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Abstract: In this paper, a hew approach is proposed based on the Addb@aeomposition Method(ADM) with Green’s function
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1 Introduction

The fuzzy differential, integral equations and integréfedential equations are play very important roles in thezfu
analysis theory. In many physical problems some quantitigdbe boundary values can be uncertain and they can be
modeled by fuzzy numbers or fuzzy functions. The conceptuaky numbers was introduced by Zaddi,B(]. By
using H-derivative, several articles2§,12,13] have demonstrated the solution to the fuzzy differentigiagions.
However, Bede and Gal] introduced a generalized definition for fuzzy derivativela fuzzy-number-valued function.
Recently, some mathematicians have become interested dimdirthe solutions to the fuzzy linear and nonlinear
differential equation,and fuzzy integral equatid®[18,15,5,3,25,4,24,8]. The goal of this paper is to introduce an new
approach by using generalized conce@1,23,22,20,14,16,9,1] for the solution of second-order fuzzy boundary
value problem

y'=F(x3(x),Y () @)

with the boundary conditions

V(XO) = AaV(XZ) =B, (2

wherexg, X2 has constant value8, B are fuzzy functions.

The structure of this paper is as follows: In Section 2, basitations and definitions of fuzzy calculus are given. In
Section 3, Eqs(1) — (2) is solved using the Adomian decomposition method and Gsefemction under generalized
differentiability. Convergence of the proposed technigy@oven in Section 4. Finally, in Section 5. The efficienéyhe
technique is shown by solving some numerical examples am@fdonclusion is given in Section 6.

2 Preliminaries

There are various definitions for the concept of fuzzy nusf&dq).
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Definition 1. A fuzzy number is a function:R — [0, 1] which satisfies the following properties:
() uis normal;

(i) u is convex fuzzy set;

(ii ) u is upper semi-continuous on R;

(iv) [A]° =supp(A)= {x € R/A(x) > 0} is compact, wherd denotes the closure of A.

Definition 2. An arbitrary fuzzy numbel in the parametric form is represented by an ordered paiuottions(u,t) of
functions(u(r),t(r)), which satisfy the following requirements:

(i) u(r) is a bounded non-decreasing left continuous functiof®id], and right continuous &b;

(ii) u(r) is a bounded non-increasing left continuous functiofdri], and right continuous &b;

(i) u(r) <u(r)forall 0<r <1

The set of all fuzzy numbers is denotedbyand it is a convex cone.

Definition 3. For arbitrary U= (u(r),t(r)) andv= (v(r),v(r)), 0<r <1, and scalar k, addition, subtraction, scalar
product by k, and multiplication is defined as following

Addition:

(u+v)(r) =u(r) +v(r),

(U v)(r) =T(r) +9(r),

Subtraction:

(u—v)(r) = u(r) —v(r),

(U=v)(r) =1a(r) —¥(r),

Scalar Product:

o | (unda), k=0,
(ku(r),ku(r)), k<0

Multiplication:
uv(r) = min{u(r)v(r),u(r)v(r),a(
UV(r) = max{u(r)(r), u(r)¥(r), 0(r)y(r),u(r)v(r)}

Definition 4. For arbitrary fuzzy numberg,v € F, the distance (Hausdorff metric) is usetl]

D(u(r),v(r)) = max{ sup [u(r) —v(r)|, sup [T(r) —v(r)]},

ref0,1 ref0,1]
and it is shown 27] tha[t '(3:, D)isa CompEet}e metric space and the following properties a@n:
D(U+W,V+W) =D(U,V), VU, VeF,
D(ku,kv) = |k|D(T,V), VkeRUVeF,
D(U+V,W+8&) <D(U,w)+D(V,€), VU,V,W,écF

Definition 5. If the fuzzy functiorf(t) is continuous in the metric D, then definite integral exidfg[and also,

(fa (t r dt) fa (t r dt
(fa (tar)dt)*fa (t,r)dt

Definition 6. Let beX,y € F. If there exist¥ € F such thaX = y&Z, thenZ is called the H-difference afandy and is
denoted bxoy [7].

Proposition 1. If f: (a,b) — F is a continuous fuzzy valued function, thix) = X f f(t)dt is differentiable using a
derivatived (x) = f(x) [7]

Definition 7.[7] Letf : (a,b) — F and % < (a,b). f is a generalized differentiable inyXBede-Gal differentiability), if
there exists an elemefit(xy) € F, such that.

