CYCLIC PRESENTATIONS AND TORUS KNOTS K(d, 2)

DEVİRLİ TEMSİLLER VE K(d, 2) TOR DÜĞÜMLERİ

Nurullah ANKARALIOĞLU ${ }^{1 *}$ and Hüseyin AYDIN ${ }^{1}$

${ }^{1}$ Department of Mathematics, Faculty of Science, Atatürk University, 25240
Erzurum, Turkey
Geliş Tarihi: 21 Ağustos 2011 Kabul Tarihi: 05 Ekim 2011

Abstract

In this paper, we have shown that the polynomials associated with the cyclically presented groups obtained from the word w generated with Dunwoody parameters $(1, k, 0,2),(1, k, 0, k),\left(\frac{k+1}{2}, 1,0, \frac{k+1}{2}\right),\left(\frac{k+1}{2}, 1,0, \frac{k+3}{2}\right)$, where $\quad k$ is an odd positive integer and $d=k+2$, coincide (up to sign) with the Alexander polynomial of the torus knot $K(d, 2)$.

Key words: Alexander polynomial, cyclic presentation, Dunwoody parameters, Torus knots.

ÖZET

Bu çalışmada, k pozitif tek tamsayı ve $d=k+2$ olmak üzere $(1, k, 0,2),(1, k, 0, k),\left(\frac{k+1}{2}, 1,0, \frac{k+1}{2}\right),\left(\frac{k+1}{2}, 1,0, \frac{k+3}{2}\right)$ Dunwoody parametrelerine karşılık gelen w kelimesinden elde edilen devirli temsillenen gruplarla eşlenen polinomların $K(d, 2)$ tor düğümünün Alexander polinomu ile çakıştığı gösterilmiştir.
Anahtar kelimeler: Alexander polinomu, Devirli temsil, Dunwoody parametreleri, Torus düğümleri.

2000 Mathematics Subject Classification: 57M05, 20 F38.

1. INTRODUCTION

In order to investigate the relations between cyclic branced covering of knots in S^{3} and manifolds admitting cyclically presented fundemental groups, M. J. Dunwoody introduced in (Dunwoody, 1995) a class of 3-manifolds depending on six integer parameters. An interesting problem is to find the Dunwoody parameters of the cyclic

[^0]branced coverings of important classes of (1,1)-knots, in particular when the knots lies in S^{3}. This type of result has been obtained in (Grasselli and Mulazzani, 2001) for all 2-bridge knots. Aydin et al. (2003) obtained the Dunwoody parameters for all cyclic branced coverings of torus knots of type $K(p, m p \pm 1)$, with $m>0$ and $p>1$.

In this paper we show the polynomials associated with the cyclically presented groups obtained from the word w generated with Dunwoody parameters are equal to the Alexander polynomial of torus $\operatorname{knot} K(d, 2)$.

2. MATERIALS AND METHODS

Let F_{n} be the free group on free generators $x_{0}, x_{1}, x_{2}, \ldots, x_{n-1}$. Let $\theta: F_{n} \rightarrow F_{n}$ be the automorphism such that
$\theta\left(x_{i}\right)=x_{i+1}, \quad i=0,1, \ldots, n-2, \quad \theta\left(x_{n-1}\right)=x_{0}$.
For $w \in F_{n}, G_{n}(w)$ is defined as $G_{n}(w)=F_{n} / R$ where R is the normal closure in F_{n} of the set $\left\{w, \theta(w), \theta^{2}(w), \ldots, \theta^{n-1}(w)\right\}$ (Johnson, 1990). For a reduced word $w \in F_{n}$, the cyclically presented

| group | $G_{n}(w)$ | is | given | by |
| :--- | :--- | :--- | :--- | :--- | Mulazzani, 2001).

Definition 2.1: A group G is said to have a cyclic presentation if $G \cong G_{n}(w)$ for some n and w (Cavicchioli, et al. 2001).

