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Abstract
For X(⊂ Rn), assume the subspace (X, En

X) induced by the n-dimensional Euclidean
topological space (Rn, En). Let Z be the set of integers. Khalimsky topology on Z,
denoted by (Z, κ), is generated by the set {{2m − 1, 2m, 2m + 1} | m ∈ Z} as a subbase.
Besides, Khalimsky topology on Zn, n ∈ N, denoted by (Zn, κn), is a product topology
induced by (Z, κ). Proceeding with a digitization of (X, En

X) in terms of the Khalimsky
(K-, for short) topology, we obtain a K-digitized space in Zn, denoted by DK(X)(⊂ Zn),
which is a K-topological space. Considering further DK(X) with K-adjacency, we obtain a
topological graph related to the K-topology (a KA-space for short) denoted by DKA(X) (see
an algorithm in Section 3). Motivated by an A-homotopy between A-maps for KA-spaces,
the present paper establishes a new homotopy, called an LA-homotopy, which is suitable
for studying homotopic properties of both (X, En

X) and DKA(X) because a homotopy
for Euclidean topological spaces has some limitations of digitizing (X, En

X). The goal of
the paper is to study some relationships among an ordinary homotopy equivalence for
spaces (X, En

X), an LA-homotopy equivalence for spaces (X, En
X), and an A-homotopy

equivalence for KA-spaces DKA(X). Finally, we classify KA-spaces (resp. (X, En
X)) via

an A-homotopy equivalence (resp. an LA-homotopy equivalence). This approach can
facilitate studies of applied topology, approximation theory and digital geometry.

Mathematics Subject Classification (2010). 54A10, 54C05, 55R15, 54C08, 54F65,
68U05, 68U10

Keywords. digital topology, KA-digitization, Khalimsky adjacency, A-map, LA-map,
K-topological graph, K-localized neighborhood, LA-homotopy equivalence, A-homotopy
equivalence

1. Introduction
Let Z (resp. N) represent the set of integers (resp. natural numbers), and Zn the set

of points in the Euclidean n-dimensional space with integer coordinates. Let (Rn, En) be
the n-dimensional real space with Euclidean topology [33], i.e. usual topology on Rn. For
X(⊂ Rn), we consider the subspace (X, En

X) induced by (Rn, En). In this paper we denote
by ETC the category of ordinary n-dimensional Euclidean topological spaces (X, En

X) and
Euclidean-topologically continuous maps. To digitize (X, En

X) into a digital space in Zn in
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a certain digital topological approach, we have often used graph theory and locally finite
topological structures such as Khalimsky (K-, for short) topology, Alexandroff topology,
axiomatic locally finite topology and so forth [1,11,19,21,25,27,29]. To be specific, when
digitizing (X, En

X), it is clear to recognize partitioned shapes such as discs, triangles,
rectangles and so forth of the Euclidean space into points in a certain digital topological
approach [2, 4, 5, 11,12,19,23,24,26–30,32].

K-topology on Zn, denoted by (Zn, κn), was established [20, 21]. Besides, it is well
known that whereas a K-connectedness relation is reflexive and symmetric, a K-adjacency
relation is irreflexive and symmetric, and a K-topological space is a T0-Alexandroff space
[22]. Furthermore, K-connectedness is proved to be equivalent to pathconnectedness of
K-topology [22].

Developing a K-localized neighborhood of a point p ∈ Zn, the recent paper [11] pro-
ceeded with a K-digitization of a subspace (X, En

X) (see Definition 3.6 in the present
paper and the K-digitized space in Fig.2) denoted by DK(X)(⊂ Zn). After considering
further DK(X) with K-adjacency, we denote it by DKA(X) (see Definition 3.9), which
can be used in digital geometry because DKA(X) is a kind of a graph in Zn with digital
connectivity originated by Rosenfeld [31].

Since an ordinary continuous map in the category of Euclidean topological spaces has
some limitations of mapping of (X, En

X) from the viewpoint of digitization theory (see the
map g of (3.2) in the proof of Theorem 3.14 in the present paper), the recent paper [11]
developed an LA-map (see Definition 3.11 in the present paper) which is not compatible
with a Euclidean-topologically continuous map. Furthermore, it established a category,
denoted by LAC, consisting of the two data, the sets of (X, En

X) and LA-maps. Besides,
the paper [15] established another category, denoted by KAC, consisting of two sets, the
set of topological graphs based on K-topology (for short K-topological graphs or KA-
spaces) as objects of the category and the set of A-maps between every ordered pair of
KA-spaces as morphisms of the category. Indeed, this LA-map can be used to study both
ETC and KAC.

It turns out that KAC is broader than the category of K-topological spaces (KTC for
short) [15], which facilitates studies of both digital topology and digital geometry. Besides,
the recent paper [10] proposed a homotopy in KAC, called an A-homotopy, which can
be suitable for studying homotopic properties of DKA(X). To study some homotopic
properties of (X, En

X) ∈ Ob(ETC) and DKA(X) ∈ Ob(KAC), the present paper develops
two notions of an LA-homotopy, and an LA-homotopy equivalence in LAC (cf. [6, 7, 9]).

In relation to these homotopies, we may pose the following queries.
Assume two Euclidean topological spaces (X, En

X) and (Y, En
Y ) and further, their KA-

digitized spaces (or KA-spaces) DKA(X) and DKA(Y ).

(Q1) If F, G : (X, En
X) → (Y, En

Y ) are homotopic in ETC, then are DKA(F ) and DKA(G)
A-homotopic ?

(Q2) If F, G : (X, En
X) → (Y, En

Y ) are LA-homotopic in LAC, then are DKA(F ) and
DKA(G) A-homotopic ?

Besides, we have the further queries.

(Q3) Are there some relationships among an ordinary homotopy equivalence in ETC, an
LA-homotopy equivalence in LAC and an A-homotopy equivalence in KAC ?

