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Abstract
We discuss the controllability of nonlinear fractional control system with control delay.
Firstly we obtain result about controllability of a linear fractional control system. After
that, we give sufficient condition for the controllability of nonlinear fractional system
with control delay. Our approach is based on Schauder fixed point theorem. At the end
numerical example is constructed to support the result.
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1. Introduction
The fractional differential equations have attracted increasing attention in the

past three decades, since it is a very useful and valuable tool in modeling the dynamics
of processes through complex media in so many different applied topics, for details see
([6, 8, 9, 18, 19, 21, 26, 27]). Many mathematicians, engineers and physicists have their
contributions in fractional differential equations theory and in its applications. Fractional
derivatives have several kinds, such as Caputo, Riemann-Liouville, Grunwald-Letnikov and
Hadamard etc. Nowadays research on fractional delay differential equations has become
on its initial stage, but the theory of delay differential equations is well developed. For
details see references ([1, 5, 10–13,16,25]).

The controllability plays a major role in the development of modern mathematical
control theory and engineering which has a close connection with structural decomposition,
quadratic optimal and so on, see ([14,17,22–24]). Controllability is a qualitative property
in the theory of dynamical system ([2,4,7]). This means by using some admissible control
and some finite time it is possible to steer any initial state of the system to any final
state. For finite and infinite dimensional spaces controllability plays a major role, that
is, by ordinary and partial differential equations system is represented. Controllability
of linear system with delay, nonlinear system with delay and integro-differential systems
with delay system has been studied. The work on the controllability of fractional control
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system with control delay is discussed by [15] and controllability of nonlinear fractional
delay dynamical system has been reported by [20] and the work on the controllability of
nonlinear higher order fractional dynamical system is reported by [3] this motivate us to
work on the controllability of nonlinear fractional system with control delay. The result
for the controllability of fractional linear system is given and then sufficient conditions
for controllability of nonlinear fractional systems are established by using the Schauder
fixed point theorem. It is also noticed that most of the real systems, such as economic,
spaceflight, physiological, biological systems having the phenomena of time delay in the
control system.

The main purpose of this paper is to establish the controllability criteria for a fractional
nonlinear system with control delay by using fixed point methods, namely the Schauder
fixed point theorem. The organization of this paper follows; Section 2 includes some basic
definitions, preliminary results and lemmas to prove the controllability of fractional linear
system with control delay. In Section 3 we obtain the sufficient condition for controllability
of fractional nonlinear system with control delay. In Section 4, an example is given to
explain the applicability of the results.

In this paper we study the fractional nonlinear systems with control delay
cDαx(t) = Ax(t) +Bu(t) + Cu(t− τ) + f(t, x(t), u(t), u(t− τ)), t ≥ 0,
x(0) = x0,
u(t) = ψ(t), −τ ≤ t ≤ 0,

(1.1)

where cDαx(t) denotes α order Caputo fractional derivative of x(t), 0 < α ≤ 1, x(t) ∈ Rn

is state vector, u(t) ∈ Rm is control vector, A ∈ Rn×n, B, C ∈ Rn×m are any matrices,
τ > 0 is time control delay, and ψ(t) is the initial control function.

2. Preliminaries and essential lemmas
This part includes some basic definitions and results used throughout this paper and

some lemmas for main results. Let us recall following known definitions. For more detail,
see ([18,19]).

Definition 2.1. Caputo’s fractional derivative of order α (0 ≤ m ≤ α < m + 1) for a
function f : R+ → R is defined as

cDαf(t) = 1
Γ(m− α+ 1)

∫ t

0

f (m+1)(θ)
(t− θ)α−m

dθ.

Here Γ(·) is the Gamma-Function. The Laplace transform of the Caputo’s fractional
derivative is

L{f(t); (s)} = F (s)

L{cDαf(t)}(s) = sαF (s) −
n−1∑
k=0

f (k)(0+)sα−1−k.

Where f be a real or complex-valued function of the variable t > 0 and s be a real or
complex parameter.

Definition 2.2. Riemann-Liouville’s fractional integral of order α > 0 for a function
f : R+ → R is defined as

D−αf(t) = 1
Γ(α)

∫ t

0
(t− θ)α−1f(θ)dθ.

Here Γ(·) is the Gamma-Function.
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Remark 2.3. Consider the Mittag-Leffler function

Eα,β(z) =
∞∑

k=0

zk

Γ(αk + β)
, α > 0, β > 0.

For β = 1, ML function becomes

Eα(λzα) = Eα,1(λzα) =
∞∑

k=0

λkzkα

Γ(αk + 1)
, λ, z ∈ C

For β = 1, the ML function has following property
cDα

+0Eα(λtα) = λEα(λtα)
The Laplace transforms of Mittag-Leffler function is

L{tβ−1Eα,β(±atα)}(s) = sα−β

(sα ∓ a)
.

