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Abstract
Let G be a group. The Acentralizer of an automorphism α of G, is the subgroup of fixed
points of α, i.e., CG(α) = {g ∈ G | α(g) = g}. We show that if G is a finite Abelian
p-group of rank 2, where p is an odd prime, then the number of Acentralizers of G is
exactly the number of subgroups of G. More precisely, we show that for each subgroup
U of G, there exists an automorphism α of G such that CG(α) = U . Also we find the
Acentralizers of infinite two-generator Abelian groups.
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1. Introduction
Throughout the article, the usual notation will be used, for example Zn denotes the

cyclic group of integers modulo n, Z∗
n denotes the group of invertible elements of Zn. Let

G be a group. We denote cent(G) = {CG(g) | g ∈ G}, where CG(g) is the centralizer
of the element g in G. Then for any natural number n, a group is called n-centralizer if
|cent(G)| = n. There are some results on finite n-centralizers groups (see [1–7,10,13,15]).
The study of n-centralizer infinite groups was initiated in [9]. Let Aut(G) be the group of
automorphisms of G. If α ∈ Aut(G), then the Acentralizer of α in G is defined as

CG(α) = {g ∈ G | α(g) = g}

which is a subgroup of G. In particular, if α = τa is an inner automorphisms of G induced
by a ∈ G, then CG(τa) = CG(a) is the centralizer of a in G. Let Acent(G) be the set of
Acentralizers of G, that is

Acent(G) = {CG(α) | α ∈ Aut(G)}.

The group G is called n-Acentralizer, if |Acent(G)| = n.
It is obvious that G is 1-Acentralizer group if and only if G is a trivial group or Z2.

Nasrabadi and Gholamian [12] proved that G is 2-Acentralizer group if and only if G ∼=
Z4,Zp or Z2p for some odd prime p. Furthermore, they characterized 3, 4, 5-Acentralizer
groups.
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Lemma 1.1 ([12]). Let H and T be finite groups. Then

|Acent(H)| |Acent(T )| ≤ |Acent(H × T )|.

In addition if |H| and |T | are relatively prime, then

|Acent(H)| |Acent(T )| = |Acent(H × T )|.

Therefore, if G is a finite nilpotent group of order n = pk1
1 pk2

2 . . . pkr
r , where pi, i = 1, . . . , r,

are distinct primes and ki ≥ 1, then

|Acent(G)| =
r∏

i=1
|Acent(Gpi)|,

where Gpi’s are the Sylow pi-subgroup of G.

Thus in order to find the number of Acentralizers of a finite nilpotent (in particular
Abelian) group G, it is enough to find the number of Acentralizers of its Sylow subgroups.

In this paper we compute |Acent(G)|, considering G to be a cyclic group of prime power
order and of order pk1

1 · · · pkr
r , where pi for i = 1, . . . , r are distinct primes, an elementary

Abelian group of prime power order, group of the form Zpm ×Zpn , where m, n are positive
integers and p is a prime and finally a free Abelian group of rank 2.

2. Preliminaries
We begin with computing of Acentralizers of finite cyclic groups. We show that if G is

a cyclic group of odd order, then |Acent(G)| is equal to the number of subgroups of G,
while if |G| is even, |Acent(G)| is less than the number of subgroups of G.

Proposition 2.1. Let G be a cyclic group of order m = pk1
1 · · · pkr

r , where p1 < p2 < · · · <
pr are distinct primes and k1, . . . , kr are positive integers. Then

|Acent(G)| =
{

(k1 + 1) · · · (kr + 1) if p1 6= 2
k1(k2 + 1) · · · (kr + 1) if p1 = 2

Proof. First let G = 〈a〉 be a cyclic group of order pn, where p is an odd prime and n a
positive integer. For every 0 ≤ k ≤ n, let Gk = 〈apn−k〉 be the unique subgroup of G of
order pk. If α is defined as α(a) = a1+pk , then α is an automorphism of G and

α(apn−k) = (apn−k)(1+pk) = apn−k

and so CG(α) = Gk. Hence every subgroup of G is an Acentralizer of G and |Acent(G)| =
n + 1. Similarly we can see that if p = 2, then every non-identity subgroup of G is an
Acentralizer of G and |Acent(G)| = n.
Now suppose that G is a cyclic group of order m = pk1

1 · · · pkr
r , where pi, i = 1, . . . , r, are

distinct odd primes. Then, by Lemma 1.1, |Acent(G)| = (k1 + 1) · · · (kr + 1), which is the
number of subgroups of G. Also if G is a cyclic group of order m = 2k1pk2

2 · · · pkr
r , where

pi, i = 1, . . . , r, are distinct odd primes, then |Acent(G)| = k1(k2 + 1) · · · (kr + 1). Note
that in this case the number of subgroups of G is (k1 + 1)(k2 + 1) · · · (kr + 1). �

The following question arises naturally.
What is |Acent(G)|, where G is a finite Abelian group?