(Q4) What are some relationships among the ordinary contractibility in ETC, the LA-
contractibility in LAC and the A-contractibility in KAC ?
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The present paper shall address these issues in Sections 4 and 5. Besides, the dimensions
of the spaces X and Y of (Q1) and (Q2) need not be equal to each other. Roughly saying,
the first question can be answered negatively and the second question can be answered
affirmatively. Thus we can observe some advantages of an LA-homotopy for studying
LA-maps.

The rest of the paper is organized as follows: Section 2 provides some basic notions on
digital topology and various notions in KAC. Section 3 investigates some properties of
a KA-digitization of (X, En

X). In particular, we prove that an LA-map is not compatible
with a Euclidean-topologically continuous map. Section 4 studies some properties of an
A-homotopy and develops an LA-homotopy. Section 5 investigates some relationships
among a homotopy equivalence in ETC, an LA-homotopy equivalence in LAC and an A-
homotopy equivalence in KAC. Furthermore, we compare among ordinary contractibility
in ETC, LA-contractibility in LAC and A-contractibility in KAC. Section 6 concludes
the paper with a remark.

2. Preliminaries
The establishment of a topological graph based on a certain digital topological structure

plays an important role in topology and applied sciences [4,15,22]. Since the K-topology
is one of the important digital topological structures, let us recall some notions related
to the n-dimensional K-topological space, denoted by (Zn, κn), which is an Alexandroff
space [1] and a semi-T 1

2
space [3]. For a set X ⊂ Zn we consider the subspace (X, κn

X)
induced by (Zn, κn). Under (X, κn

X), for a point p ∈ X, in the paper, we will denote by
SNK(p) the smallest open neighborhood of the given point p.

For two K-topological spaces (X, κn
X) := X and (Y, κn

Y ) := Y , if a function f : X → Y
satisfies the following property

f(SNK(x)) ⊂ SNK(f(x)), (2.1)
then we say that the map f is K-continuous at a point x ∈ X [8]. The property of (2.1) is
a representation of the typical K-continuity of the map f : X → Y . Furthermore, a map
f : X → Y is Khalimsky (K-, for short) continuous if it is K-continuous at every point
x ∈ X.

By using K-continuous maps, we obtain the category of K-topological spaces, denoted
by KTC [8], consisting of the following data.

• The set of (X, κn
X) as objects, denoted by Ob(KTC),

• For every ordered pair of objects (X, κn
X) and (Y, κn

Y ), the set of all K-continuous
maps f : (X, κn

X) → (Y, κn
Y ) as morphisms.

For two spaces (X, κn
X) := X and (Y, κn

Y ) := Y , a map h : X → Y is called a K-
homeomorphism if h is a K-continuous bijection and further, h−1 : Y → X is K-
continuous.

Let us recall the notion of a digital space.

Definition 2.1. (1) A digital space is a pair (X, π), where X is a nonempty set and π is
a binary symmetric relation on X such that X is π-connected, [18].

(2) We say that a grid space is a union of some π-connected components with the given
relation π instead of just a π-connected component in a digital space, [13].

In Definition 2.1, we say that X is π-connected if for any two elements x and y of
X there is a finite sequence (xi)i∈[0,l]Z of elements in X such that x = x0, y = xl and
(xj , xj+1) ∈ π for j ∈ [0, l − 1]Z.

Remark 2.2. In Definition 2.1, depending on the situation, we can consider the relation
π. For instance, we may consider the relation π as the K-adjacency relation of a K-
topological space (see Definition 2.3 below), which it is a symmetric relation.
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According to the property (2.1), it turns out that a K-continuous map is so rigid that
it has some limitations of geometric transformations. To be specific, a K-continuous
map does not even include all rotations of a K-topological space with 90◦[15] and can-
not support a translation with an odd vector. Thus the recent paper [15] overcame the
shortcoming by developing the so-called A-map (see Definition 2.5 in the present paper)
which is a broader than a K-continuous map. This approach can be substantially helpful
to study geometric transformations of K-topological spaces (X, κn

X).
To guarantee a digital space structure of (X, κn

X), we need to consider a K-adjacency
relation on (X, κn

X) as follows:

Definition 2.3 ([22]). For (X, κn
X) we say that two distinct points x and y in X are

K-adjacent if y ∈ SNK(x) or x ∈ SNK(y).

Considering (X, κn
X) with K-adjacency, we call it a topological graph based on K-topology

(for short K-topological graph or KA-space).
In relation to the establishment of an A-map, we will use the following K-adjacency
neighborhood of a point p ∈ X.

Definition 2.4 ([15]). For a KA-space (X, T n
X) := X and a point p ∈ X we define a

K-adjacency neighborhood of p to be the set AX(p) ∪ {p} := ANX(p) which is called an
A-neighborhood of p, where AX(p) = {x ∈ X | x is K-adjacent to p.}.

Hereafter, for convenience, we will use AN(p) instead of ANX(p) if there is no danger
of ambiguity. For a KA-space (X, T n

X) := X and each point x ∈ X, since for every
x ∈ X there is always AN(x) ⊂ X, we can develop an A-map and an A-isomorphism (see
Definitions 2.5 and 2.7).

Definition 2.5 ([15]). For two KA-spaces (X, T n0
X ) := X and (Y, T n1

Y ) := Y , we say that
a function f : X → Y is an A-map at a point x ∈ X if

f(AN(x)) ⊂ AN(f(x)).
Furthermore, we say that a map f : X → Y is an A-map if the map f is an A-map at
every point x ∈ X.

In view of Definition 2.5, we observe that an A-map f : X → Y implies a map preserving
connected subsets of X into connected ones [15], which can play an important role in
studying K- and KA-spaces. Let us consider the self-map f of a simple closed K-curves
with l elements in Zn, denoted by SCn,l

K := (xi)i∈[0,l−1]Z [15], such that f(xi) = xi+1(mod l),
l ≥ 4, where SCn,l

K := (xi)i∈[0, l−1]Z is a K-path (xi)i∈[0, l−1]Z such that xi and xj are K-
adjacent if and only if |i − j| = ±1(mod l). Then, whereas f is an A-map, it is not a
K-continuous map [11], which implies the following:

Theorem 2.6 (Theorem 4.5 of [15]). For a map from (X, T n0
X ) := X to (Y, T n1

Y ) := Y , a
K-continuous map implies an A-map. But the converse does not hold.