(© 2017 BISKA Bilisim Technology
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(i) for allh > O sufficiently small3 f(x+h) & f(xo),3f(x0) & f(x— h) and the following limits hold.
fxothofix) _ fxo)ofxo-h) _ 7
tLano n tLano o f~(x0) or N N
(i) for all h > 0 sufficiently small3f(Xp) © f(Xo+ h),3f (X0 — h) © f(Xo) and the following limits hold.

l (Xo)ef<><o+h) lim fo-hofio) _ 5
glr?no “hlp o h (o)
(iii) for all h > O sufficiently smallﬂf(xo h) & f(x0),3f (xo— h) & f(x0) and the following limits hold.
fxothofix) _ fixo-hoflxo) _
rlalr?no n rLo —h = o)

(iv) forallh > O sufficiently smallﬂfv( )& f(x0+h),3f(x0) & (% — h) and the following limits hold:

lim foo)ofbo+h) _ ~ lim f0)=T o) _ ().

Definition 8. Let f : (a,b) — F . f is (i)-differentiable in(a, b) if f is differentiable in the seng@) of Definition(7) and
similar in (ii), (iii ) and(iv) differentiability.

Lemma 1[7] For xo € R, the fuzzy differential equatigh= f(x,y), ¥(xo) = Yo € F, wheref : Rx F — F is supposed
to be continuous, if is equivalent to one of the integral . y(x) = Yo+ _[X)(‘J f(t,y(t))dt, Vxe [xo, %),

or

Y(X) = Yo+ (—1) f F(t,9(t)dt, ¥xe [xo,xa],

On some intervalxop,x1) C R, under the differentiability conditiofi) or (ii ), respectively.

Remark.n the case of a strongly generalizelddifferentiability, as to the fuzzy differential equatigh= f~(x, y), then
two different integral equations may be attached, whildnandase oH-differentiability, only one may be attached.
The second integral equation in Lemifig can be written in the form7:

y(X) =% (~1) fig F(t.5(t))dt
Theorem 1[7] Suppose that the following conditions hold.

(@) Let Ry = [x0,X% + p] X B(Yo,q), P,q>0,Yo € F, whereB(yp,q) =y € F : D(y,yo) < q denotes a closed ball in F
and letf : Ry — F be a continuous function such that@f (x,y)) = || f(x,y)|| < M is used for all(x,y) € Ry.

(b) Letd: [Xo,Xo+ P} x [0,0] = R such thafj(x,0) = 0and0 < g(x,u) <Mz, VX€ [Xo,%+p], 0<u<q.Suchthat
g(x,u) is non-decreasing in u and g and such that the initial valugbfem U = g(x,u(x),u(Xp)) = 0 has the only
solution Ux) = 0 on [Xg, X0+ PJ-

(©) D(f(xY), f(x2) <g(xDy2), V(xYy),(x2) € Roand Dy,2) <q ) )

(d) There exists @ 0 such that for xe [xo, %o+ d] the sequencg, : [xo,Xo + d] — F given byyy(X) = Yo, Ynp1(X) =
Yo S (71).fx’é f(t,y,(t))dt is defined for any k& N. Then the fuzzy initial value probleyh= f(x,y), V(o) = Yo,
has two solutions (ong)-differentiable and the other ongi)-differentiable)y,y : [xo,Xo + r] — B(Yo,q) where
r=min{p, o, Mil,d} and the successive iteratiop§(x) = Yo, Yn+1(X) = Yo+ fyg f(t,¥n(t))dt
0r Yo(X) = Yo, Y1 (%) = Yo © (1) fig f(t,Tn(t))alt
converge to these two solutions, respectively.

3 The basic idea of the technique

The proposed technique comprises of the Adomian Deconipoditethod and the Green'’s function. In order to solve
second-order fuzzy boundary value probléhh and (2) via the ADM, the original problem has to be divided into two
sub-problems is divided. Firstly, the domajxy,X.] is divided into two sub-domains then thgy,x1] U [X1,X2] is
decomposed,then set tfie) = y, X1 € (Xo,X2) where they is an unknown fuzzy constant value.