We show that an elementary Abelian p-group G is a m-Acentralizer group, where m is
the number of subgroups of G. The proof of the following result is well-known which is
brought for completeness.
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Proposition 2.2. Let G be an elementary Abelian group of order pn. Then |Acent(G)|
is the number of subgroups of G, that is

|Acent(G)| = c0 + c1 + · · · + cn−1 + cn,

where c0 = 1 and ck = (pn−1)(pn−p)···(pn−pk−1)
(pk−1)(pk−p)···(pk−pk−1) for k = 1, . . . , n − 1.

Proof. We note that G is a vector space over Zp and for each 1 ≤ k ≤ n, there are ck

subspaces of dimension k in V . To see this, first we count the number of k-element linearly
independent subsets in G. Every such set generates a k-dimensional subspace of G. Let
{v1, . . . , vk} be linearly independent. The vector v1 (which is a non-zero vector) could
be selected in pn − 1 ways, the vector v2 (which is not a multiple of v1) in pn − p ways,
. . ., and vk (which is not a linear combination of v1, v2, . . . , vk−1) in pn − pk−1 ways. So
there are t = (pn − 1)(pn − p) · · · (pn − pk−1) lineary independent k-element subsets of G.
Every basis of W := span{v1, . . . , vk} generate the same subspace and, as shown above,
there are s = (pk − 1)(pk − p) · · · (pk − pk−1) basis of W . Therefore there are t/s distinct
k-dimensional subspaces of G.

We show that for every subspace W of V , there exists α ∈ Aut(V ) such that α induces
identity just on W , that is CV (α) = W . Let W be a k-dimensional subspace of V . Then
there exists a subspace U of V such that V = W ⊕ U . Let A = {w1, . . . , wk, u1, . . . , ut}
be a basis of V, where {w1, . . . , wk} is a basis of W and {u1, . . . , ut} be a basis of U. If
t ≥ 2, then we can define α on V as follows: α(wi) = wi, i = 1, . . . , k, α(u1) = u1 + u2,
α(ui) = ui+1, i = 2, . . . , t − 1, α(ut) = u1. Thus α is an automorphism of V inducing
identity just on W . If t = 1 then α can defined as α(wi) = wi, i = 1, . . . , k, α(u1) = u1+w1.
If t = 0, that is W = V , then α is the identity automorphism. �

We can generalize the above result. In fact we can show that if V is a vector space over
any field, then every subspace of V is a centralizer of an automorphism of V .

We need to know the structure of subgroups of direct products. We briefly recall the
discussions on pages 34-36 of [14] about subgroups of direct products. A subgroup D of
G = H × K such that DH = G = DK and D ∩ H = {1} = D ∩ K is called a diagonal in
G (with respect to H and K). If H ∼= K and δ : H −→ K is an isomorphism, then

D(δ) = D(H, δ) = {xδ(x) | x ∈ H}
is a diagonal in G (with respect to H and K). Conversely, if D is a diagonal in G (with
respect to H and K), then there exists a unique isomorphism δ : H −→ K such that
D = D(δ). Thus there is a bijection between diagonals (with respect to H and K) and
isomorphisms of H to K.

Every subgroup U of a direct product G = H × K is a diagonal in a certain section of
G. More precisely, there is natural isomorphism

UK ∩ H

U ∩ H
∼=

UH ∩ K

U ∩ K
.

Conversely, let W1 �UH ≤ H and W2 �UK ≤ K be subgroups of direct factors. For every
isomorphism δ : UH

W1
−→ UK

W2
there exists a subgroup U ≤ G such that UH = UK ∩H, UK =

UH ∩ K, W1 = U ∩ H and W2 = U ∩ K, namely
U = D(UH , δ) = {xy | x ∈ UH , y ∈ δ(xW1)}.

