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ABSTRACT
In this paper, we have shown that the polynomials associated with

the cyclically presented groups obtained from the word w  generated with
Dunwoody parameters 1 1 1 3

2 2 2 2(1, ,0, 2), (1, ,0, ), ( ,1,0, ), ( ,1,0, )k k k kk k k     ,

where k is an odd positive integer and 2d k  , coincide (up to sign)
with the Alexander polynomial of the torus knot ( , 2)K d .

Key words: Alexander polynomial, cyclic presentation, Dunwoody
parameters, Torus knots.

ÖZET

Bu çalışmada, k  pozitif tek tamsayı ve 2d k   olmak üzere
1 1 1 3

2 2 2 2(1, ,0, 2), (1, ,0, ), ( ,1,0, ), ( ,1,0, )k k k kk k k      Dunwoody parametre-
lerine karşılık gelen w  kelimesinden elde edilen devirli temsillenen
gruplarla eşlenen polinomların ( , 2)K d  tor düğümünün Alexander
polinomu ile çakıştığı gösterilmiştir.

Anahtar kelimeler: Alexander polinomu, Devirli temsil, Dunwoody
parametreleri, Torus düğümleri.
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1. INTRODUCTION

In order to investigate the relations between cyclic branced
covering of knots in 3S and manifolds admitting cyclically presented
fundemental groups, M. J. Dunwoody introduced in (Dunwoody,
1995) a class of 3-manifolds depending on six integer parameters. An
interesting problem is to find the Dunwoody parameters of the cyclic
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branced coverings of important classes of (1,1)-knots, in particular
when the knots lies in 3S . This type of result has been obtained in
(Grasselli and Mulazzani, 2001) for all 2-bridge knots. Aydin et al.
(2003) obtained the Dunwoody parameters for all cyclic branced
coverings of torus knots of type ( , 1)K p mp  , with 0m  and 1p  .

In this paper we show the polynomials associated with the
cyclically presented groups obtained from the word w  generated
with Dunwoody parameters are equal to the Alexander polynomial
of torus knot ( , 2)K d .

2. MATERIALS AND METHODS

Let nF  be the free group on free generators 0 1 2 1, , , , nx x x x  .
Let : n nF F   be the automorphism such that

1 1 0( ) , 0,1, , 2, ( )i i nx x i n x x      .

For nw F , ( )nG w  is defined as ( ) /n nG w F R where R  is

the normal closure in nF of the set  2 1, ( ), ( ), , ( )nw w w w   

(Johnson, 1990). For a reduced word nw F , the cyclically presented
group ( )nG w  is given by

( )nG w = 1
0 1 1, , , | , ( ), , ( )n

nx x x w w w  
    (Grasselli and

Mulazzani, 2001).

Definition 2.1: A group G  is said to have a cyclic presentation if
( )nG G w  for some n  and w  (Cavicchioli, et al. 2001).

The polynomial associated with the cyclically presented group

( )nG G w  is given by
1

0
( )

n
i

i
i

f t a t






where ia  is the exponent sum of ix  in , 1w i n   (Dunwoody, 1995) .

Let , , ,a b c n  be integers such that 0n  , , , 0a b c   and

0a b c   . Let ( , , )a b c  be the graph shown in Figure 1. This is an
infinite graph with an automorphism   such that 1( )n nu u   and
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1( )n nv v  . The labels indicate the number of edges joining a pair of
vertices. Thus, there are a  edges joining 1u  and 2u . We see that the

( , , )a b c  is d-regular where 2d a b c   . Let ( , , )n n a b c   denote

the graph obtained from ( , , )a b c  by identifying all edges and
vertices in each orbit of n . Thus n  has 2 n  vertices (Dunwoody,
1995).

nu a 1nu

c c c

nv a 1nv

          Figure 1.

We say that the 6-tuple ( , , , , , )a b c r s n  has property M  if it
corresponds to the Heegaard diagram of a 3-manifold. An algorithm
determining which 6-tuples have property M  is now described. Put

2d a b c    and let

 ,  1,  ,  1,  1,  2, ,X d d d      .

Let ,   be the permutations of X defined as follows:

(1, )(2, 1) ( , 1)( 1, 1)( 2, 2)
( , )( 1, 1)( 2, 2) ( , )( 1, )

d d a d a a a c a a c
a b a c b a b a a b a a b c a c d

            
                 

 



and

 
( ) ,  if 0 and or 0 and 0
( ) , if 0

j r j j r d j j r
j

j r d j r


       
     

b
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The following theorem characterizes the 6-tuples
( , , , , , )a b c r s n  that have property M . Detail and the proof of this
theorem can be found in (Dunwoody, 1995).