Based on the notion of an A-map, we obtain the following:

Definition 2.7. For two KA-spaces (X, T n0
X ) := X and (Y, T n1

Y ) := Y , a map h : X → Y
is called an A-isomorphism if h is a bijective A-map (for brevity, A-bijection) and if
h−1 : Y → X is an A-map.

Hereafter, we denote by X ≈K Y and X ≈A Y a K-homeomorphism and an A-
isomorphism, respectively.

In view of Theorem 2.6, we obtain the following:

Corollary 2.8 ([15]). Let f : (X, T n0
X ) := X → (Y, T n1

Y ) := Y be a map. If f is a
K-homeomorphism, then it is an A-isomorphism. But the converse does not hold.
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Using A-maps, we establish the so called KA-category [15], denoted by KAC, consisting
of the following data.
(1) The set of KA-spaces as objects, denoted by Ob(KAC),

(2) For every ordered pair of objects (X, κn
X) and (Y, κn

Y ), the set of all A-maps f :
(X, κn

X) → (Y, κn
Y ) as morphisms.

Definition 2.9 ([15]). Let (X, κn
X) := X be a KA-space. Then we define the following:

(1) Two distinct points x, y ∈ X are called KA-path connected (or KA-connected) if there
is a sequence (or a path) (x0, x1, · · · , xm) on X with {x0 = x, x1, · · · , xm = y} such that
xi and xi+1 are K-adjacent, i ∈ [0, m − 1]Z, m ≥ 1. This sequence is called an KA-path.
Furthermore, the number m is called the length of this KA-path.

(2) A simple KA-path in X is the sequence (xi)i∈[0,l]Z such that xi and xj are K-adjacent
if and only if |i − j| = 1.
In addition, we say that a simple closed KA-curve with l elements, l ≥ 4, denoted by
SCn,l

A := (xi)i∈[0, l−1]Z , is a KA-path (xi)i∈[0, l−1]Z such that xi and xj are KA-adjacent if
and only if |i − j| = ±1(mod l).

3. Some properties of KA-digitizations
This section investigates some properties of a KA-digitization of (X, En

X). To do this
work, for a point p ∈ Zn, the papers [11,19] uses a K-localized neighborhood of the given
point p, denoted by NK(p), which is substantially related to the K-topological structure
(see Fig.1).

Definition 3.1 ([11]). In Rn, for each point p := (pi)i∈[1,n]Z ∈ Zn, we define the set
NK(p) := {(xi)i∈[1,n]Z} which is called the local K-neighborhood of p associated with
(Zn, κn), where {

if pi = 2m, then xi ∈ [2m − 1
2 , 2m + 1

2 ];
if pi = 2m + 1, then xi ∈ (2m + 1

2 , 2m + 3
2).

In Fig.1(1)-(4), for a pure closed point, a mixed point and a pure open point p, we have
their corresponding K-localized neighborhoods NK(p) ⊂ Rn [11].

corresponding  to

a  pure closed, a pure open, or a mixed point  p

N   (p)K

pp

)0,0( )0,(
2

1

(1) (2)

pp

(3) (4)

)1,1(
)1,(

2
3

)0,1( )1,0(
)0,(

2
3

)1,(
2
1

Figure 1. Configuration of a K-localized neighborhood depending on the given
point p ∈ Z2 [11].

Definition 3.2 ([11]). For two points x, y ∈ (Rn, En), we say that x is related to y if x,
y ∈ NK(p) for some point p ∈ Zn, denoted by x ∼K y.

Lemma 3.3 ([11]). The relation ‘ ∼K ’ of Definition 3.2 is an equivalence relation on Rn.

Proposition 3.4 ([11]). The set {NK(p) | p ∈ Zn} is a partition of Rn associated with
the K-topology.
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Remark 3.5. In view of Proposition 3.4 and Definition 3.2, for each point p ∈ Zn, NK(p)
can be substantially used to digitize (X, En

X) in Ob(ETC) into a K-topological space
DK(X) in Ob(KTC).

Let us recall the K-digitization of a non-empty space (X, En
X).

Definition 3.6 ([11]). For a non-empty space (X, En
X) we define a K-digitization of X,

denoted by DK(X), to be the space with the K-topology
DK(X) := {p ∈ Zn | NK(p) ∩ X ̸= ∅}.

Motivated by Proposition 3.4, we obviously obtain the following:

Corollary 3.7 ([11]). Given a non-empty n-dimensional Euclidean space (X, En
X), there

is a partition of Rn associated with the space (X, En
X):

{NK(p), Rn \ ∪p∈DK(X)NK(p) | p ∈ DK(X)}.

Definition 3.8 ([11]). For a space (X, En
X) and two points p, q ∈ X, we say that the point

p is related to q if there is a point x ∈ DK(X) such that p, q ∈ NK(x). In this case we use
the notation (p, q) ∈ LX and further, the relation set is denoted by (X, LX).

It is clear that the relation LX in the set (X, LX) of Definition 3.8 is an equivalence
relation [11].

After digitizing X in the K-topological approach (see Lemma 3.3), we define the fol-
lowing:

Definition 3.9 ([11]). We say that DKA(X) is the K-topological space DK(X) with
K-adjacency.

Namely, we see that DK(X) ∈ Ob(KTC) and DKA(X) ∈ Ob(KAC). More precisely,
we obtain the following algorithm for proceeding with a KA-digitization of (X, En

X).

Algorithm for establishing DKA(X) ∈ Ob(KAC) from (X, En
X) ∈ Ob(ETC) (or

(Ob(LAC) later) [11]

(A-1) Given (X, En
X) ∈ Ob(ETC) (or (Ob(LAC) later), take an nD compact cuboid sat-

isfying X ⊂ D such as D :=
∏n

i=1[mi − pi, mi + pi] ⊂ Rn, mi ∈ N, pi ≥ 2.