(© 2017 BISKA Bilisim Technology
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For [Xo,x1]: Consider the following second-order fuzzy boundary vgreblem

V/ = F(va(x)vyl(x))vyl(xo) = A,V(Xl) =Yy 3)

Integrating twice the probler8) and applyingy (xo) = A, allows for the Volterra integral equation to be obtained
50 = §000) + AGx—x)-+ [ (x=m)(7.5(n)). (n))dn @
Using conditions frony(x1) = y, ¥(Xo) is found as an
F0) = Y= A=)+ [ Ga =) (1.9(n)).5 (n))dn ©)
Substitutingy(xo) in Eq. (4) , the Fredholm integral equation is obtained as this
500 = v+ Ax—xo)+ [ GO (n.9().()dn ©)
while, the Green’s functio®(x, ) become this

. n*XL XOSXS”,
G(xn) = {X_Xb e ™

Z]YJ (%, ¥(x ZOAJ (8)

is an infinite series Whel’éj has decomposed Adomian polynomials. SubstitutB)gnto (6),

zoyJ =y+AX—Xq1) +/ G(x,n) zOAJ (9)

is obtained. Comparing both sides(@¥,

VO(Xa y) = V+A(X_ X£)7 (10)
Vi(%y) = fig G m)Aj_1dn, j=1,2,..

is obtained and then the modified recursive scheme is defsad a

VO(X, V) =Y, B
1(%y) = A(X—xX1) + [y G(x,n)Aodn, (11)
Vixy) =[2G mAj_1dn, j=2.3,..

which allows a complete determination of the componenth@yj(x). Followed by then-terms series solution of the
sub-problen{3) is given by

= 3 5ix) (12)
j=

(© 2017 BISKA Bilisim Technology
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From(7) Definition , it is possible to obtain the approximate solntas Eq. (1)-(2) in the following caseS].
Case(a): If Y andy’ are(i)-differentiable, Eq.(11) becomes

Yo(X,y) =V, .
1% y) = A(X—x1) + fx G(x,n)Aodn,
Vi y) =[2G mAj_1dn, n=23,..

Case(b): If ¥ andy”’ are(ii)-differentiable, Eq.(11) becomes

Vi(x.y) = O(=1)[AKX—x1) © (1) i G(x,n)Aodn],
%MW:@(D@()WGWUMJNM,UZZ&W

Case(c): If ¥ is the(i)-differentiable and/’ is the(ii)-differentiable, Eq.(11) becomes

y O(=1)[AX—x1) + fi G(x,1n)Agdn],
Vit y) = 0(=1)[f G(x.mAj_adn], n=23,..

=

x

=
]

Case(d): If ¥ is the(ii )-differentiable and/’ is the (i)-differentiable, Eq.(11) becomes

Y,
y(W:A@ x1) & (—1) [ G(x, n)Agdn],
Yi(xy) =o(— )[fle(Xn)AJ wan], n=23,..

For [x1,X2]: Let us consider the following fuzzy boundary value problem

V/ = F(X,V(X),V(X)),V(Xl) = yvyl(b) =B (13)

Integrating twice the problerfl3) and applying ai§(x1) = y, the Volterra integral equation is obtained
X
Y09 = y+B(x—x0)+ [ (x=m)T(.5(m).¥ (m)dn (14)
1

Using the other boundary conditigf(x,) = B, the following is yilded

¥00) =B [ 1(0.9(m)).5 (n))dn (15)
Combining Eqs(14) and(15), the Fredholm integral equation is obtained as
FX) = y-+ B(x— 1) + /XIXZG(x,mf(n,vm))y(n))dn (16)
whereG(x,n) is given by
R

By substituting(8) into (16),

;w =y+B(x— m+/ﬁ xnﬂi&wn (18)
=

(© 2017 BISKA Bilisim Technology
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the above equation is obtained. Frgh8), the following recursion scheme occurs

