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Abstract
In this paper, we establish the weighted sharp maximal function inequalities for the
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1. Introduction and preliminaries
As the development of singular integral operators(see [9, 30]), their commutators have

been well studied. In [5,28,29], the authors prove that the commutators generated by the
singular integral operators and BMO functions are bounded on Lp(Rn) for 1 < p < ∞.
Chanillo (see [3]) proves a similar result when singular integral operators are replaced by
the fractional integral operators. In [12, 25], the boundedness for the commutators gen-
erated by the singular integral operators and Lipschitz functions on Triebel-Lizorkin and
Lp(Rn)(1 < p < ∞) spaces are obtained. In [1, 11], the boundedness for the commuta-
tors generated by the singular integral operators and the weighted BMO and Lipschitz
functions on Lp(Rn)(1 < p < ∞) spaces are obtained (also see [10]). In [2], Calderón and
Zygmund introduce some singular integral operators with variable kernel and discuss their
boundedness. In [17–19, 31], the authors obtain the boundedness for the commutators
generated by the singular integral operators with variable kernel and BMO functions. In
[21], the authors prove the boundedness for the multilinear oscillatory singular integral
operators generated by the operators and BMO functions. In [14, 15, 20], some Toeplitz
type operators associated to the singular integral operators and strongly singular integral
operators are introduced, and the boundedness for the operators generated by BMO and
Lipschitz functions are obtained.

On the other hand, the classical Morrey space was introduced by Morrey in [23] to inves-
tigate the local behavior of solutions to second order elliptic partial differential equations
(also see [24]). As the Morrey space may be considered as an extension of the Lebesgue
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space, it is natural and important to study the boundedness of operator on the Morrey
spaces. The boundedness of the maximal operator, the singular integral operator, the
fractional integral operator and their commutators on Morrey spaces have been studied
by many authors (see [6,7,13,16,22]). In [16], Komori and Shirai studied the boundedness
of these operators on weighted Morrey spaces.

Motivated by these, in this paper, we will study the Toeplitz type operator generated by
the singular integral operator with variable Calderón-Zygmund kernel and the weighted
Lipschitz and BMO functions.

First, let us introduce some notations. Throughout this paper, Q will denote a cube
of Rn with sides parallel to the axes. For any locally integrable function f , the sharp
maximal function of f is defined by

M#(f)(x) = sup
Q∋x

1
|Q|

∫
Q

|f(y) − fQ|dy,

where, and in what follows, fQ = |Q|−1 ∫
Q f(x)dx. It is well-known that (see [9, 30])

M#(f)(x) ≈ sup
Q∋x

inf
c∈C

1
|Q|

∫
Q

|f(y) − c|dy.

Let
M(f)(x) = sup

Q∋x

1
|Q|

∫
Q

|f(y)|dy.

For η > 0, let M#
η (f)(x) = M#(|f |η)1/η(x) and Mη(f)(x) = M(|f |η)1/η(x).

For 0 < η < n and 1 ≤ p < ∞, set

Mη,p(f)(x) = sup
Q∋x

( 1
|Q|1−pη/n

∫
Q

|f(y)|pdy

)1/p

.

For 0 < η < n, 1 ≤ p < ∞ and the non-negative weight function w, set

Mη,p,w(f)(x) = sup
Q∋x

( 1
w(Q)1−pη/n

∫
Q

|f(y)|pw(y)dy

)1/p

.

We write Mη,p,w(f) = Mp,w(f) if η = 0.
The Ap weight is defined by (see [9])

Ap =
{

0 < w ∈ L1
loc(Rn) : sup

Q

( 1
|Q|

∫
Q

w(x)dx

)( 1
|Q|

∫
Q

w(x)−1/(p−1)dx

)p−1
< ∞

}
, 1 < p < ∞,

and
A1 = {0 < w ∈ Lp

loc(R
n) : M(w)(x) ≤ Cw(x), a.e.}.

Given a non-negative weight function w. For 1 ≤ p < ∞, the weighted Lebesgue space
Lp(Rn, w) is the space of functions f such that

||f ||Lp(w) =
(∫

Rn
|f(x)|pw(x)dx

)1/p

< ∞.