(A-2) Take all points p ∈ D ∩ Zn such that NK(p) ∩ X ̸= ∅ and put X ′ := {p ∈
D ∩ Zn | NK(p) ∩ X ̸= ∅}.

(A-3) For each point p ∈ X ′ take NK(p) ⊂ Rn and further, consider NK(p) ∩ X.

(A-4) Delete the set Rn \ ∪p∈X′NK(p) from Rn (see Corollary 3.7).

(A-5) Using Lemma 3.3 and Proposition 3.4, we recognize the set NK(p) ∩ X to be a
singleton {p} ⊂ Zn so that we have NK(p) ∩ X := p ∈ DK(X).

(A-6) After adopting K-adjacency to the space (DK(X), κn
DK(X)), we finally obtain DKA(X) ∈

Ob(KAC).

According to the above algorithm, for (X, En
X) ∈ Ob(ETC) (or (Ob(LAC) later) we

obtain its KA-digitization DKA(X) (see Fig.2). Then the map
DKA : ETC(or LAC later) → KAC given by DKA((X, En

X)) := DKA(X)
is called a KA-digitization of (X, En

X).
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Remark 3.10. (1) In Definition 3.9, DKA(X) is called a topological graph based on
K-topology or a KA-space. More precisely, we can consider DKA(X) as a K-topological
graph of which a vertex set is DK(X) and an edge between two points in DK(X) is defined
by using the K-adjacency of Definition 2.3. Thus we obtain DKA(X) ∈ Ob(KAC) as a
topological graph related to the K-topology.
(2) At (Step 1) in the page 169 of the paper [13], the part "satisfying X ⊂ D" related to
an MA-digitization of X should be replaced by "surrounding X" instead.

X D     (X)
KA

Figure 2. The process for KA-digitizing (X, En
X) := X.

Combining a K-localized neighborhood of Definition 3.1 with an A-map, we define a
map G : (X, En1

X ) → (Y, En2
Y ) as a more improved version than the earlier one of [11] which

can be used to study both (X, En
X) and DKA(X) [14], as follows:

Definition 3.11. For two spaces (X, En1
X ), (Y, En2

Y ), take their KA-digitized spaces
DKA(X) ⊂ Zn1 and DKA(Y ) ⊂ Zn2 . Assume an A-map g : DKA(X) → DKA(Y ). Then,
consider a map G : (X, En1

X ) → (Y, En2
Y ) induced by the map g with the property that for

each point p ∈ DKA(X)
G(NK(p) ∩ X) ⊂ NK(g(p)) ∩ Y. (3.1)

Then we say that the map G is a lattice-based K-adjacency map (an LA-map, for short).
Besides, we use the notation DKA(G) := g as a KA-digitization of G.
Remark 3.12. (Improvement of the notion of LM -map of Definition 11 of [17]) For two
spaces (X, E2

X), (Y, E2
Y ), take their MA-digitized spaces DMA(X) ⊂ Z2 and DMA(Y ) ⊂

Z2. Assume an MA-map g : DMA(X) → DMA(Y ). Then, consider a map G : (X, E2
X) →

(Y, E2
Y ) induced by the map g with the property that for each point p ∈ DMA(X)

G(NM (p) ∩ X) ⊂ NM (g(p)) ∩ Y.

Then we say that the map G is a lattice-based M -adjacency map (an LM -map, for short).
Besides, we use the notation DMA(G) := g as an MA-digitization of G.

The paper [15] denotes by LAC the category consisting of the following data.
(∗ 1) The set of spaces (X, En

X) := X as objects of LAC denoted by Ob(LAC);
(∗ 2) For every ordered pair of elements in Ob(LAC), the set of LA-maps between them
as morphisms of LAC denoted by Mor(LAC).
Example 3.13. In Fig.3(a), consider the A-map f : DKA(X) → DKA(Y ) such that
f(x1) = y1, f({x2, x3}) = {y2}. Then, further consider the map F : (X, E2

X) → (Y, E2
Y ),

induced by the map f , given by F (NK(x1)∩X) ⊂ NK(y1)∩Y and F ((NK(x2)∪NK(x3))∩
X) ⊂ NK(y2) ∩ Y . Then F is an LA-map induced by the map f .
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Figure 3. (a) Configuration of an LA-map; (b) Comparison between an LA-map
in LAC and a continuous map in ETC.

Let us compare an LA-map in LAC and a continuous map in ETC.
Theorem 3.14. None of an LA-map in LAC and a Euclidean-topologically continuous
map in ETC implies the other.
Proof. We prove that an LA-map in LAC need not imply a continuous map in ETC.
For convenience, let us assume that (X, En

X) is connected. For some point p ∈ DKA(X),
let us consider the subspaces Xi ⊂ NK(p) ∩ X, i ∈ {1, 2} such that X1 ∩ X2 = ∅ and
X1 ∪ X2 = NK(p) ∩ X which is connected (see the spaces X1 and X2 in Fig.3(b) as an
example, where X2 is an open set in NK(p) ∩ X). Consider an A-map as the identity map
1DKA(X) with 1DKA(X)(p) = p, where DKA(X) = {p}.