Particularly, for β = 1

L{Eα(±atα)}(s) = sα−1

(sα ∓ a)
.

Definition 2.4. The system (2.1) is said to be controllable if one can reach any state
from any admissible initial state and initial control.

Consider the linear fractional system with control delay of the form


cDαx(t) = Ax(t) +Bu(t) + Cu(t− τ), t ≥ 0,
x(0) = x0,
u(t) = ψ(t), −τ ≤ t ≤ 0,

(2.1)

where cDαx(t) denotes α order Caputo fractional derivative of x(t), 0 < α ≤ 1, x(t) ∈
Rn is state vector, u(t) ∈ Rm is control vector,A ∈ Rn×n, B, C ∈ Rn×m are any matrices,
τ > 0 is time control delay, and ψ(t) the initial control function.

Lemma 2.5. The general solution of the system (2.1) is written as

x(t) = Eα(Atα)x0 +
∫ t

0
(t− s)α−1Eα,αA(t− s)αBu(s)ds

+
∫ t−τ

−τ
(t− τ − s)α−1Eα,αA(t− τ − s)αCu(t− τ)ds.

Proof. Consider the linear fractional differential equation with control delay of the form
cDαx(t) = Ax(t) +Bu(t) + Cu(t− τ), (2.2)

By taking Laplace transformation of the both sides of equation (2.2) we get
SαX(s) − Sα−1x0 = AX(s) + L[Bu(t) + Cu(t− τ)]

and by the simple calculations we have
X(s) = Sα−1(SαI −A)−1x0 + (SαI −A)−1L[Bu(t) + Cu(t− τ)]

by applying inverse Laplace transformation
x(t) = L−1{X(s)} = L−1{Sα−1(SαI−A)−1}x0+L−1{(t)α−1Eα,αA(t)α.L(Bu(t)+Cu(t−τ))}
here

= Eα(Atα)x0 + tα−1Eα,αA(t)α ∗ [(Bu(t) + Cu(t− τ)]
now by applying convolution of Laplace transform we get

tα−1Eα,αA(t)α ∗ [(Bu(t)+Cu(t−τ)] =
∫ t

0
(t−s)α−1Eα,αA(t−s)α(Bu(s)ds+Cu(t−τ))ds.
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x(t) = Eα(Atα)x0 +
∫ t

0
(t− s)α−1Eα,αA(t− s)α(Bu(s)ds+ Cu(t− τ))ds.

x(t) = Eα(Atα)x0 +
∫ t

0
(t− s)α−1Eα,αA(t− s)αBu(s)ds

+
∫ t−τ

−τ
(t− τ − s)α−1Eα,αA(t− τ − s)αCu(t− τ)ds.

Where Eα(Atα) is the matrix extension of the mentioned Mittag-Leffler function with the
following representation:

Eα(λzα) =
∞∑

k=0

λkzkα

Γ(αk + 1)
.

by using a property in [16] which can also be written as

x(t) = Eα(Atα)x0 +
∫ t−τ

0
(t− s)α−1Eα,αA(t− s)αBu(s)

+(t− τ − s)α−1Eα,αA(t− τ − s)αCu(t− τ)ds

+
∫ t

t−τ
(t− s)α−1Eα,αA(t− s)αBu(s)ds

+
∫ 0

−τ
(t− τ − s)α−1Eα,αA(t− τ − s)αCψ(s)ds.

And consider the corresponding nonlinear system represented in system (1.1) its solution
can be written as

x(t) = Eα(Atα)x0 +
∫ t

0
(t− s)α−1Eα,αA(t− s)αBu(s) + Cψ(s)ds

+
∫ t

0
(t− s)α−1Eα,αA(t− s)αf(s, x(s), u(s), u(s− τ))ds.

�
Definition 2.6. We call the set as in [15] R(x0, ψ)={ν | there exists t1 > 0, u(t) ∈ C l−1,
such that the solution of the system (1.1) x(t, x0, ψ) satisfies that x(t1, x0, ψ)=ν} the
reachable set of (2.1) x(0) = x0 and u(t) = ψ(t),−τ ≤ t ≤ 0.

Lemma 2.7 ([15]). The linear fractional control system with control delay for system
(2.1) is controllable if and only if

rank[B,AB,A2B, ...An−1B,C,AC,A2C,A3C, ..., An−1C] = n.