For 0 < β < 1 and the non-negative weight function w, the weighted Lipschitz space
Lipβ(w) is the space of functions b such that

||b||Lipβ(w) = sup
Q

1
w(Q)β/n

( 1
w(Q)

∫
Q

|b(y) − bQ|pw(x)1−pdy

)1/p

< ∞,

and the weighted BMO space BMO(w) is the space of functions b such that

||b||BMO(w) = sup
Q

( 1
w(Q)

∫
Q

|b(y) − bQ|pw(x)1−pdy

)1/p

< ∞.

We write BMO(w) = BMO(Rn) if w = 0.
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Remark.(1) It has been known that (see [8]), for b ∈ Lipβ(w), w ∈ A1 and x ∈ Q,

|bQ − b2kQ| ≤ Ck||b||Lipβ(w)w(x)w(2kQ)β/n.

(2) It has been known that(see [9]), for b ∈ BMO(w), w ∈ A1 and x ∈ Q,

|bQ − b2kQ| ≤ Ck||b||BMO(w)w(x).

(3) Let b ∈ Lipβ(w) or b ∈ BMO(w) and w ∈ A1. By [8,9], we know that spaces Lipβ(w)
or BMO(w) coincide and the norms ||b||Lipβ(w) or ||b||BMO(w) are equivalent with respect
to different values 1 ≤ p < ∞.

Definition 1.1. Let φ be a positive, increasing function on R+ and there exists a constant
D > 0 such that

φ(2t) ≤ Dφ(t) for t ≥ 0.

Let w be a non-negative weight function on Rn and f be a locally integrable function on
Rn. Set, for 1 ≤ p < ∞,

||f ||Lp,η,φ(w) = sup
x∈Rn, d>0

(
1

φ(d)1−pη/n

∫
Q(x,d)

|f(y)|pw(y)dy

)1/p

,

where Q(x, d) = {y ∈ Rn : |x − y| < d}. The generalized weighted Morrey space is defined
by

Lp,η,φ(Rn, w) = {f ∈ L1
loc(Rn) : ||f ||Lp,η,φ(w) < ∞}.

We write Lp,η,φ(Rn) = Lp,φ(Rn) if η = 0, which is the generalized Morrey space. If
φ(d) = dδ, δ > 0, then Lp,φ(Rn, w) = Lp,δ(Rn, w), which is the classical Morrey spaces
(see [26, 27]). If φ(d) = 1, then Lp,φ(Rn, w) = Lp(Rn, w), which is the weighted Lebesgue
spaces (see [9]).

In this paper, we will study some singular integral operators as following (see [2]).

Definition 1.2. Let K(x) = Ω(x)/|x|n : Rn \ {0} → R. K is said to be a Calderón-
Zygmund kernel if
(a) Ω ∈ C∞(Rn \ {0});
(b) Ω is homogeneous of degree zero;
(c)

∫
Σ Ω(x)xαdσ(x) = 0 for all multi-indices α ∈ (N ∪ {0})n with |α| = N , where Σ =

{x ∈ Rn : |x| = 1} is the unit sphere of Rn.

Definition 1.3. Let K(x, y) = Ω(x, y)/|y|n : Rn × (Rn \ {0}) → R. K is said to be a
variable Calderón-Zygmund kernel if
(d) K(x, ·) is a Calderón-Zygmund kernel for a.e. x ∈ Rn;
(e) max|γ|≤2n

∣∣∣∣∣∣∂|γ|
∂γy Ω(x, y)

∣∣∣∣∣∣
L∞(Rn×Σ)

= L < ∞.

Moreover, let b be a locally integrable function on Rn and T be the singular integral
operator with variable Calderón-Zygmund kernel as

T (f)(x) =
∫

Rn
K(x, x − y)f(y)dy,

where K(x, x−y) = Ω(x,x−y)
|x−y|n and that Ω(x, y)/|y|n is a variable Calderón-Zygmund kernel.

