose there exists My > 0 such that

Haf(SW)SN 0 < My, forallw € SN~
OO’(SG[O’R])

Then
(i)

(2.29)

LL@ﬂﬂdey(Aleumym>RN1(Rw

forallt €0, R],
(i) att = &, the right hand side of (2.29) is minimized, and we get:

RN| 7% M R?
dy — dw ) =—| < 10
/B(o,R)f(y) Y (/Sle(Rw) w) 2 = 2F(%) 7

(iii) if f (Rw) =0, forallw € SN~1, (i.e. f (-w) vanishes on OB (0, R)), we obtain

W%M1R2

fy)dy| < W7

B(0,R)

which is a sharp inequality,
(iv) more generally, for j = 0,1,2, ..., N € N, it holds

RN
/B(O,R)f(y) @ - N (N =) [SN*lf(Rw)dw

(v) when N =2and j =1, (2.30) turns to

RN
[ tway- T [ e
B(0,R) SN-1

Proof. Same as the proof of Theorem 2.14, just set there R; = 0 and R; = R and use (1.15). O

(2.30)

W%MlRZ
Coaw(3)

We continue with

Theorem 2.18. Consider f : B (0, R) — R be Lebesgue integrable, which is not necessarily radial.
Assume that f (sw) sN=t € AC ([0, R)), forallw € SN=1, N > 2. Suppose there exists My > 0 such
that HM‘ < My, forallw € SN1L.

Ll([OaR])
Then
(i)
@31) [ rwan ([ r@ea) e g) < SRR
B(0,R) SN-1 F(Q)

forallt € [0, R],
(ii) if f (Rw) =0, forall w € SN~ (i.e. f (-w) vanishes on OB (0, R)) from (2.31), we obtain

21> MyR
/ W) dy| < 2
B(0,R)

L)

which is a sharp inequality,
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(iii) more generally, for j = 0,1,2, ..., N € N, it holds

RN _ 2% MR
232 / d,—jN—'/ Rw)dw| < ZX2 2020
(2.32) om’ W v V=d) [ f (R ()
(iv) when N = 2and j = 1, (2.32) turns to
N 2% M.
fordy - [ (reyd| < ZEARE
B(0,R) 2 Jsna r (7)

Proof. Same as the proof of Theorem 2.15, just set there R; = 0 and R; = R and use (1.15).

We continue with

79

O

Theorem 2.19. Let p,q > 1 : % l = 1. Consider f : B (0, R) — R be Lebesgue integrable, which
is not necessarily radial. Assume that f(sw)sV=t € AC([0,R)]), forallw € SN=1, N > 2. We

further assume that 2152

that HM

Then
(i)

< Ms, Nwe SN,
Loy = MenJorallw

(2.33)

27T%M3

r(3) (1+})

[tH% +(R- t)Hﬂ :

forallt € [0, R],
(ii) att = &, the right hand side of (2.33) is minimized, and we get:

/B RIOLE ( /S g (Rw)dw) "

- rE)

(iii) if f (Rw) =0, forallw € SN~ (i.e. f (-w) vanishes on B (0, R)), we obtain

Q%W%MgRl-i_%

rE

[ s
B(0,R)

which is a sharp inequality,
(iv) more generally, for j = 0,1,2, ..., N € N, it holds

RN _
J o F 0= (V=) [ s

() ]
p

(v) when N =2and j = 1, (2.34) turns to

RN
Lo f @5 [ g <

(2.34)

/B(O)R)f(y) dy — </SN_1 £ (Rw) dw) RN (R 1)

1 1
a7 MyR'»

TM € L, ([0, R)), for all w € SN~1. Suppose there exists Mz > 0 such
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Proof. Same as the proof of Theorem 2.16, just set there R; = 0 and Ry = R and use (1.15). O

REFERENCES

[1] R. P. Agarwal, S. S. Dragomir: An application of Hayashi’s inequality for differentiable functions, Computers Math.
Applic., 6 (1996), 95-99.

[2] G. A. Anastassiou: Fractional Differentiation Inequalities, Research Monograph, Springer, New York, 2009.

[3] G. A. Anastassiou: General Iyengar type inequalities, submitted, 2018.

[4] Xiao-Liang Cheng: The Iyengar-type inequality, Applied Math. Letters 14 (2001), 975-978.

[5] K. S. K. Iyengar: Note on an inequality, Math. Student 6, (1938), 75-76.

[6] Zheng Liu: Note on Iyengar’s inequality, Univ. Beograd Publ. Elektrotechn. Fak., Ser. Mat. 16 (2005), 29-35.

[7] E. Qi: Further generalizations of inequalities for an integral, Univ. Beograd Publ. Elektrotechn. Fak., Ser. Mat. 8 (1997),
79-83.

[8] W. Rudin: Real and Complex Analysis, International Student edition, Mc Graw Hill, London, New York, 1970.

[9] D. Stroock: A Concise Introduction to the Theory of Integration, Third Edition, Birkhatiser, Boston, Basel, Berlin, 1999.

DEPARTMENT OF MATHEMATICAL SCIENCES,
UNIVERSITY OF MEMPHIS,

MEMPHIS, TN 38152,

U.S.A.

E-mail address: ganastss@memphis.edu



	1. Background
	2. Main Results
	References