Assume an LA-map G induced by the A-map 1DKA(X) such that G(Xi) ⊂ G(NK(p) ∩
X), i ∈ {1, 2} and G(X1) ∪ G(X2) is not connected in G(NK(p) ∩ X) (see Fig.3(b)). In
this case the map G is not a continuous map in ETC.
To be precise, put NK(p) := X = X1 ∪ X2 and X1 ∩ X2 = ∅ (see Fig.3(b)) and consider
the map G on NK(p) in Fig.3(b) given by G(X1) = {p} and G(X2) = 1X2(X2), where the
point p is assumed to be a pure open point. Then, it is clear that whereas the map G is an
LA-map induced by an A-map f : DKA(X) → DKA(Y ), it is not a Euclidean-topologically
continuous map because G(X1 ∪ X2) is not connected.
Conversely, let us now prove that a continuous map in ETC does not imply an LA-map.
Indeed, a continuous map in ETC need not support the property (3.1) of Definition 3.11.
For instance, consider the self-map G of the unit interval ([0, 1], E[0,1]) given by

G(t) = 2t, t ∈ [0,
1
2

) and G(t) = 1, t ∈ [1
2

, 1]. (3.2)
While the given map G is a Euclidean-topologically continuous map, it is not an LA-map
contrary to the property (3.1) of Definition 3.11, which completes the proof. �
Remark 3.15. In view of Theorem 3.14, it turns out that an LA-map is not compatible
with a Euclidean-topologically continuous map. Besides, we see that an ordinary con-
tinuous map in ETC has some limitation of mapping of (X, En

X) from the viewpoint of
digitization theory. Furthermore, an LA-map plays an important role in digitizing (X, En

X)
because an LA-map guarantees to preserve NK(p) ∩ X into NK(f(p)) ∩ Y .

Let us now classify spaces (X, En
X) in LAC by using the LA-homeomorphism. To do

this work, using both an A-map and a K-localized neighborhood of Definition 3.1, we
need to establish the following notion which is an improved version of the notion of an
LA-homeomorphism in the paper [11].
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Definition 3.16. Let F : (X, En
X) := X → (Y, En

Y ) := Y be an LA-map induced by an
A-map f : DKA(X) → DKA(Y ). Then we say that F is an LA-homeomorphism if it
satisfies the following two properties.

(1) The map f is an A-isomorphism.
(2) The inverse of f , denoted by g, induces an LA-map G : Y → X such that DKA(G) =

g and further, (G◦F )(X) is (Euclidean) homeomorphic to X and (F ◦G)(Y ) is (Euclidean)
homeomorphic to Y .

In case F : (X, En
X) → (Y, En

Y ) is an LA-homeomorphism, we say that (X, En
X) is

LA-homeomorphic to (Y, En
Y ). Let us compare an LA-homeomorphism in LAC and a

homeomorphism in ETC.

Corollary 3.17. None of the LA-homeomorphism in LAC and the homeomorphism in
ETC implies the other.

Proof. Owing to Theorem 3.14, we see that an LA-homeomorphism need not imply a
homeomorphism in ETC.
Conversely, it is obvious that a homeomorphism in ETC need not support the property
(3.1) of Definition 3.11 (see Theorem 3.14). �

Let us compare an LA-homeomorphism and an A-isomorphism.

Theorem 3.18. Consider two spaces (X, En
X) and (Y, En

Y ), and their KA-digitized spaces
DKA(X) := X ′ and DKA(Y ) := Y ′. If (X, En

X) is LA-homeomorphic to (Y, En
Y ), then X ′

is A-isomorphic to Y ′. But the converse does not hold.

Proof. Owing to the property of Definition 3.16(1), it is clear that if (X, En
X) is LA-

homeomorphic to (Y, En
Y ), then DKA(X) := X ′ is A-isomorphic to DKA(Y ) := Y ′.

Conversely, let us prove that not every A-isomorphism f between X ′ and Y ′ implies an LA-
homeomorphism between (X, E2

X) and (Y, E2
Y ), where DKA(X) = X ′ and DKA(Y ) = Y ′.

With the hypothesis of an A-isomorphism of f , we prove that there are some spaces
(X, En

X) and (Y, En
Y ) which are not LA-homeomorphic to each other. To be specific,

consider the spaces (X, E2
X) consisting of three closed line segments and (Y, E2

Y ) consisting
of two closed line segments and one point p5 in Fig.4, where

X := L1 ∪ L2 ∪ L3 and Y := L4 ∪ {p5} ∪ L5

such that L1 ⊂ NK(x2), L2 ⊂ NK(x1), L3 ⊂ NK(x3) ∪ NK(x4) and L4 ⊂ NK(y2), p5 ∈
NK(y1), L6 ⊂ NK(y3) ∪ NK(y4).

In this case, consider the map f : X ′ → Y ′ given by f(xi) = yi, i ∈ {1, 2, 3, 4}. Then it
is clear that f is an A-isomorphism because

|AN(xi)| = |AN(yi)|, i ∈ {1, 2, 3, 4},

e.g. |AN(x1)| = 3 = |AN(y1)|, |AN(x2)| = 3 = |AN(y2)|, |AN(x3)| = 4 = |AN(y3)|,
|AN(x4)| = 2 = |AN(x4)|.

Then consider the map F : (X, E2
X) → (Y, E2

Y ) induced by f such that F (L1) ⊂ L4,
F (L2) ⊂ {p5}, F (L3) ⊂ L6. Then it is clear that F is an LA-map induced by the A-map f .
Then, for convenience, we denote by g the inverse of f . But we do not have an LA-map G :
(Y, E2

Y ) → (X, E2
X) induced by g with the property of Definition 3.16(2). More precisely,

owing to the point p5 ∈ Y , it is clear that any LA-map G : (Y, E2
Y ) → (X, E2

X) satisfying
DKA(G) := g cannot satisfy the following property that G ◦ F (X) is homoeomorphic to
X (see the property (3.2)). �

Remark 3.19. (1) In view of Lemma 3.3 and Corollary 3.17 and Theorem 3.18, in relation
to the KA-digitization of (X, En

X), an LA-homeomorphism in LAC is helpful to classify
the spaces (X, En

X) in LAC.
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Figure 4. Comparison among a homeomorphism, an LA-homeomorphism and
an A-isomorphism

(2) (Improvement of the notion of an LM -homeomorphism of Definition 11 of the paper
[17]) Let F : (X, E2

X) := X → (Y, E2
Y ) := Y be an LM -map induced by an MA-map

f : DMA(X) → DMA(Y ). Then we say that F is an LM -homeomorphism if it satisfies
the following two properties.