Theorem 2.1: Let 2d a b c    be odd. The 6-tuple
( , , , , , )a b c r s n has property M  if and only if the following two
conditions hold simultaneously:

(i).   has two cycles of length d

(ii). 0  (mod )ps q n 

where p  is the difference between the number of arrows pointing
down the page and the number of arrows pointing up, whereas q  is
the number of arrows pointing from left to right minus the number of
arrows pointing from right to left in the oriented path determined by
 . The entries in the first cycle of   contain one vertex from each
line segment of the diagram. There exists an integer s  such that

0 (mod ).ps q n  The first cycle of   and the value of s  can also
be used to calculate the word w  of the corresponding cyclic
presentation.

Recall that ( , ) ( , )K p q K p q   if and only if ( , )p q  is equal to
one of the following pairs: ( , ), ( , ), ( , ), ( , )p q q p p q q p     and that

( , ) ( , )K p q K p q     (Burde and Zieschang, 1985).

The Alexander polynomial of the torus knot ( , ), 2K p q p q   is

1
,

(1 )(1 )( ) 1
(1 )(1 )

pq
q pq p q pq p q

p q p q

t tt t t t t
t t

     
       

 


(Cavicchioli et al. 1999).

3. RESULTS AND DISCUSSIONS

We can now state our theorems:

Theorem 3.1 Theorem 3.1 (Ankaralioglu and Aydin, 2008): The
cyclically presented groups obtained from the word w  generated
with Dunwoody parameters (1, ,0, 2)b  are isomorphic to the groups
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 ( 1) / 2,S d d  when b  is an odd positive integer and
2d a b c   .

Theorem 3.2: The polynomial associated with the cyclically presented
group obtained from the word w  generated with Dunwoody
parameters (1, ,0, 2)k , where k  is an odd positive integer
and 2d k  , coincides with the Alexander polynomial of the torus
knot ( , 2)K d .

Proof: As stated in the proof of theorem 3.1, the defining word w
corresponding to Dunwoody parameters (1, ,0, 2)k  has the following
form

1 1 1 1 1
1 1 3 2 0 1 3 5... ... ,k k k kx x x x x x x x x    
   (1)

where 2d k  .

The corresponding polynomial with (1) is
2 1( ) 1 ... k kf t t t t t                                                      (2)

or more generally
1

1

0
( ) ( 1)    ,   0(mod )

k
j j

j
f t t j d






   .

According to the values   and  2p d q   , the Alexander
polynomial of the torus knot ( , 2)K d  is

2 2
2 1

2

(1 )(1 ) 1 1( ) 1 ... .
(1 )(1 ) 1 1

d d k
k k

d

t t t tt t t t t
t t t t


   

          
   

(3)

Note that (2) and (3) are equivalent. This completes the proof.

Theorem 3.3 (Ankaralioglu and Aydin, 2008): The cyclically
presented group obtained from the word w  generated with
Dunwoody parameters (1, ,0, 2)b d   has the cyclic presentation

1 2 1 3 5 2 2 5 3 1, , ..., | ... ...d i d i d i d i i i b i b i i ix x x x x x x x x x x x x               ,

when b  is an odd positive integer and 2d a b c   .
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Theorem 3.4: The polynomial associated with the cyclically presented
group obtained from the word w  generated with Dunwoody
parameters (1, ,0, )k k  where k  is an odd positive integer and

2d k  , coincides  with the Alexander polynomial of  the torus
knot ( , 2)K d .

Proof: As stated in the proof of theorem 3.3, the defining word w
corresponding to Dunwoody parameters (1, ,0, )k k  has the following
form

1 1 1 1
1 3 5 1 1 3 2 0 ,k k k kx x x x x x x x x   

                                                   (4)

where 2d k  .

The corresponding polynomial with (4) is
2 1( ) 1 ... k kf t t t t t             (5)

or more generally
1

0
( ) ( 1)    ,   0(mod )

k
j j

j
f t t j d





   .

According to the values   and  2p d q   , the Alexander polynomial
of the torus knot ( , 2)K d  is

2 2
2 1

2

(1 )(1 ) 1 1( ) 1 ... .
(1 )(1 ) 1 1

d d k
k k

d

t t t tt t t t t
t t t t


   

         
   

(6)

Note that (5) and (6) are equivalent. The proof is complete.

Lemma 3.1 (Cattabriga and Mulazzani, 2005):

a) ( , , , )K a b c r  and ( , , , )K a c b r  are equivalent;

b) ( ,0, , )K a c r  and ( , ,0, )K a c r  are equivalent.