VO(Xa V) =Y+ B(Xi X£)7 (19)
Vixy) = 2Gx.n)Aji_1dn, j=12,..
and the modified recursive scheme as
Yo(%,¥) =V, -
Ya(x,y) = B(Xx—x1) + ;2 G(x,11)Aodn, (20)
Vi0y) = [2G0onA;1dn,  j=2.3,..
is defined. Denote the-terms approximant of the series solutions by using this
(2) c
=3 Jixy) (21)
2"
From Definition(7), following cases existd].
Case(a): If Y andy’ are(i)-differentiable, Eq.(20) becomes
Yo(x.y) =¥, B
yi(x.y) = B(x—x1) + fiZ G(x,n)Aodn,
VJ(va):[);ZG(X n)AJ ldr’a 1:2535
Case(b): If ¥ andy” are(ii)-differentiable, Eq.(20) becomes
Yo(x.¥) =,
Vi(x.y) = ©(~1)[B(x—x1) © (~1) [Z G(x,n)Agdn],
Vi) = o(=1[e(-1) LG n)Aj-1dn], j=23,..
Case(c): If ¥ is the(i)-differentiable and/’ is the(ii )-differentiable, Eq.(20) becomes
Yo(x.y) =V, B
1% y) = S(=1)[B(x—x1) + S G(x,n)Aodn],
Vit y) = o(=DA2G(x nAjadn], j=23,...
Case(d): If ¥ is the(ii )-differentiable and/’ is the(i)-differentiable, Eq.(20) becomes
Yo(x.y) =V, ~
Y1(xy) = B(x—x1) & (~1)[fi G(x,n)Aodn],
Vi) = e(—1h2GxnAjadn], j=23,...
From Eqs.(12) and(21), the continuity condition to determine thyds used as follows:
der (x.v) do’en)|
0 - =0, n=12,.. (22)
X=X1 X=X1

(© 2017 BISKA Bilisim Technology
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From this, the approximate value gfis found. Then the approximate series solution of origirosid-order fuzzy
boundary value problem can be fouridl) — (2) is defined as

5[21) (X7 Vn) = VJ (Xa yn)a Xo S X S X1,

®n(x) = (23)

6[22) (X7 Vn) = VJ (X) yn)a Xl S X S XZ

IM8TM 8
o o

where then, n=12 3, ... approximates the values gffor each of cas¢a) — (d).

4 Convergence analysis

In order to prove convergence using the proposed technaiesving assumptions are necessasy [

For [xo,x1]: Consider f(x) is bounded for allx € [xo,x;] and 3M;,M; > 0 where fx1|G(x nldn < My,
X>;1 |Gx(x,n|dn < M,. Supposes that the nonlinear operatiapsy,y’') satisfies the Lipschitz conditions with

D(f(x,y,y), f(x,zZ)) <LiD(y,2) +L2D(y,Z),L1 > 0,L2 >0

If 0:= (L1M7 +L2My) < 1, then the Eq(6) has a unique solution

Lemma 2[8] If U,v,we F andA € R, then

(1) D(UeV,Uc W) = D(V,W)

(2) D(eAU,AV) = |A|D(G,V).

Theorem 2[8] Let0 < é < 1, then Egs.(1) — (2) have a unique solution whegg (1)-differentiable andy” is (2)-
differentiable, respectively.

Proof. Lety andy* be two different solutions fofl) — (2), then
D(Y(x),¥* (X)) = D(Ax—x1) © (1) f+ G(x,n)f(n,¥(n),¥(n))dn +v,
A(X x1) © (—1) [ G, n)f(n,¥"(n),¥"(n))dn +y)

D(o(-1 leG( ) f(n,9(n),9(n))dn,o(=1) fi2 G(x,n)f(n,¥*(n),y*(n))dn)
fD(fle( n)f(n.y(n),y(n))dn, ¢ G(x,n)f(n.y*(n),y"(n))dn)
<D(fle( m¥(n,y(n).y(n ))drl)+D(fle( mfn.y(n),y(n))dn)
< (LiM1 + LaM2)D(Y(%), ¥ (X)) = 3D (¥(X), V" (X))

From which(1— 8)D(¥(x),y*(x)) < 0 is obtained. Since & J < 1, thenD(y(x),y*(x)) = 0 impliesy(x) = y*(x).

Theorem 3.Let¥p, V1, Y2, ... be the solution components that were obtained by using thesiwe schemed0) and(11),
~ n ~
and let®, = S ¥j be the n-terms series solution defined(thg). Then®, converges to the exact solutignvhenever
j=o

o<1l
Proof.Using(10), (11) and(12), we have
~ n
®n = )70+ Z yj
j=1
=Y HAX=X) + _Z (S G(x,m)Aj-1dn)

n-1_
=y+AX=x1)+ [ G(x,n) ¥ Ajdn.
i=o

(© 2017 BISKA Bilisim Technology
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For alln,me N with n > m, consider

~ o~ n-1_ m-1_
X1 . .
D(®n, Pm) < Xorg?é)f(l o G(Xan)[jgoAJ jZoAJ]dn .

n-1_ ~ ~
Using the relatec_lz A< f(n,®n_1,P),_;)in[2829.