(1) The map f is an MA-isomorphism.
(2) The inverse of f , denoted by g, induces an LM -map G : Y → X such that

DMA(G) = g and further, (G ◦ F )(X) is (Euclidean) homeomorphic to X and (F ◦ G)(Y )
is (Euclidean) homeomorphic to Y .

4. Homotopic properties in LAC and KAC

This section addresses the questions (Q1) and (Q2) posed in Section 1. Given (X, En
X) ∈

Ob(LAC), we investigate some relationships between DKA(X) and (X, En
X) from the view-

point of homotopy theory. Motivated by Theorem 3.14, we firstly propose a lattice based
K-adjacency homotopy (LA-homotopy for short) in LAC. Besides, owing to Theorem
3.14 (in particular, the property of (3.2) and the spaces in Fig.7(c)-(d)), although an or-
dinary homotopy in ETC does not induce an A-homotopy in KAC, we prove that an
LA-homotopy in LAC induces an A-homotopy in KAC, which can play an important role
in studying both (X, En

X) and its KA-digitized space DKA(X). To do this work, first of
all, we need to recall the notion of an A-homotopy [10]. For a space X ∈ Ob(KAC) let
B be a subset of X. Then (X, B) is called a KA-space pair. Furthermore, if B is a sin-
gleton set {x0}, then (X, x0) is called a pointed space in Ob(KAC). To study homotopic
properties of DKA(X), in this section we use the notions of an A-homotopy relative to a
subset B ⊂ X [10], A-contractibility [10] and an A-homotopy equivalence [10].

Definition 4.1 ([10]). Let (X, B) and Y be a space pair and a space in Ob(KAC),
respectively. Let f, g : X → Y be A-maps. Suppose that there exist m ∈ N and a
function F : X × [0, m]Z → Y such that
• for all x ∈ X, F (x, 0) = f(x) and F (x, m) = g(x);
• for all x ∈ X, the induced function Fx : [0, m]Z → Y given by
Fx(t) = F (x, t) for all t ∈ [0, m]Z is an A-map;
• for all t ∈ [0, m]Z, the induced function Ft : X → Y given by Ft(x) = F (x, t) for all
x ∈ X is an A-map.
Then we say that F is an A-homotopy between f and g.
• Furthermore, for all t ∈ [0, m]Z, assume that Ft(x) = f(x) = g(x) for all x ∈ B and for
all t ∈ [0, m]Z.
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Then we call F an A-homotopy relative to B between f and g, and we say that f and g
are A-homotopic relative to B in Y , f ≃Arel.B g in symbol.

In Definition 4.1, if B = {x0} ⊂ X, then we say that F is a pointed A-homotopy at
{x0}. When f and g are pointed A-homotopic in Y , we use the notation f ≃A g and
f ∈ [g] which denotes the A-homotopy class of g. If, for some x0 ∈ X, 1X is A-homotopic
to the constant map in the singleton {x0} relative to {x0}, then we say that (X, x0) is
pointed A-contractible (A-contractible if there is no danger of ambiguity) [10].

To study some relations between DKA(X) and (X, En
X) from the viewpoint of homotopy

theory, combining an ordinary homotopy in ETC and an A-homotopy in KAC, we develop
the following LA-homotopy.

Definition 4.2. Consider (X, En0
X ) := X, (Y, En1

Y ) := Y and (B, En0
B ) := B with B ( X.

Let f, g : X → Y be LA-maps induced by some A-maps f ′, g′ : DKA(X) → DKA(Y ),
respectively. Suppose that there exist m ∈ N and a function F : X × [0, m]Z → Y such
that
• for all x ∈ X, F (x, 0) = f(x) and F (x, m) = g(x);
• for all x ∈ X, the induced function Fx : [0, m]Z → Y given by
Fx(t) = F (x, t) for all t ∈ [0, m]Z is an LA-map induced by an A-map DKA(Fx);
• for all t ∈ [0, m]Z, the induced function Ft : X → Y given by Ft(x) = F (x, t) for all
x ∈ X is an LA-map induced by an A-map DKA(Ft).
Then we say that F is an LA-homotopy between f and g.
• Furthermore, for all t ∈ [0, m]Z, assume that Ft(x) = f(x) = g(x) for all x ∈ B and for
all t ∈ [0, m]Z.
Then we call F an LA-homotopy relative to B between f and g, and we say that f and g
are LA-homotopic relative to B in Y , f ≃LArel.B g in symbol.

If, for some x0 ∈ X, 1X is LA-homotopic to the constant map in the singleton {x0}
relative to {x0}, then we say that (X, x0) is pointed LA-contractible (LA-contractible if
there is no danger of ambiguity).

Let us investigate some properties of an LA-homotopy and an LA-contractibility.

Example 4.3. (1) Let us consider two closed curves (Yi, E2
Yi

), i ∈ {1, 2} in Fig.5(a).
Then, by using DKA(Yi) in Fig.5(a), we observe that 1DKA(Y1) is A-homotopic to 1DKA(Y2).
Namely, we concluded that there is an LA-homotopy between 1(Y1,E2

Y1
) and 1(Y2,E2

Y2
).

(2) Consider the space (Z, E2
Z) in Fig.5(b), where Z = Z1∪Z2, Z1 = {(x, y) | |x−1|+|y| =

1} and Z2 := {(x, y) | (x−p1)2+(y−p2)2 = 1
r , r  4, (p1, p2) ∈ {(0, 0), (1, 1), (1, −1), (2, 0)}}.

Then (Z, E2
Z) is LA-contractible, which is a quite distinctive feature compared with the

contractibility in ETC. More precisely, we see that DKA(Z) is SC2,4
A (see Fig.5(b)). Con-

sidering any self-map f of (Z, E2
Z) as a constant map such that

f(Z) = {t}, t ∈ {(0, 0), (1, 1), (1, −1), (2, 0)}.

Then the map f is LA-homotopic to 1Z relative to the singleton {t} by using the method
suggested in Fig.5(b), which implies that (Z, E2

Z) is LA-contractible.