Thus in order to recover the subgroups of G = H × K we need the isomorphisms between
the sections (i.e., intervals in the subgroup lattice) in [{1}, H] respectively [{1}, K]. Also
every subgroup of a direct product G = H × K is a direct of the form H1 × K1, where
H1 ≤ H and K1 ≤ K or is a diagonal.

Set G ∼= Zpm × Zpn , where 1 ≤ m ≤ n. First of all, we have the direct product of
chains of length m respectively n, that is, (m + 1)(n + 1) subgroups. Second, we have m
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sections of order p from the first direct factor and n sections of order p from the second
direct factor. Thus for each pair of 1-segments correspond to the isomorphisms Zp −→ Zp

of these sections we have p − 1 diagonals i.e., mn(p − 1).
Third, we have m − 1 sections of order p2 from the first direct factor and n − 1 sections

of order p2 from the second direct factor. Thus for each pair of 2-segments correspond to
the isomorphisms Zp2 −→ Zp2 of these sections we have p2 − p diagonals i.e., (m − 1)(n −
1)(p2 − p).

In general, for every k = 0, 1, . . . , n − m we have m − (k − 1) sections of order pk from
the first direct factor and n − (k − 1) sections of order pk from the second direct factor.
Thus for each pair of k-segments correspond to the isomorphisms Zpk −→ Zpk of these
sections we have pk − pk−1 diagonals i.e., (m − k + 1)(n − k + 1)(pk − pk−1). Thus we have
the following result.

Theorem 2.3 ([8]). Let G ∼= Zpm × Zpn with m ≤ n. Then, the number of subgroups of
G is

(m + 1)(n + 1) +
m−1∑
k=0

(m − k)(n − k)(pk+1 − pk).

Fix an isomorphism
G ∼= Zpm × Zpn

with 1 ≤ m ≤ n and let Zpm ∼= 〈a〉, Zpn ∼= 〈b〉. Given an endomorphism α : G −→ G
we get α(a) = aibj and α(b) = arbs, for some integers 0 ≤ i, r < pm and 0 ≤ j, s < pn.

We indicate this situation by a matrix
[
i r
j s

]
. Observe that the relations apm = 1 and

bpn = 1 yield j ≡ 0 (mod pn−m). Note that if n = m, then certainly Aut(G) = GL2(pm),
the group of invertible 2 by 2 matrices over the ring Zpm of integers (mod pm).

Theorem 2.4 ([11, Corollary 3]). Let G ∼= Zpm × Zpn with m < n. Then, the matrix[
i r
j s

]
represents

(1) an endomorphism of G if and only if i ∈ Zpm, j ≡ 0 (mod pn−m), r ∈ Zpn and
s ∈ Zpn;

(2) an automorphism of G if and only if i ∈ Z∗
pm, j ≡ 0 (mod pn−m), r ∈ Zpn and

s ∈ Z∗
pn.

3. Main results
In this section we compute |Acent(G)|, where G ∼= Zpm × Zpn . First we show that if p

is odd, then |Acent(G)| is equal to total number of subgroups of G.

Theorem 3.1. Let G ∼= Zpm × Zpn , where m ≤ n and p is odd prime, then |Acent(G)| is
equal to the number of subgroups of G, that is

|Acent(G)| = (m + 1)(n + 1) +
m−1∑
k=0

(m − k)(n − k)(pk+1 − pk).

Proof. Let G = A×B, A = 〈a〉 ∼= Zpm , B = 〈b〉 ∼= Zpn , m ≤ n. Let α be an automorphism
of G such that α(a) = aibj and α(b) = arbs, where 0 ≤ i, r < pm and 0 ≤ j, s < pn. By
Theorem 2.4, gcd(i, pm) = 1, gcd(s, pn) = 1, and j ≡ 0 (mod pn−m). Since

α(axby) = (α(a))x(α(b))y

= (aibj)x(arbs)y

= aix+rybjx+sy
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we have

CG(α) = {axby | α(axby) = axby}
= {axby | aix+rybjx+sy = axby}.

Hence the elements of CG(α) is of the form axby, where (x, y) is a solution of the following
equation {

ix + ry = x (mod pm),
jx + sy = y (mod pn)

that is {
(i − 1)x + ry = 0 (mod pm),
jx + (s − 1)y = 0 (mod pn).