The Toeplitz type operator associated to T is defined by

Tb =
m∑

k=1
T k,1MbT

k,2,

where T k,1 are the singular integral operator with variable Calderón-Zygmund kernel T
or ±I(the identity operator), T k,2 are the linear operators, k = 1, ..., m, Mb(f) = bf .
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Note that the commutator [b, T ](f) = bT (f) − T (bf) is a particular operator of the
Toeplitz type operator Tb. The Toeplitz type operator Tb are the non-trivial generalizations
of the commutator. It is well known that commutators are of great interest in harmonic
analysis and have been widely studied by many authors (see [28, 29]). The main purpose
of this paper is to prove the sharp maximal inequalities for the Toeplitz type operator
Tb. As the application, we obtain the weighted Lp-norm inequality and Morrey space
boundedness for the Toeplitz type operator Tb.

2. Theorems and lemmas
We shall prove the following theorems.

Theorem 2.1. Let T be the singular integral operator as in Definition 1.3, w ∈ A1,
0 < η < 1, 1 < s < ∞, 0 < β < 1 and b ∈ Lipβ(w). If T1(g) = 0 for any g ∈ Lr(Rn)(1 <
r < ∞), then there exists a constant C > 0 such that, for any f ∈ C∞

0 (Rn) and x̃ ∈ Rn,

M#
η (Tb(f))(x̃) ≤ C||b||Lipβ(w)w(x̃)

m∑
k=1

Mβ,s,w(T k,2(f))(x̃).

Theorem 2.2. Let T be the singular integral operator as in Definition 1.3, w ∈ A1,
0 < η < 1, 1 < s < ∞ and b ∈ BMO(w). If T1(g) = 0 for any g ∈ Lr(Rn)(1 < r < ∞),
then there exists a constant C > 0 such that, for any f ∈ C∞

0 (Rn) and x̃ ∈ Rn,

M#
η (Tb(f))(x̃) ≤ C||b||BMO(w)w(x̃)

m∑
k=1

Ms,w(T k,2(f))(x̃).

Theorem 2.3. Let T be the singular integral operator as in Definition 1.3, w ∈ A1,
0 < β < 1, b ∈ Lipβ(w), 1 < p < n/β and 1/q = 1/p − β/n. If T1(g) = 0 for any
g ∈ Lr(Rn)(1 < r < ∞) and T k,2 are the bounded linear operators on Lp(Rn, w) for
1 < p < ∞ and w ∈ A1(1 ≤ k ≤ m), then Tb is bounded from Lp(Rn, w) to Lq(Rn, w1−q).

Theorem 2.4. Let T be the singular integral operator as in Definition 1.3, w ∈ A1,
0 < η < 1, 0 < β < 1 and b ∈ Lipβ(w), 1 < p < n/β, 1/q = 1/p − β/n and 0 < D < 2n.
If T1(g) = 0 for any g ∈ Lr(Rn)(1 < r < ∞) and T k,2 are the bounded linear operators on
Lp,φ(Rn, w) for 1 < p < ∞ and w ∈ A1(1 ≤ k ≤ m), then Tb is bounded from Lp,β,φ(Rn, w)
to Lq,φ(Rn, w1−q).

Theorem 2.5. Let T be the singular integral operator as in Definition 1.3, 1 < p < ∞
and b ∈ BMO(w). If T1(g) = 0 for any g ∈ Lr(Rn)(1 < r < ∞) and T k,2 are the bounded
operators on Lp(Rn, w) for 1 < p < ∞ and w ∈ A1(1 ≤ k ≤ m), then Tb is bounded from
Lp(Rn, w) to Lp(Rn, w1−p).

Theorem 2.6. Let T be the singular integral operator as in Definition 1.3, 0 < D < 2n,
1 < p < ∞ and b ∈ BMO(w). If T1(g) = 0 for any g ∈ Lr(Rn)(1 < r < ∞) and T k,2 are
the bounded operators on Lp,φ(Rn, w) for 1 < p < ∞ and w ∈ A1(1 ≤ k ≤ m), then Tb is
bounded from Lp,φ(Rn, w) to Lp,φ(Rn, w1−p).

To prove the theorems, we need the following lemmas.