FEGM)[F(N, Poor, @h_g) — (N, Pro1, Bfy_y)]dN|.

Allows for, the foIIowmg relation to be obtaindﬂ(dv)nﬂ, fﬂ,) < 6D(f13n, 5,1,1). Thus, it becomes
D(®ny1, n) < D (®n, Py-1) < 5°D(Pn 1, By 2) < ... < 3"D(Py, Bp).

For anyn,m e N, with n > m, consider

D((ﬁn, (5m) < D((ﬁn, (5n71) + D(Eﬁn 1, (5n 1) + ...+ D(5m+1; (5m)

<[3" 148" 2+ ...+ S"D( By, Bp) = SM(152557)D (@1, Bo)

Since 0 < 1,therefore:-0"""< 1 andD(dJl, cDo) < oo, follows that

D(®n, Pm) < (25)D(P1, Bp) < o0, asm — oo.

(cbn, CDm) < max
X<

This implies that there exists ap such that I|m<13n P. Sincey = Z yi= Ilm @, has that i isy= 15

j=
RemarkThe proof of other cases is similar to the previous theoréxisa, similar steps for the recursive schenj&9)
and(20) can be applied.

5 Numerical results

In this section, second-order fuzzy boundary value proli¢esnlved under generalized differentiability using ADMt#wi
Green'’s function. All symbolic and numerical computatiovese created using MATLAB Software Package.

Example 1.Consider the following second-order fuzzy boundary valabfem

V'(x)=—(2-4)y, xe]0,1], (24)
¥(0)=[0,0], ¥(1)=[-2exg—1)(a—1),-2exq-1)(1-a)]

where the exact solution¥&x) = [(a — 1) exp(—x?), (1— a) exp(—x?)]. To obtain approximate solution of above example,
the ADM with Green’s function is applied. Firstly, the dom#0, 1] is divided into domaing0,0.5] and[0.5,1] . Suppose
thaty(0.5) = [y, V], wherey is an unknown fuzzy constant.

Solve the following sub-problems

y'(x) =—(2-4y,
{ ¥(0) =[0,0],5(0.5) = [y,y]. x€[0,0.5] (23)

and
{ Y'(x) = —(2- ), (26)
¥(0.5) = [y,¥],¥ (1) = [-2exg—1)(a —1),—2exd—1)(1—-a)], x<[0.51]
Consider the following cases.
Case(a): If ¥ andy’ are(i)-differentiable,
For [0,0.5]: According to the recursive scherfitl), the sub-problen(i25) is transformed into

YoX) =Yy
Yo(X) =y
y, () = 75y(16x* — 48¢ + 11)
V1(X) = Z5V(16x* — 482 4 11)

(© 2017 BISKA Bilisim Technology
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’ ~ n
Thus, the series solution can found us'm,b1L Z

For[0.5, 1]:According to the recursive schert@O) the sub-probler(]26) is transforms into

= (2x— 1)[y(0.1663C + 0.0833 — 0.4583+ 0.1042) + 0.36791 — a)]

(
= (2x— 1)[y(0.166 33+ 0.0833¢ — 0.4583+ 0.1042) + 0.36 79 — 1))

) ~ n
Thus, the series solution can found us'm,bz) =35 .

Case(b): If ¥ andy” are(ii)-differentiable,
For|[0,0. 5]' According to the recursive scheniel), the sub-probleni25) is transformed into

Yo(X

)=
Yo(X) =
ﬂ@
U

1(X

V(16x* — 482 +11)
sY(16¢* —48¢ +11)

1<
J>|Ho'?:|'*I~< <

~ n
Thus, the series solution can becondgd = S Vi
j=o0

For[0.5,1]:According to the recursive sche@), the sub-probleni26) is transformed using

yo(x) = V
Yo(X) =y
y,(X) = (2x—1)[y(0.166% + 0.0833¢ — 0.4583%+0.1042 +0.36791 — a)]
Y1 (X) = (2x— 1)[y(0.166 %3 4 0.0833¢* — 0.4583% + 0.1042 + 0.3679a — 1)]

Thus the series solution is found @ = Z yij.