(1)

Let Au = 〈apm−u〉 be the unique subgroup of A of order pu, u = 0, 1, . . . , m; and let
Bv = 〈bpn−v 〉 be the unique subgroup of B of order pv, v = 0, 1, . . . , n. Then G has
(m + 1)(n + 1) subgroups of the form Au × Bv, u = 0, . . . , m, v = 0, . . . , n. For every
u = 0, . . . , m and v = 0, . . . , n we find an automorphism α of G inducing identity just
on Au × Bv. If we choose i = 1 + pu, j = 0, r = 0, and s = 1 + pv then α defined by
α(a) = a1+pu and α(b) = b1+pv is an automorphism of G, such that CG(α) = Au × Bv.

For every k = 1, . . . , m we have the diagonals corresponding to the automorphisms
Zpk −→ Zpk , which give pk − pk−1 diagonals for each pair of k-segments. So there are
(m−k +1)(n−k +1)(pk −pk−1) diagonal subgroups corresponding to the automorphisms
between sections of order pk. We find these subgroups explicitly and automorphisms of G
inducing identity just on these subgroups.

For every u = k, . . . , m, v = k, . . . , n and for every t with gcd(pk, t) = 1, the isomorphism

δk : Au/Au−k −→ Bv/Bv−k

apm−u
Au−k 7→ bpn−vtBv−k

gives a diagonal subgroup

Du,v,t = {xy | x ∈ Au, y ∈ δk(xAu−k)}
= {apm−uℓ1y | 1 ≤ ℓ1 ≤ pu, y ∈ bpn−vℓ1tBv−k}

= {apm−uℓ1bpn−vℓ1tbpn−(v−k)ℓ2 | 1 ≤ ℓ1 ≤ pu, 1 ≤ ℓ2 ≤ pv−k}
= {apm−uℓ1bpn−v(ℓ1·t+ℓ2·pk) | 1 ≤ ℓ1 ≤ pu, 1 ≤ ℓ2 ≤ pv−k}.

We find an automorphism of G inducing identity just on Du,v,t. We must choose i, j, r, s

such that (pm−uℓ1, pn−v(ℓ1t + ℓ2pk)) is a solution of (1) that is{
pm−u(i − 1)ℓ1 + pn−vr(ℓ1t + ℓ2pk) = 0 (mod pm),

pm−ujℓ1 + pn−v(s − 1)(ℓ1t + ℓ2pk) = 0 (mod pn).

If we choose i = 1 + pu, s = 1 + pv, j = pn−m+u, and r = pm−n+v, then α, defined
by α(a) = a1+pu

bpn−m+u and α(b) = apm−n+v
b1+pv , is an automorphism of G such that

CG(α) = Du,v,t.
Thus we have shown for every subgroup M of G there exists α ∈ Aut(G) such that

CG(α) = M . Hence |Acent(G)| is equal to total number of subgroups of G and the proof
is completed. �

To compute |Acent(Z2m ×Z2n)|, we need to find the subgroups of Z2m ×Z2n , which are
not Acentralizers.
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Lemma 3.2. Let G = A × B, A = 〈a〉 ∼= Z2m , B = 〈b〉 ∼= Z2n , m ≤ n. The following
subgroups are not Acentralizers of G.

(1) Au = 〈a2m−u〉, where u = 0, 1, . . . , m,
(2) Bv = 〈b2n−v 〉, where v = 1, 2, . . . , n − m − 1, and
(3) Du,v,t, where k = v ≤ u, u = k, . . . , m, v = k, . . . , n for every t with gcd(2k, t) = 1

and k = 1, . . . , m.

Proof. First we show that the element b2n−1 is a unique element of order 2 in G, which
is fixed by every automorphism of G. Let α be an automorphism of G. We know that
α(a) = aibj and α(b) = arbs, where 0 ≤ i, r < 2m and 0 ≤ j, s < 2n. By Theorem 2.4,
gcd(i, 2m) = 1, gcd(s, 2n) = 1, and j ≡ 0 (mod 2n−m); so i − 1 and s − 1 are even.
Therefore,

α(b2n−1) = (arbs)2n−1

= a2n−1rb2n−1s

= (a2m)2n−m−1rb2n−1(s−1)b2n−1

= b2n−1
.