Lemma 2.7. (see [9, p.485]) Let 0 < p < q < ∞ and for any function f ≥ 0. We define
that, for 1/r = 1/p − 1/q,

||f ||W Lq = sup
λ>0

λ|{x ∈ Rn : f(x) > λ}|1/q, Np,q(f) = sup
Q

||fχQ||Lp/||χQ||Lr ,

where the sup is taken for all measurable sets Q with 0 < |Q| < ∞. Then

||f ||W Lq ≤ Np,q(f) ≤ (q/(q − p))1/p||f ||W Lq .
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Lemma 2.8. (see [2]) Let T be the singular integral operator as Definition 1.3. Then
T is bounded on Lp(Rn, w) for w ∈ Ap with 1 < p < ∞, and weak (L1, L1) bounded.
Lemma 2.9. (see [8, 9]) Let 0 ≤ η < n, 1 ≤ s < p < n/η, 1/q = 1/p − η/n and w ∈ A1.
Then

||Mη,s,w(f)||Lq(w) ≤ C||f ||Lp(w).

Lemma 2.10. (see [9]) Let 0 < p, η < ∞ and w ∈ ∪1≤r<∞Ar. Then, for any smooth
function f for which the left-hand side is finite,∫

Rn
Mη(f)(x)pw(x)dx ≤ C

∫
Rn

M#
η (f)(x)pw(x)dx.

Lemma 2.11. Let 0 < p < ∞, 0 < η < ∞, 0 < D < 2n and w ∈ A1. Then, for any
smooth function f for which the left-hand side is finite,

||Mη(f)||Lp,φ(w) ≤ C||M#
η (f)||Lp,φ(w).

Proof. For any cube Q = Q(x0, d) in Rn, we know M(wχQ) ∈ A1 by [4]. By Lemma 2.10,
we have, for f ∈ Lp,φ(Rn, w),∫

Q
|Mη(f)(y)|pw(y)dy

=
∫

Rn
|Mη(f)(y)|pw(y)χQ(y)dy

≤
∫

Rn
|Mη(f)(y)|pM(wχQ)(y)dy

≤ C

∫
Rn

|M#
η (f)(y)|pM(wχQ)(y)dy

= C

(∫
Q

|M#
η (f)(y)|pM(wχQ)(y)dy +

∞∑
k=0

∫
2k+1Q\2kQ

|M#
η (f)(y)|pM(wχQ)(y)dy

)

≤ C

(∫
Q

|M#
η (f)(y)|pw(y)dy +

∞∑
k=0

∫
2k+1Q\2kQ

|M#
η (f)(y)|p w(Q)

|2k+1Q|
dy

)

≤ C

(∫
Q

|M#
η (f)(y)|pw(y)dy +

∞∑
k=0

∫
2k+1Q

|M#
η (f)(y)|p M(w)(y)

2n(k+1) dy

)

≤ C

(∫
Q

|M#
η (f)(y)|pw(y)dy +

∞∑
k=0

∫
2k+1Q

|M#
η (f)(y)|p w(y)

2nk
dy

)

≤ C||M#
η (f)||pLp,φ(w)

∞∑
k=0

2−nkφ(2k+1d)

≤ C||M#
η (f)||pLp,φ(w)

∞∑
k=0

(2−nD)kφ(d)

≤ C||M#
η (f)||pLp,φ(w)φ(d),

thus ( 1
φ(d)

∫
Q

Mη(f)(x)pw(x)dx

)1/p

≤ C

( 1
φ(d)

∫
Q

M#
η (f)(x)pw(x)dx

)1/p

and
||Mη(f)||Lp,φ(w) ≤ C||M#

η (f)||Lp,φ(w).

This finishes the proof. �
Lemma 2.12. Let 0 ≤ η < n, 0 < D < 2n, 1 ≤ s < p < n/η, 1/q = 1/p − η/n and
w ∈ A1. Then

||Mη,s,w(f)||Lq,φ(w) ≤ C||f ||Lp,η,φ(w).
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The proof of the Lemma is similar to that of Lemma 2.11 by Lemma 2.9, we omit the
details.