Case(c): If ¥ is the(i)-differentiable an(y” is the(u) -differentiable,
For[0,0.5]: According to the recursive scher(itl), the sub-problen(i25) is transformed using

YoX¥) =Y
Yo(X) =y
Y, (X) = —75V(16¢* — 48 + 11)
V1(X) = —75y(16x* — 482+ 11)

) ~ n
Thus, the series solution is fourh" = Z

For[0.5, 1]:According to the recursive schertﬂaO) the sub-probleni26) is transformed using

Yo(X¥) =¥
Yo(X) =y
y,(X) = (1—2x)[y(0.166 3+ 0.0833¢ — 0.4583+0.1042 + 0.3679a — 1)]
Y1 (X) = (1 —2%)[y(0.166 %3 + 0.0833¢ — 0.4583%+ 0.1042) + 0.36791 — a)]

Thus the series solution is found @ = Z yij.

Case(d): If ¥ is the(ii)-differentiable an@7” is the(i)-differentiable,

For[0,0.5]: According to the recursive scher(iel), the sub-probleni25) is transformed using
Yo =Y

(© 2017 BISKA Bilisim Technology
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Yo(X) =Y
y, (X) = — 75y(16x* — 48 + 11)
y — y(16x* — 48¢% + 11)

Thus the series solution is found @ = Z yi.
j=0
For [0.5, 1]:According to the recursive schermi®0), the sub-probleni26) is transformed using

Yo(x) =Y
Yo(X) =Y
y, (%) = (1 2%)[y(0.16633 + 0.0833¢ — 0.4583+-0.1042) + 0.36 791 — )]
—1(x) = (1—2%)[7(0.166%C +0.0833 — 0.4583%+ 0.1042) + 0.3679a — 1)]

Thus the series solution can be foundg = Z yij.

From Eq.(12), the numerical values fdy, ] are I|sted in Table 1 wheyl andy’ are (i)-differentiable. As seen from
Table 1, we observe that the numerical valuef/gf] approaches the valjéox — 1)0.7788366(1 — a)0.7788366. The
exact value ofy,y] isy(0.5) = [(a — 1) exp(—0.25), (1 — a) exp(—0.25)]. In Figure 1, the exagf(x) and the approximate

Table 1: Numerical values ofy .V, ,n=2,...,6 fora = 0.

n 2 3 4 5 6
y, —0.7977789-0.7852824-0.7797234-0.7790055-0.7788366
Y, 07977789 07852824 07797234 07790055 07788366

solutions®,,n = 2, ...,6 for a = 0 wheny andy” are(i)-differentiable is plotted.
The numerical values di,y] are listed in Table 2 whey is (i)-differentiable and/” is (i )-differentiable. In Figure

Fig. 1: Exacty(x) and the approximat@,,n = 2, ... 6 solutions.

15

05F 7/*""'*—_*

2, the approximate solutiorB,,n = 2, ...,6 for a = 0 wheny is the(i)-differentiable and?’ is the (ii)-differentiable is
plotted.
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Table 2: Numerical values o@n,vn] ,n=2,...6fora=0.

n 2 3 4 5 6
y, 07977789 07852824 07797234 (07790055 07788366
Y, —0.7977789-0.7852824-0.7797234-0.7790055-0.7788366

1.5

Fig. 2: Approximate®,,n = 2,...,6 solutions.

Example 2.Consider the following second-order fuzzy boundary valugbfem

{7/()():2)737 X‘E[Oal]v (27)
YO =[1-a,0-1, y(1)=[E1-a),3)(a-1)

where the exact solution #§x) = [(a — 1)1—ix, (1- a)%(]. The domair|0, 1] is divided into domain§0, 0.5] and[0.5, 1]
and usg/(0.5) = [y,y].

Solve the following problem

y'(x) = 25,
{7(0)[10,01],7(0.5)&7], x €[0,0.5] (28)
and
y'(x) = 2, 29)
¥(0.5) = [y, ¥1.Y(1) = [3(1—0a),3)(a —1)], x€[05,1]

Consider the following cases.
Case(a): If Y andy” are(i)-differentiable,
For[0,0.5]: According to the recursive scher(itl), the sub-problen(i28) is transformed using

Xo(x) =y

Yo(X) =¥ ,

y, (%) =y3[(2x—1) - Z (1 a)(x— )
Y100 = Pl(2x— 1) — 9] 4 (a—1)(x—})