Since b2n−1
/∈ Au, u = 0, . . . , m, and b2n−1

/∈ Du,v,t, v ≤ u, it follows that Au and Du,v,t

are not Acentralizers.
We show the centralizer of α is not equal to Bv, v = 1, 2, . . . , n − m − 1. Suppose that

CG(α) = Bv. Then b2n−v = α(b2n−v ) = a2n−vrb2n−vs. Since m + 1 ≤ n − v ≤ n − 1,
a2n−vr = 1. Therefore b2n−v = b2n−vs so b2n−v(s−1) = 1. Hence 2n−v(s − 1) ≡ 0 (mod 2n).
If s = 1, then α(b) = arb and so α(b2m) = a2mrb2m = b2m . But b2m

/∈ Bv. Thus s 6= 1.
If j = 0, then α(a) = ai and so α(a2m−1) = a2m−1i = a2m−1(i−1)a2m−1 = a2m−1 . But
a2m−1

/∈ Bv. Hence j 6= 0. Since gcd(2n, s) = 1, there exsits t with t = 1, . . . , n − 1, such
that gcd(2n, s−1) = 2t. If n−m ≤ t ≤ n−1, then α(b2m) = a2mrb2ms = b2m(s−1)b2m = b2m .
But b2m

/∈ Bv. Thus 1 ≤ t ≤ n − m − 1. Hence s − 1 = 2tk′ where k′ is odd.
If j = 2n−mh, where h is odd, then

α(a2m−1
b2n−t−1) = α(a)2m−1

α(b)2n−t−1

= a2m−1ib2m−1ja2n−t−1rb2n−t−1s

= a2m−1
a2m−1(i−1)b2m−1jb2n−t−1s

= a2m−1
b2m−1jb2n−t−1(s−1)b2n−t−1

= a2m−1
b2m−1j+2n−t−1(s−1)b2n−t−1

.

Since 2m−1j + 2n−t−1(s − 1) = 2n−1h + 2n−1k′ = 2n−1(h + k′) and h + k′ is even, 2m−1j +
2n−t−1(s−1) ≡ 0 (mod 2n), we have α(a2m−1

b2n−t−1) = a2m−1
b2n−t−1 . But a2m−1

b2n−t−1
/∈

Bv.
If j = 2n−mh, where h is even, then

α(a2m−1
b2n−t) = α(a)2m−1

α(b)2n−t

= a2m−1ib2m−1ja2n−trb2n−ts

= a2m−1
a2m−1(i−1)b2m−1j b2n−ts

= a2m−1
b2m−1jb2n−t(s−1)b2n−t

= a2m−1
b2m−1j+2n−t(s−1)b2n−t

.

Since 2m−1j + 2n−t(s − 1) = 2n−1h + 2nk′ = 2n−1(h + 2k′) and h + 2k′ is even, 2m−1j +
2n−t(s−1) ≡ 0 (mod 2n). Hence α(a2m−1

b2n−t) = a2m−1
b2n−t . But a2m−1

b2n−t
/∈ Bv. Thus

Bv is not an Acentralizer. �
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In the following theorem we show that |Acent(G)|, where G ∼= Z2m × Z2n is less than
the number of subgroups of G.

Theorem 3.3. Let G ∼= Z2m × Z2n , where m ≤ n, then

|Acent(G)| = (m + 1)(n + 1) +
m−1∑
k=0

(m − k)(n − k)(2k+1 − 2k) − (n − m − 2 + 2m+1).

Proof. Using the notation of the proof of Theorem 3.1, we have,{
(i − 1)x + ry = 0 (mod 2m),
jx + (s − 1)y = 0 (mod 2n).

(2)

Let Au = 〈a2m−u〉 be the unique subgroup of A of order 2u, u = 0, 1, . . . , m; and let
Bv = 〈b2n−v 〉 be the unique subgroup of B of order 2v, v = 0, 1, . . . , n. Then G has
(m + 1)(n + 1) subgroups of the form Au × Bv, u = 0, . . . , m, v = 0, . . . , n. By Lemma
3.2 , Au = 〈a2m−u〉 for u = 0, 1, . . . , m and Bv = 〈b2n−v 〉 for v = 1, . . . , n − m − 1 are not
Acentralizers. For every u = 1, . . . , m and v = 1, . . . , n we find an automorphism α of G
inducing identity just on Au × Bv. If we choose i = 1 + 2u, j = 0, r = 0, and s = 1 + 2v

then α defined by α(a) = a1+2u and α(b) = b1+2v is an automorphism of G, such that
CG(α) = Au × Bv. For u = 0 and v = n − m, . . . , n we find an automorphism α of G
inducing identity just on Au × Bv. If we choose i = 1, j = 2n−m, r = 2m−n+v, and s = 1
then α defined by α(a) = ab2n−m and α(b) = a2m−n+v

b is an automorphism of G, such that
CG(α) = Au × Bv.
Also by Lemma 3.2, Du,v,t, v ≤ u are not Acentralizers. For other Du,v,t the proof is
similar to Theorem 3.1. Hence

|Acent(G)| = (m + 1)(n + 1) +
m−1∑
k=0

(m − k)(n − k)(pk+1 − pk)