3. Proofs of theorems
Proof of Theorem 2.1. It suffices to prove for f ∈ C∞

0 (Rn) and some constant C0, the
following inequality holds:( 1

|Q|

∫
Q

|Tb(f)(x) − C0|η dx

)1/η

≤ C||b||Lipβ(w)w(x̃)
m∑

k=1
Mβ,s,w(T k,2(f))(x̃).

Without loss of generality, we may assume T k,1 are T (k = 1, ..., m). Fix a cube Q =
Q(x0, d) and x̃ ∈ Q. We write, by T1(g) = 0,

Tb(f)(x) = Tb−b2Q
(f)(x) = T(b−b2Q)χ2Q

(f)(x) + T(b−b2Q)χ(2Q)c (f)(x) = f1(x) + f2(x).

Then ( 1
|Q|

∫
Q

|Tb(f)(x) − f2(x0)|η dx

)1/η

≤ C

( 1
|Q|

∫
Q

|f1(x)|ηdx

)1/η

+ C

( 1
|Q|

∫
Q

|f2(x) − f2(x0)|ηdx

)1/η

= I1 + I2.

For I1, by the weak (L1, L1) boundedness of T (see Lemma 2.8) and Kolmogoro’s inequality
(see Lemma 2.7), we obtain( 1

|Q|

∫
Q

|T k,1M(b−b2Q)χ2Q
T k,2(f)(x)|ηdx

)1/η

≤ |Q|1/η−1

|Q|1/η

||T k,1M(b−b2Q)χ2Q
T k,2(f)χQ||Lη

||χQ||Lη/(1−η)

≤ C

|Q|
||T k,1M(b−b2Q)χ2Q

T k,2(f)||W L1

≤ C

|Q|

∫
Rn

|M(b−b2Q)χ2Q
T k,2(f)(x)|dx

≤ C

|Q|

∫
2Q

|b(x) − b2Q|w(x)−1/s|T k,2(f)(x)|w(x)1/sdx

≤ C

|Q|

(∫
2Q

|b(x) − b2Q|s′
w(x)1−s′

dx

)1/s′ (∫
2Q

|T k,2(f)(x)|sw(x)dx

)1/s

≤ C

|Q|
||b||Lipβ(w)w(2Q)1/s′+β/nw(2Q)1/s−β/nMβ,s,w(T k,2(f))(x̃)

≤ C||b||Lipβ(w)
w(2Q)
|2Q|

Mβ,s,w(T k,2(f))(x̃)

≤ C||b||Lipβ(w)w(x̃)Mβ,s,w(T k,2(f))(x̃),

thus

I1 ≤ C
m∑

k=1

( 1
|Q|

∫
Q

|T k,1M(b−b2Q)χ2Q
T k,2(f)(x)|ηdx

)1/η

≤ C||b||Lipβ(w)w(x̃)
m∑

k=1
Mβ,s,w(T k,2(f))(x̃).
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For I2, by [2], we know that

T (f)(x) =
∞∑

u=1

gu∑
v=1

auv(x)
∫

Rn

Yuv(x − y)
|x − y|n

f(y)dy,

where gu ≤ Cun−2, |auv(x0)| ≤ Cu−2n, |auv(x) − auv(x0)| ≤ Cu−2n+1|x − x0|/|x0 − y|,
|Yuv(x − y)| ≤ Cun/2−1 for x ∈ Q and

∣∣∣∣Yuv(x − y)
|x − y|n

− Yuv(x0 − y)
|x0 − y|n

∣∣∣∣ ≤ Cun/2|x − x0|/|x0 − y|n+1

for |x − y| > 2|x0 − x| > 0. Thus, notice w ∈ A1 ⊂ As, we get, for x ∈ Q,

|T k,1M(b−b2Q)χ(2Q)c T k,2(f)(x) − T k,1M(b−b2Q)χ(2Q)c T k,2(f)(x0)|

≤
∫

(2Q)c
|b(y) − b2Q||K(x, x − y) − K(x0, x0 − y)||T k,2(f)(y)|dy

=
∞∑

j=1

∫
2jd≤|y−x0|<2j+1d

|b(y) − b2Q|
∣∣∣∣auv(x)Yuv(x − y)

|x − y|n
− auv(x0)Yuv(x0 − y)