Remark 4.4. In view of Example 4.3, we observe some difference between the contractibil-
ity in ETC and the LA-contractibility in LAC.

Let us now investigate some relationships between an LA-homotopy and an A-homotopy.
To do this work, we recall some notions related to a KA-digitization map. The paper [19]
studies the connectedness preserving (CP -, for short) property of a K-digitization, as
follows:

Lemma 4.5 ([19]). If (X, En
X) is connected, then DK(X) is K-connected.
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Figure 5. Explanation of an LA-homotopy and the LA-contractibility

Let us prove that an LA-homotopy induces an A-homotopy, as follows:

Theorem 4.6. Consider two LA-maps f, g : (X, En
X) → (Y, En

Y ) induced by their KA-
digitized maps DKA(f), DKA(g) : DKA(X) → DKA(Y ), respectively. If there is an LA-
homotopy between f and g, then we obtain an A-homotopy between DKA(f) and DKA(g)
derived from the given LA-homotopy.

Proof. (Case 1) Assume that (X, En
X) and (Y, En

Y ) are connected. Firstly, by Lemma
4.5, it is clear that if (X, En

X) is connected, then DKA(X) is KA-connected because for
two distinct points p and q in (Zn, κn) such that p ∈ N3n−1(q), the K-connectedness of
these points is equivalent to their K-adjacency [22], where N3n−1(p) := {q | q is (3n −
1)-adjacent to p} [31]. Concretely, a KA-digitization map has the connectedness preserv-
ing (CP -, for brevity) property, i.e. if (X, En

X) is connected, then by Lemma 4.5 we obtain
that DKA(X) is KA-connected.
Secondly, assume an LA-homotopy H in LAC between two LA-maps f, g : (X, En

X) →
(Y, En

Y ) induced by DKA(f), DKA(g), respectively. Namely, we have

H : X × [0, m]Z → Y such that H(x, 0) = f(x) and H(x, m) = g(x)

satisfying the property of Definition 4.2. By Proposition 3.4, Corollary 3.7 and Lemma
4.5, we obtain

DKA(H) : DKA(X) × [0, m]Z → DKA(Y ) such that
• for all x′ ∈ DKA(X) {

DKA(H)(x′, 0) = DKA(f)(x′) and
DKA(H)(x′, m) = DKA(g)(x′).

}
• for all x′ ∈ DKA(X), the induced function DKA(H)x′ : [0, m]Z → DKA(Y ) given by

DKA(H)x′(t) = DKA(H)(x′, t) for all t ∈ [0, m]Z is an A-map;



248 S.-E. Han

• for all t ∈ [0, m]Z, the induced function DKA(H)t : DKA(X) → DKA(Y ) given by
(DKA(H)t)(x′) = DKA(H)(x′, t) for all x′ ∈ DKA(X) is an A-map, which implies that
DKA(H) is an A-homotopy between the above A-maps DKA(f) and DKA(g).

(Case 2) Assume that (X, En
X) and (Y, En

Y ) are not connected. Owing to Proposition
3.4 and Corollary 3.7, even for this case, by the method similar to the proof of Case 1, we
complete the proof. �

5. A comparison among an ordinary homotopy equivalence, an LA-
homotopy equivalence and an A-homotopy equivalence

This section addresses the issues (Q3) and (Q4) posed in Section 1. To do these works,
we start with an ordinary homotopy equivalence (resp. contractibility) of (X, En

X) and an
A-homotopy equivalence (resp. A-contractibility) of DKA(X). Besides, we develop the
notions of an LA-homotopy equivalence (resp. LA-contractibility) of (X, En

X) and an A-
homotopy equivalence (resp. A-contractibility) of DKA(X). Furthermore, we investigate
some relationships among these kinds of homotopy equivalences (resp. contractibilities).
Given (X, En

X) ∈ Ob(LAC), by using these homotopic tools, we study homotopic prop-
erties of both DKA(X) and (X, En

X). Let us now recall an A-homotopy equivalence in
KAC.
Definition 5.1 ([10]). In KAC, for two spaces X and Y , if there are A-maps h : X → Y
and l : Y → X such that l ◦ h is A-homotopic to 1X and h ◦ l is A-homotopic to 1Y ,
then the map h : X → Y is called an A-homotopy equivalence. Then we use the notation
X ≃A·h·e Y .
Theorem 5.2 ([10]). The composite preserves an A-homotopy equivalence in KAC.
Namely, if X ≃A·h·e Y and Y ≃A·h·e Z, then X ≃A·h·e Z.

As referred to in Example 4.3, we obtain the following:

Lemma 5.3 ([10]). In KAC, SC2,4
A is A-contractible.

Motivated by several types of digital versions of homotopy equivalences [6–9], let us
propose the notion of an LA-homotopy equivalence in LAC.
Definition 5.4. In LAC, for two spaces (X, En

X) := X and (Y, En
Y ) := Y , if there are

LA-maps h : X → Y and l : Y → X such that l ◦ h is LA-homotopic to 1X and h ◦ l is
LA-homotopic to 1Y , then the map h : X → Y is called an LA-homotopy equivalence.
Then we use the notation X ≃LA·h·e Y .
Example 5.5. Consider the two closed curves (W1, E2

W1
) and (W2, E2

W2
) in Fig.6. Since

DKA(W1) is SC2,12
A and DKA(W2) is SC2,10

A (see Fig.6), any LA-map from (W2, E2
W2

) to
(W1, E2

W1
) is not an LA-homotopy equivalence between them because DKA(W1) is not

A-homotopy equivalent to DKA(W2) (see Theorem 4.6).
Comparing an LA-homotopy equivalence and an ordinary homeomorphism in [33], we

can observe that an LA-homotopy equivalence has some advantages in classifying spaces
in Ob(LAC).
Theorem 5.6. The composite preserves an LA-homotopy equivalence in LAC. Namely,
if X ≃LA·h·e Y and Y ≃LA·h·e Z, then X ≃LA·h·e Z.