3. Main results
Consider a nonlinear control system with control delay represented by a form of

fractional differential equation in system (1)
Where cDαx(t) denotes α order-Caputo fractional derivative of x(t), 0 < α ≤ 1. x(t) ∈

Rn is state vector, u(t) ∈ Rm is control vector, A ∈ Rn×n, B, C∈ Rn×m are any matrices,
and A is a n × n matrix and B is a n × m matrix and C is also a n × m matrix and
f : J ×Rn ×Rm ×Rm → Rn is continuous τ > 0 is time control delay, and ψ(t) the initial
control function. Let us introduce the following notation, denote Q as Banach space of
continuous Rn × Rm × Rm valued functions defined on the interval J with the norm

∥(x, u)∥ = ∥x∥ + ∥u∥
where

∥x∥ = sup{|x(t)| : t ∈ J},
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and
∥u∥ = sup{|u(t)| : t ∈ J},

that is Q = Cn(J)×Cm(J)×Cm(J) where Cn(J) is the Banach space of continuous Rn valued
function defined on the interval J with the sup norm for each (z, ν) ∈ Q the solution of
the above system (1.1) is

x(t) = Eα(Atα)x0 +
∫ t

0
(t− s)α−1Eα,αA(t− s)αBu(s)

+Cψ(s)ds+
∫ t

0
(t− s)α−1Eα,αA(t− s)αf(t, x(t), u(t), u(t− τ))ds.

Now we obtain our main result on the controllability of the nonlinear fractional control
delay system (1.1), for this we take

p = (x, u, u′) ∈ Rn × Rm × Rm

and let
|p| = |x| + |u| + |u′|,

for t ∈ [0, τ ] = J where u(t) = ψ(t) at −τ ≤ t ≤ 0.

Theorem 3.1. Let the continuous function f satisfy the condition

lim
|p|→∞

|f(t, p)|
|p|

= 0

uniformly in t ∈ J and suppose that the nonlinear system (1.1) is controllable on J.

Proof. Let x ∈ Rm and Q be the Banach space of all functions where x is continuous and
u is an admissible control function, with norm defined by

∥(x, u)∥ = ∥x∥ + ∥u∥,
Define the operator

T : Q → Q

by
T (x, u) = (z, ν)

for t ∈ [0, τ ]

W =
∫ t

0
(t− s)α−1[Eα,αA(t− s)αB][Eα,αA(t− s)αB]∗ds

where
ν(t) = B∗Eα,αA

∗(t− s)αw−1[x1 − Eα(Atα)x0]

−
∫ t

0
(t− s)α−1Eα,αA(t− s)αf(s, x(s), u(s), u(s− τ))ds,

z(t) = Eα(Atα)x0 +
∫ t

0
(t− s)α−1Eα,αA(t− s)αBu(s) + Cψ(s)ds

+
∫ t

0
(t− s)α−1Eα,αA(t− s)αf(s, x(s), u(s), u(s− τ))ds,

a1 = sup∥Eα,αA(t− s)α∥, a2 = sup∥Eα(Atα)x0∥,
a = max{a1b

αα−1∥B∥, 1}, c1 = 6a1
2bα∥B∗∥∥w−1∥α−1,

c2 = 6a1b
αα−1, c = max{c1, c2},

d1 = 6a1∥B∗∥∥w−1∥[|x1| + a2], d2 = 6a2, d = max{d1, d2}
sup|f | = sup|f(s, x(s), u(s), u(s− τ))| where s ∈ J
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Then
|ν(t)| ≤ ∥B∗∥a1∥w−1∥[|x1| + a2 + bαa1α

−1 sup|f |]

≤ [d1
6a

+ c1
6a

sup|f |]

≤ 1
6

[d+ c sup|f |],

for t ∈ J ,and

|z(t)| ≤ a2 + a1b
α∥B∥

6aα
[d+ c sup|f |] + a1b

α

α
sup|f |

≤ d

6
+ 1

6
[d+ c sup|f |] + c

6
sup|f |

≤ d

6
+ c

6
sup|f | for t ∈ J.

The function f satisfies the following conditions by proposition in [6], f satisfied the
following conditions: for each pair of positive constants c and d, there exists a positive
constant r, such that if |p| ≤ r, then

c|f(t, p)| + d ≤ r for all t ∈ J. (3.1)
For given c and d , if r is a constant then the inequality in (3.1) is satisfied. Then any

r1 such that r < r1 will also satisfy the inequality. Now, take c and d as given above and
let r be chosen so that the implication in (3.1) inequality is satisfied. Therefore if

∥x∥ ≤ r/3
and

∥u∥ ≤ r/3,
then

|x(s)| + |u(s)| + |u(s− τ)| ≤ r for all s ∈ J.

It follows that
d+ c sup|f | ≤ r for s ∈ J.