|x0 − y|n

∣∣∣∣ |T k,2(f)(y)|dy

≤ C
∞∑

j=1

∫
2jd≤|y−x0|<2j+1d

|b(y) − b2Q|
∞∑

u=1

gu∑
v=1

|auv(x) − auv(x0)| |Yuv(x − y)|
|x − y|n

|T k,2(f)(y)|dy

+ C
∞∑

j=1

∫
2jd≤|y−x0|<2j+1d

|b(y) − b2Q|
∞∑

u=1

gu∑
v=1

|auv(x0)|
∣∣∣∣Yuv(x − y)

|x − y|n
− Yuv(x0 − y)

|x0 − y|n

∣∣∣∣ |T k,2(f)(y)|dy

≤ C
∞∑

u=1
u−2n+1un/2−1un−2

∞∑
j=1

∫
2jd≤|y−x0|<2j+1d

|b(y) − b2Q| |x − x0|
|x0 − y|n+1 |T k,2(f)(y)|dy

+ C
∞∑

u=1
u−2nun/2un−2

∞∑
j=1

∫
2jd≤|y−x0|<2j+1d

|b(y) − b2Q| |x − x0|
|x0 − y|n+1 |T k,2(f)(y)|dy

≤ C
∞∑

j=1

d

(2j+1d)n+1

∫
2j+1Q

|b(y) − b2j+1Q + b2j+1Q − b2Q|w(y)−1/s|T k,2(f)(y)|w(y)1/sdy

≤ C
∞∑

j=1

d

(2j+1d)n+1

(∫
2j+1Q

|b(y) − b2j+1Q|s′
w(y)1−s′

dy

)1/s′ (∫
2j+1Q

|T k,2(f)(y)|sw(y)dy

)1/s

+
∞∑

j=1

d

(2j+1d)n+1 |b2j+1Q − b2Q|
(∫

2j+1Q
w(y)−1/(s−1)dy

)1/s′ (∫
2j+1Q

|T k,2(f)(y)|sw(y)dy

)1/s

≤ C
∞∑

j=1

d

(2j+1d)n+1 ||b||Lipβ(w)w(2j+1Q)1/s′+β/nw(2j+1Q)1/s−β/nMβ,s,w(T k,2(f))(x̃)

+C
∞∑

j=1

d

(2j+1d)n+1 ||b||Lipβ(w)w(x̃)jw(2j+1Q)β/nw(2j+1Q)1/s−β/nMβ,s,w(T k,2(f))(x̃)

× |2j+1Q|
w(2j+1Q)1/s

( 1
|2j+1Q|

∫
2j+1Q

w(y)dy

)1/s ( 1
|2j+1Q|

∫
2j+1Q

w(y)−1/(s−1)dy

)(s−1)/s

≤ C||b||Lipβ(w)w(x̃)Mβ,s,w(T k,2(f))(x̃)
∞∑

j=1
j2−j

≤ C||b||Lipβ(w)w(x̃)Mβ,s,w(T k,2(f))(x̃),
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thus

I2 ≤ 1
|Q|

∫
Q

m∑
k=1

|T k,1M(b−bQ)χ(2Q)c T k,2(f)(x) − T k,1M(b−bQ)χ(2Q)c T k,2(f)(x0)|dx

≤ C||b||Lipβ(w)w(x̃)
m∑

k=1
Mβ,s,w(T k,2(f))(x̃).

These complete the proof of Theorem 2.1 �

Proof of Theorem 2.2. It suffices to prove for f ∈ C∞
0 (Rn) and some constant C0, the

following inequality holds:

( 1
|Q|

∫
Q

|Tb(f)(x) − C0|η dx

)1/η

≤ C||b||BMO(w)w(x̃)
m∑

k=1
Ms,w(T k,2(f))(x̃)).

Without loss of generality, we may assume T k,1 are T (k = 1, ..., m). Fix a cube Q =
Q(x0, d) and x̃ ∈ Q. Similar to the proof of Theorem 2.1, we have

( 1
|Q|

∫
Q

|Tb(f)(x) − f2(x0)|η dx

)1/η

≤ C

( 1
|Q|

∫
Q

|f1(x)|ηdx

)1/η

+ C

( 1
|Q|

∫
Q

|f2(x) − f2(x0)|ηdx

)1/η

= I3 + I4.