Observe that not every 4-tuple of non-negatif integers
( , , , )a b c r determines a torus knot.

It can be easily seen that the polynomials associated with the
cyclically presented groups obtained from the word w  generated
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with Dunwoody parameters (1, ,0, 2)k  and (1,0, , 2)k , and (1, ,0, )k k
and (1,0, , )k k , where k  is an odd positive integer, are equivalent and
coincide  with the Alexander polynomial of the torus knot ( , 2)K d .

Theorem 3.5 (Ankaralioglu and Aydin, 2008) : The cyclically
presented group obtained from the word w  generated with
Dunwoody parameters ( ,1,0, )a a  has the cyclic presentation

1 1
1 2 1 2 3 4 3 2 1, ,..., | ...d i d i i d i d i d i i ix x x x x x x x x x x 

             ,

when a  is a positive integer and 2d a b c   .

Theorem 3.6: The polynomial associated with the cyclically presented
group obtained from the word w  generated with Dunwoody
parameters 1 1

2 2( ,1,0, )k k  , where k  is an odd positive integer and
2d k  , coincides  with the Alexander polynomial of  the torus

knot ( , 2)K d .

Proof: As stated in the proof of theorem 3.5, the defining word w
corresponding to Dunwoody parameters 1 1

2 2( ,1,0, )k k   has the
following form

1 1 1 1
1 2 3 2 1 1 0 ,k k k kx x x x x x x x   

                                                   (7)

where 2d k  .

The corresponding polynomial with (7) is
2 1( ) 1 ... k kf t t t t t                                                  (8)

or more generally
1

0
( ) ( 1)    ,   0(mod )

k
j j

j
f t t j d





   .

According to the values   and  2p d q  , the Alexander
polynomial of the torus knot ( , 2)K d  is

2 2
2 1

2

(1 )(1 ) 1 1( ) 1 ... .
(1 )(1 ) 1 1

d d k
k k

d

t t t tt t t t t
t t t t


   

         
   

  (9)

Note that (8) and (9) are equivalent. We are done.
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Theorem 3.7 (Ankaralioglu and Aydin, 2008) : The cyclically
presented group obtained from the word w  generated with
Dunwoody parameters ( ,1,0, 1)a a   has the cyclic presentation

1 1
1 2 1 2 3 4 3 2 1, ,..., | ...d i i i i d i d i d i i dx x x x x x x x x x x 

             ,

when a  is a positive integer and 2d a b c   .

Theorem 3.8: The polynomial associated with the cyclically presented
group obtained from the word w  generated with Dunwoody
parameters 1 3

2 2( ,1,0, )k k  , where k  is an odd positive integer and
2d k  , coincides  with the Alexander polynomial of  the torus

knot ( , 2)K d .

Proof: As stated in the proof of theorem 3.7, the defining word w
corresponding to Dunwoody parameters 1 3

2 2( ,1,0, )k k   has the
following form

1 1 1 1
1 0 1 2 3 2 1...k k k kx x x x x x x x   
    ,                                              (10)

where 2d k  .

The corresponding polynomial with (10) is
2 1( ) 1 ... k kf t t t t t                                                  (11)

or more generally
1

1

0
( ) ( 1)    ,   0(mod )

k
j j

j
f t t j d






   .

According to the values   and  2p d q   , the Alexander polynomial
of the torus knot ( , 2)K d  is

2 2
2 1

2

(1 )(1 ) 1 1( ) 1 ...
(1 )(1 ) 1 1

d d k
k k

d

t t t tt t t t t
t t t t


   

          
   

.          (12)

Note that (11) and (12) are equivalent. This completes the proof.

It can be easily seen that the polynomials associated with the
cyclically presented groups obtained from the word w  generated
with Dunwoody parameters 1 1

2 2( ,1,0, )k k   and 1 1
2 2( ,0,1, )k k  , and
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1 3
2 2( ,1,0, )k k   and 1 3

2 2( ,0,1, )k k  , where k  is an odd positive integer,
are equivalent and coincide  with the Alexander polynomial of the
torus knot ( , 2)K d .

Corollary 3.1: The polynomials associated with the cyclically
presented groups obtained from the word w  generated with
Dunwoody parameters

1 1 1 1 1 3 1 3
2 2 2 2 2 2 2 2(1, ,0,2),(1,0, ,2),(1, ,0, ),(1,0, , ),( ,1,0, ),( ,0,1, ),( ,1,0, ),( ,0,1, )k k k k k k k kk k k k k k        

, where k  is an odd positive integer and 2d k  , coincide (up to
sign) with the Alexander polynomial of  the torus knot ( , 2)K d .
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