And therefore, |ν(t)| ≤ r/6a for all t ∈ J , and hence ∥ν∥ ≤ r/6a. It follows that |z(t)| ≤
r/3 + r/3 for all t ∈ J , and hence that ∥z∥ ≤ r/3 thus we have proved that if

Q(r) = {(x, u) ∈ Q/∥x∥ ≤ r/3, ∥u∥ ≤ r/3},
then p maps Q(r) itself. Our objective is to prove that T has a fixed point since f is
continuous, it follows T is continuous. Let Q′ be a bounded subset of Q. Consider a
sequence {zi, νi} contained in T (Q′) where we let

{zi, νi} = T{xi, ui}
for some (xi, ui) ∈ Q′ for i = 1, 2, 3... Since f is continuous, then

|f(s, x(s), u(s), u(s− τ))|
is uniformly bounded for all s ∈ J and all i = 1, 2, 3..., it follows that {zi, νi} is a bounded
sequence in Q. Hence {νi(t)} is equicontinuous and a uniformly bounded sequence on
[−τ, t1]. Since each νi(t) has both right and left limits at t = 0 and t = t1 − τ , we
can apply Ascoli’s theorem on [0, t1 − τ ] to the sequence {νi(t)}. Therefore there exist a
subsequence of {νi(t)} which converges uniformly to a continuous function on [0, t1 − τ ].
Now apply Ascoli’s theorem again to this subsequence to obtain a further subsequence
which converges uniformly to a continuous function on [t1 − τ, t1] a further application
of Ascoli’s theorem yields a further subsequence of {zi, νi} which converges in Q to some
(x0, u0). It follows that T (Q′) is sequentially compact, hence the closure is sequentially
compact. Thus T is completely continuous. Since Q(r) is closed, bounded and convex,
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the Schauder fixed-point theorem implies that T has a fixed point (x, u) ∈ Q(r). It follows
that

x(t) = Eα(Atα)x0 +
∫ t

0
(t− s)α−1Eα,αA(t− s)αBu(s) + Cu(t− τ)ds

+
∫ t

0
(t− s)α−1Eα,αA(t− s)αf(s, x(s), u(s), u(s− τ))ds.

For t ∈ J, and u(t) = ψ(t) for t ∈ [0, t]. Hence x(t) is a solution of system (1.1) and

x(t) = Eα(Atα)x0 +
∫ t

0
(t− s)α−1Eα,αA(t− s)αBB∗Eα,αA

∗(t− s)αw−1[x1 − Eα(Atα)x0

−
∫ t

0
(t− s)α−1Eα,αA(t− s)αf(s, x(s), u(s), u(s− τ))ds

+
∫ t

0
(t− s)α−1Eα,αA(t− s)αf(s, x(s), u(s), u(s− τ))ds = x1.

so the system (1.1) is controllable on J . �
Corollary 3.2. Let the continuous function f be bounded on J ×Rn ×Rm ×Rm, suppose
system (2.1) is controllable on J then system (1.1) is controllable on J.

4. Examples
In this section, we will apply the results we obtained in the previous section for

nonlinear fractional system with control delay.

Example 4.1.
cDαx(t) = Ax(t) +Bu(t) + Cu(t− τ) + f(t, x(t), u(t), u(t− τ)),

x(0) = x0 for t ∈ J and 0 < α < 1 where A =
(

1 2
−2 0

)
, B =

(
1 0
0 2

)
, C =

(
1 0
0 1

)
and f(t, p) =

( x1
1+x2

2+u2(t)+u2(t−τ)
x2

1+x2
1+u2(t)+u2(t−τ)

)
. Here x(t) =

(
x1(t)
x2(t)

)

W =
∫ t

0
(t− s)α−1[Eα,αA(t− s)αB][Eα,αA(t− s)αB]∗ds

α = 1
2

[Eα,αA(t− s)α] = 1√
π

(
1 0
0 1

)
−
(

1 2
−2 0

)
(1 − s)

1
2

[Eα,αA
∗(t− s)α] = 1√

π

(
1 0
0 1

)
−
(

1 −2
2 0

)
(1 − s)

1
2

BB∗ =
(

1 0
0 4

)
w[0, 1] =

∫ 1

0
(1 − s)

−1
2

[ 1√
π

(
1 0
0 1

)
−
(

1 2
−2 0

)
(1 − s)

1
2

](
1 0
0 4

)

×
[ 1√

π

(
1 0
0 1

)
−
(

1 −2
2 0

)
(1 − s)

1
2

]
ds

≈

 −2−2
√

π
π − 34

3
4
3 − 6√

π

− 6√
π

+ 4
3 − 8√

π
− 8

3


As w[0, 1] is non singular so the nonlinear function f(t, p) is bounded and continuous
and all conditions stated in theorem 3.1 are satisfied. Hence the fractional system is
controllable on [0, 1].
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Remark 4.2. The impulsive effect condition will be difficult, we can consider it in future
work.
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