By using the same argument as in the proof of Theorem 2.1, we get

I3 ≤ C
m∑

k=1

( 1
|Q|

∫
Q

|T k,1M(b−b2Q)χ2Q
T k,2(f)(x)|ηdx

)1/η

≤ C
m∑

k=1

|Q|1/η−1

|Q|1/η

||T k,1M(b−b2Q)χ2Q
T k,2(f)χQ||Lη

||χQ||Lη/(1−η)

≤ C
m∑

k=1

C

|Q|
||T k,1M(b−b2Q)χ2Q

T k,2(f)||W L1

≤ C
m∑

k=1

C

|Q|

∫
Rn

|M(b−b2Q)χ2Q
T k,2(f)(x)|dx

≤ C
m∑

k=1

C

|Q|

∫
2Q

|b(x) − b2Q|w(x)−1/s|T k,2(f)(x)|w(x)1/sdx

≤ C
m∑

k=1

C

|Q|

(∫
2Q

|b(x) − b2Q|s′
w(x)1−s′

dx

)1/s′ (∫
2Q

|T k,2(f)(x)|sw(x)dx

)1/s

≤ C
m∑

k=1

w(2Q)
|2Q|

( 1
w(2Q)

∫
2Q

|b(x) − b2Q|s′
w(x)1−s′

dx

)1/s′ ( 1
w(2Q)

∫
2Q

|T k,2(f)(x)|sw(x)dx

)1/s

≤ C||b||BMO(w)w(x̃)
m∑

k=1
Ms,w(T k,2(f))(x̃),
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I4 ≤
m∑

k=1

C

|Q|

∫
Q

∞∑
j=1

∫
2jd≤|y−x0|<2j+1d

|b(y) − b2Q||K(x, x − y) − K(x0, x0 − y)||T k,2(f)(y)|dydx

≤
m∑

k=1

C

|Q|

∫
Q

∞∑
j=1

∫
2jd≤|y−x0|<2j+1d

|b(y) − b2Q|
∞∑

u=1

gu∑
v=1

|auv(x) − auv(x0)| |Yuv(x − y)|
|x − y|n

|T k,2(f)(y)|dydx

+
m∑

k=1

C

|Q|

∫
Q

∞∑
j=1

∫
2jd≤|y−x0|<2j+1d

|b(y) − b2Q|
∞∑

u=1

gu∑
v=1

|auv(x0)|

×
∣∣∣∣Yuv(x − y)

|x − y|n
− Yuv(x0 − y)

|x0 − y|n

∣∣∣∣ |T k,2(f)(y)|dydx

≤
m∑

k=1

C

|Q|

∫
Q

∞∑
j=1

∫
2jd≤|y−x0|<2j+1d

|b(y) − b2Q| |x − x0|
|x0 − y|n+1 |T k,2(f)(y)|dydx

≤ C
m∑

k=1

∞∑
j=1

d

(2j+1d)n+1

∫
2j+1Q

|b(y) − b2j+1Q + b2j+1Q − b2Q|w(y)−1/s|T k,2(f)(y)|w(y)1/sdy

≤ C
m∑

k=1

∞∑
j=1

d

(2j+1d)n+1

(∫
2j+1Q

|b(y) − b2j+1Q|s′
w(y)1−s′

dy

)1/s′ (∫
2j+1Q

|T k,2(f)(y)|sw(y)dy

)1/s

+
m∑

k=1

∞∑
j=1

d

(2j+1d)n+1 |b2j+1Q − b2Q|
(∫

2j+1Q
w(y)−1/(s−1)dy

)1/s′ (∫
2j+1Q

|T k,2(f)(y)|sw(y)dy

)1/s

≤ C
m∑

k=1

∞∑
j=1

d

(2j+1d)n+1 ||b||BMO(w)w(2j+1Q)Ms,w(T k,2(f))(x̃)