Let us now compare among an ordinary homotopy equivalence in ETC, an LA-homotopy
equivalence in LAC and an A-homotopy equivalence in KAC.
Theorem 5.7. Consider two Euclidean topological spaces (X, En

X) and (Y, En
Y ) and their

KA-digitized spaces DKA(X) and DKA(Y ). None of a homotopy equivalence in ETC and
an A-homotopy equivalence in KAC implies the other.
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Figure 6. Comparison among a homotopy equivalence in ETC, an LA- and an
A-homotopy equivalence.

Proof. Since the notion of an A-homotopy equivalence is stronger than that an LA-
homotopy equivalence, by Theorem 3.14, we prove that a homotopy equivalence between
(X, En

X) and (Y, En
Y ) in ETC does not imply an A-homotopy equivalence between DKA(X)

and DKA(Y ) in KAC.
Conversely, consider the spaces (X, E2

X) and (Y, E2
Y ) in Fig.7. While their KA-spaces

DKA(X) and DKA(Y ) in Fig.7(a) are equal to each other so that DKA(X) and DKA(Y )
are A-homotopy equivalent to each other, However, by Theorem 3.8, it is clear that the
space (X, E2

X) is not homotopy equivalent to (Y, E2
Y ) in ETC. �
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Figure 7. Comparison among a homotopy equivalence in ETC, an LA- and an
A-homotopy equivalence.

By using the method similar to the proof of Theorem 5.7, we obtain the following:
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Theorem 5.8. None of a homotopy equivalence in ETC and an LA-homotopy equivalence
in LAC implies the other.

Proof. By using the method similar to the proof of Theorem 5.7, it is clear that a homo-
topy equivalence in ETC does not imply an LA-homotopy equivalence in LAC.
Conversely, let us prove that an LA-homotopy equivalence in LAC does not imply a
homotopy equivalence in ETC.

Even in the case some spaces (Y, E2
Y ) and (W, E2

W ) are LA-homotopy equivalent to each
other, by Theorem 5.6, they need not be homotopy equivalent to each other in ETC. �

Let us compare between an LA-homotopy equivalence in LAC and an A-homotopy
equivalence in KAC.

Theorem 5.9. An LA-homotopy equivalence between (X, En
X) and (Y, En

Y ) in LAC im-
plies an A-homotopy equivalence between DKA(X) and DKA(Y ) in KAC.

Proof. Consider two topological spaces (X, En
X) and (Y, En

Y ) in Ob(LAC) and their KA-
digitized spaces DKA(X) and DKA(Y ). By Theorem 4.6, we conclude that an LA-
homotopy equivalence between (X, En

X) and (Y, En
Y ) in LAC implies an A-homotopy

equivalence between DKA(X) and DKA(Y ) in LAC. �

NONO

H.E. in ETC

 --> LA-H.E

H.E. in ETC

 --> A-H.E

A-H.E.

 --> H.E. in

ETC

LA-H.E

--> H.E  in

ETC

LA-H.E

 --> A-H.E

NONO YES

Figure 8. Comparison among a homotopy equivalence in ETC, an LA- and an
A-homotopy equivalence.

Remark 5.10. In view of Theorems 5.7 and 5.9 the notion of an LA-homotopy equivalence
in LAC can be used to study both (X, En

X) and its KA-digitized space DKA(X) from the
viewpoint of homotopy theory.

Let us now compare the contractibility of (X, En
X), the LA-contractibility of (X, En

X)
the A-contractibility of DKA(X).

Theorem 5.11. None of the contractibility of (X, En
X) and the A-contractibility of DKA(X)

implies the other.

Proof. Let us consider the case that the contractibility of (X, En
X) does not imply the

A-contractibility of DKA(X). Consider the space (X, E2
X) in Fig.9(a). It is clear that

whereas (X, E2
X) is a kind of arc which is contractible in ETC and DKA(X) is not A-

contractible (see Fig.9(a)). More precisely, since DKA(X) is a kind of SC8
A (see Fig.9(a)),

it cannot be A-contractible.

Conversely, let us prove that the A-contractibility of DKA(X) does not imply the con-
tractibility of (X, En

X). Consider the space (Z, E2
Z) in Fig.9(c) which is not contractible

in ETC. But it is clear that DKA(Z) is A-contractible. �
Remark 5.12. Consider the space in (Y, E2

Y ) in Fig.9(b). Although it is not contractible,
we see that DKA(Y ) is A-contractible.

By using Theorem 5.9, we obtain the following:
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Proposition 5.13. The LA-contractibility of (X, En
X) implies the A-contractibility of

DKA(X).

Remark 5.14. For an efficient process for examining the LA-contractibility, we can write
an algorithm, as follows:
(Step 1) Proceed with a KA-digitization of (X, En

X).
(Step 2) Take DKA(X).
(Step 3) Examine if the A-contractibility of DKA(X) holds.

Y

Z

D      (Y)
KA

D      (Z)KA

(2,0)

(1,1)

(0,0)

(1, -1)

X D      (X)
KA(a)

(b)

(c)

Figure 9. Comparison among ordinary contractibility in ETC, LA-
contractibility, and A-contractibility.

6. Summary
We have studied various properties of an LA-homotopy, an LA-homotopy equivalence

and LA-contractibility. Besides, comparing a Euclidean-topologically continuous map with
an LA-map, we observed that an LA-map has strong advantages of digitizing (X, En

X).
Furthermore, comparing a Euclidean homotopy with an LA-homotopy, we concluded that
an LA-homotopy is a suitable homotopy for digitizing (X, En

X) in ETC and further, obtain-
ing a K-topological graph in KAC. Besides, the paper investigated some relationships
between subspaces (X, En

X) and their KA-spaces DKA(X) by using an LA-homotopy
equivalence and an A-homotopy equivalence. Finally, we investigate some relationships
among Euclidean contractibility, A-contractibility and LA-contractibility. Compared with
several kinds of homotopies for digital spaces [13, 16], the current homotopies have their
own utilities.
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