−[(m + 1) + (n − m − 1) + [(2 − 1) + . . . + (2m − 1)]]

= (m + 1)(n + 1) +
m−1∑
k=0

(m − k)(n − k)(pk+1 − pk)

−[n − m − 2 + 2m+1]
and the resut follows. �

In the rest of the paper we find the Acentralizers of infinite two generator Abelian
groups. We start with free Abelian groups. Let G be a free Abelian group of rank 2.
Note that Aut(G) = GL2(Z), the group of invertible 2 by 2 matrices over Z. If {a, b} is
a basis of G and α is an automorphism of G, then α(a) = aibj and α(b) = arbs, where
i, j, r, s ∈ Z, and is − jr 6= 0. Since

CG(α) = {axby | aix+rybjx+sy = axby},

the elements of CG(α) is of the form axby, where (x, y) is a solution of the following
equation {

(i − 1)x + ry = 0
jx + (s − 1)y = 0.

Let H be a non-trivial subgroup of G. First suppose that rank(H) = 1. Then there exists
a basis {a, b} of G such that {au}, where u is a positive integer, is a basis of H. If u = 1,
then H = 〈a〉 and so H = CG(α), where α is an automorphism of G defined by α(a) = a
and α(b) = ab. We claim that if u > 1, then there is no automorphism α with CG(α) = H.
Suppose that CG(α) = H, for some α ∈ Aut(G). Since au = α(au) = aiubju, j = 0, and
i = 1 and so α(a) = a. Thus 〈a〉 ≤ CG(α) = H, and so u = 1, which is contradiction.
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Suppose that rank(H) = 2. Then there exists a basis {a, b} of G such that {au, bv},
where u and v are positive integers with u | v, is a basis of H. We find an automorphism α
such that H = CG(α). If u+v+1 6= 0, then we define α(a) = a1+vb−v and α(b) = a−ub1+u

(that is i − 1 = v, j = −v, r = −u, and s − 1 = u). If u + v + 1 = 0, then we define
α(a) = au2+u+1bu2+u−2 and α(b) = a−u2

b1−u2 (that is i − 1 = u2 + u, j = u2 + u − 2,
r = −u2, and s − 1 = 1 − u2). In any case it is easy to see that H = CG(α).

Let G = A × B, where A = 〈a〉 ∼= Z and B = 〈b〉 ∼= Zn. If α is an automorphism of G,
then α(a) = aibj and since α(b) is of finite order, α(b) = bs, where gcd(n, s) = 1. Since B is
a characteristic subgroup of G, it follows that a subgroup of A is not an Acentralizer of G.
Suppose that C is a subgroup of G and α is an automorphism of G such that C = CG(α).
Since axby ∈ CG(α) if and only if axby = aixbjxbsy, it follows that the elements of CG(α)
are in the form axby, where {

(i − 1)x = 0
jx + (s − 1)y = 0 (mod n).

(3)

Case I: If i 6= 1, then x = 0. So C = CG(α) is a subgroup of B. For any divisor d of n, let
Bd = 〈bn/d〉 be the unique subgroup of order d. It is easy to see that such automorphism
exists. In fact if we define α(a) = a2b and α(b) = b1+d, then α is an automorphism of G
and CG(α) = Bd.
Case II: If x 6= 0, then i = 1. Let t = gcd(j, n). Then α(an/t) = an/tbnj/t = an/t(bj/t)n

and so an/t ∈ CG(α). If aℓ = α(aℓ), then aℓ = aℓbjℓ and n | jℓ. Therefore n
t | j

t ℓ and
so n

t | ℓ. Hence x is a multiple of n/t. It follows that by ∈ CG(α) and n | (s − 1)y. Let
v = gcd(s − 1, n). Then n

v | s−1
v y and so n

v | y. Hence bn/v ∈ CG(α). It follows that
CG(α) = 〈an/t〉 × 〈bn/v〉.

It is easy to see that such automorphism exists. In fact, if t and v are two arbitrary
divisors of n then α(a) = abt and α(b) = b1+v defines an automorphism of G and CG(α) =
〈an/t〉 × 〈bn/v〉.
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