+C
m∑

k=1

∞∑
j=1

d

(2j+1d)n+1 ||b||BMO(w)w(x̃)jw(2j+1Q)1/sMs,w(T k,2(f))(x̃)

× |2j+1Q|
w(2j+1Q)1/s

( 1
|2j+1Q|

∫
2j+1Q

w(y)dy

)1/s ( 1
|2j+1Q|

∫
2j+1Q

w(y)−1/(s−1)dy

)(s−1)/s

≤ C||b||BMO(w)w(x̃)
m∑

k=1
Ms,w(T k,2(f))(x̃)

∞∑
j=1

j2−j

≤ C||b||BMO(w)w(x̃)
m∑

k=1
Ms,w(T k,2(f))(x̃).

This completes the proof of Theorem 2.2 �

Proof of Theorem 2.3. Choose 1 < s < p in Theorem 2.1 and notice w1−q ∈ A1, then
we have, by Lemmas 2.9 and 2.10,

||Tb(f)||Lq(w1−q) ≤ ∥Mη(Tb(f))∥Lq(w1−q) ≤ C∥M#
η (Tb(f))∥Lq(w1−q)

≤ C||b||Lipβ(w)

m∑
k=1

∥wMβ,s,w(T k,2(f))∥Lq(w1−q)

= C||b||Lipβ(w)

m∑
k=1

∥Mβ,s,w(T k,2(f))∥Lq(w)

≤ C||b||Lipβ(w)

m∑
k=1

∥T k,2(f)∥Lp(w)

≤ C||b||Lipβ(w)∥f∥Lp(w).

This completes the proof of Theorem 2.3 �
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Proof of Theorem 2.4. Choose 1 < s < p in Theorem 2.1 and notice w1−q ∈ A1, then
we have, by Lemmas 2.11 and 2.12,

||Tb(f)||Lq,φ(w1−q) ≤ ∥Mη(Tb(f))∥Lq,φ(w1−q) ≤ C∥M#
η (Tb(f))∥Lq,φ(w1−q)

≤ C||b||Lipβ(w)

m∑
k=1

∥wMβ,s,w(T k,2(f))∥Lq,φ(w1−q)

= C||b||Lipβ(w)

m∑
k=1

∥Mβ,s,w(T k,2(f))∥Lq,φ(w)

≤ C||b||Lipβ(w)

m∑
k=1

∥T k,2(f)∥Lp,β,φ(w)

≤ C||b||Lipβ(w)∥f∥Lp,β,φ(w).

This completes the proof of Theorem 2.4 �

Proof of Theorem 2.5. Choose 1 < s < p in Theorem 2.2 and notice w1−p ∈ A1, then
we have, by Lemmas 2.9 and 2.10,

||Tb(f)||Lp(w1−p) ≤ ∥Mη(Tb(f))∥Lp(w1−p) ≤ C∥M#
η (Tb(f))∥Lp(w1−p)

≤ C||b||BMO(w)

m∑
k=1

∥wMs,w(T k,2(f))∥Lp(w1−p)

= C||b||BMO(w)

m∑
k=1

∥Ms,w(T k,2(f))∥Lp(w)

≤ C||b||BMO(w)

m∑
k=1

∥T k,2(f)∥Lp(w)

≤ C||b||BMO(w)∥f∥Lp(w).

This completes the proof of Theorem 2.5 �

Proof of Theorem 2.6. Choose 1 < s < p in Theorem 2.2 and notice w1−p ∈ A1, then
we have, by Lemmas 2.11 and 2.12,

||Tb(f)||Lp,φ(w1−p) ≤ ∥Mη(Tb(f))∥Lp,φ(w1−p) ≤ C∥M#
η (Tb(f))∥Lp,φ(w1−p)

≤ C||b||BMO(w)

m∑
k=1

∥wMs,w(T k,2(f))∥Lp,φ(w1−p)

= C||b||BMO(w)

m∑
k=1

∥Ms,w(T k,2(f))∥Lp,φ(w)

≤ C||b||BMO(w)

m∑
k=1

∥T k,2(f)∥Lp,φ(w)

≤ C||b||BMO(w)∥f∥Lp,φ(w).

This completes the proof of Theorem 2.6. �
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