(© 2017 BISKA Bilisim Technology
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~ n
Thus, the series solution can found us'm&) =3V
j=o

For[0.5,1]:According to the recursive schemi®0), the sub-probleni29) is transformed using

Yo=Yy

Yo(X) =¥ i

Y, = Pl2x=1)(x—1) - ZZ )+ (1-a) (- §)
7100 = Vl2x - 1(x— 1)~ EE 4 (@ - 15 - §)
Thus, the series solution is found usifwéz) = i Y

o

Case(b): If Y andy” are(ii)-differentiable,
For[0,0.5]: According to the recursive schenikl), the sub-probleni28) is transformed using

Yo(X) =V
Yo(X) =y
y, (00 = P2 _x(2x— 1)) + (a - 1)(x— 3)
Y100 = V12 _x(2x— 1))+ (1 - a)(x—3)

) - n
Thus, the series solution can be found usWéé) =3V

j=0
For[0.5, 1]:According to the recursive schemi®0), the sub-probleni29) is transformed using

Xo(x) =Yy
Yo(X) =y
Y, (9 = PI2ZE + (x— 1)(2x— 1)+ (@—1)(§ - )
710 = Y[ZFE + (x—1)(@x- 1))+ (1-a)(5- )

Thus the series solution is found usmiléz = Z yij.

Case(c): If ¥ is the(i)-differentiable and/’ is the(u) -differentiable,
For [0,0.5]: According to the recursive schenitl), the sub-probleni28) is transformed using

ZO(X) =Yy

Yo(X) = )4 ,

y, (%) = VPx(@x—1) - ZG] 1 (a - 1)(x— §)
Y1 (x) = yx(2x— 1) - ZG) 4 (1-a)(x— )

. . L =) Do
Thus, the series solution is found usmilé =3
j

=0
or [0.5, 1]:According to the recursive schen(i®0), the sub-probleni29) is transformed using

F
Yo(X) =¥
Yo(X) =y
Y, () = Pl(x—1)(2x~ 1)~ B (@~ 13- )
V10 = Plx—1)(2x—1) - B 1-a) (X - %)

Thus the series solution is found usuwé2 = z Yj.

Case(d): If ¥ is the(ii)-differentiable and/ i |s the( )-differentiable,
For[0,0.5]: According to the recursive schenikl), the sub-probleni28) is transformed using

(© 2017 BISKA Bilisim Technology
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1.5

05f = e

. L (1) no_
Thus, the series solution is found usm)é =35V
j=0

For[0.5,1]:According to the recursive schertﬂ;O), the sub-probleni29) is transformed using

Yo(X) =y
Yo(X) =Y
Xl(x):f[ale)z (x—1)(2x— )]+ (a—1)(¥-1)
y100 = PG - (x— 1)(2x— 1))+ (1—a) (X — )

) ~ n
Thus, the series solution B = R
j=o

As seen from Table 3, the numerical values)o¥/| approaches the valiygx — 1)0.6673067(1— )0.0.667306Twhen
y andy” are(i)-differentiable. Note that the exact value[gfy] is y(0.5) = [(a — 1)%, (1- a)%]. In Figure 3, the exact

Table 3: Numerical values ofzn,vn] ,n=2,....5fora =0.

n 2 3 4 5
y,, —0.6825986-0.6382310-0.6789988-0.6673067
Y, 0.6825986 (6382310 06789988 06673067

y(x) and the approximate solutiod®,, n=2,...,5fora =0 wheny andy’ are(i)-differentiable is plotted.

The numerical values df,y] are listed in Table 4 = 0 wheny is the(i)-differentiable and” is the (i )-differentiable.
In Figure 4, the appro;dmate solutiom®,,n = 2,...,5 for a = 0 when¥ is the (i)-differentiable andy’ is the (ii)-

differentiable is plotted.
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Table 4: Approximate value ofxn,Vn], n=2,...5fora=0.

n 2 3 4 5
y, 0.6825986 (6382310 06789988 (6673067
¥, —0.6825986-0.6382310-0.6789988-0.6673067

1.5

Fig. 4: Approximate®,,n = 2, ...5 solutions.

6 Conclusion

The ADM with Green’s function for the solution of second-erduzzy boundary value problem under generalized
differentiability is presented. The proposed techniquetsrested in dividing the domain and building Green'’s fiorc
before installing the modified recursive scheme. The effuyef the technique is illustrated by two numerical exaraple
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