The polynomial associated with the cyclically presented group $G=G_{n}(w)$ is given by $f(t)=\sum_{i=0}^{n-1} a_{i} t^{i}$
where a_{i} is the exponent sum of x_{i} in $w, 1 \leq i \leq n$ (Dunwoody, 1995).
Let a, b, c, n be integers such that $n>0, a, b, c \geq 0$ and $a+b+c>0$. Let $\bar{\tau}(a, b, c)$ be the graph shown in Figure 1. This is an infinite graph with an automorphism θ such that $\theta\left(u_{n}\right)=u_{n+1}$ and

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 4-2 Yıl: 2011 125-133

Cyclic presentations and torus knots $k(d, 2)$
$\theta\left(v_{n}\right)=v_{n+1}$. The labels indicate the number of edges joining a pair of vertices. Thus, there are a edges joining u_{1} and u_{2}. We see that the $\bar{\tau}(a, b, c)$ is d-regular where $d=2 a+b+c$. Let $\tau_{n}=\tau_{n}(a, b, c)$ denote the graph obtained from $\bar{\tau}(a, b, c)$ by identifying all edges and vertices in each orbit of θ^{n}. Thus τ_{n} has $2 n$ vertices (Dunwoody, 1995).

Figure 1.
We say that the 6 -tuple (a, b, c, r, s, n) has property M if it corresponds to the Heegaard diagram of a 3-manifold. An algorithm determining which 6 -tuples have property M is now described. Put $d=2 a+b+c$ and let
$X=\{-d,-d+1, \ldots,-1,1,2, \ldots, d\}$.
Let α, β be the permutations of X defined as follows:

$$
\begin{aligned}
\alpha= & (1, d)(2, d-1) \ldots(a, d-a+1)(a+1,-a-c-1)(a+2,-a-c-2) \ldots \\
& (a+b,-a-c-b)(a+b+1,-a-1)(a+b+2,-a-2) \ldots(a+b+c,-a-c)(-1,-d)
\end{aligned}
$$

and
$\beta(j)= \begin{cases}-(j+r), & \text { if } \quad j>0 \text { and } j+r \leq d \text { or } j<0 \text { and } j+r<0 \\ -(j+r-d), & \text { if } \quad j+r \geq 0\end{cases}$

The following theorem characterizes the 6-tuples (a, b, c, r, s, n) that have property M. Detail and the proof of this theorem can be found in (Dunwoody, 1995).

Theorem 2.1: Let $d=2 a+b+c$ be odd. The 6-tuple (a, b, c, r, s, n) has property M if and only if the following two conditions hold simultaneously:
(i). $\alpha \beta$ has two cycles of length d
(ii). $p s+q \equiv 0(\bmod n)$
where p is the difference between the number of arrows pointing down the page and the number of arrows pointing up, whereas q is the number of arrows pointing from left to right minus the number of arrows pointing from right to left in the oriented path determined by $\alpha \beta$. The entries in the first cycle of $\alpha \beta$ contain one vertex from each line segment of the diagram. There exists an integer s such that $p s+q \equiv 0(\bmod n)$. The first cycle of $\alpha \beta$ and the value of s can also be used to calculate the word w of the corresponding cyclic presentation.

Recall that $K(p, q)=K\left(p^{\prime}, q^{\prime}\right)$ if and only if $\left(p^{\prime}, q^{\prime}\right)$ is equal to one of the following pairs: $(p, q),(q, p),(-p,-q),(-q,-p)$ and that $K(-p,-q)=-K(p, q)$ (Burde and Zieschang, 1985).
The Alexander polynomial of the torus knot $K(p, q), \quad p>q \geq 2$ is

$$
\Delta_{p, q}(t)=\frac{\left(1-t^{p q}\right)(1-t)}{\left(1-t^{p}\right)\left(1-t^{q}\right)}=1-t+t^{q}-\ldots-t^{p q-p-q}+t^{p q+1-p-q}
$$

(Cavicchioli et al. 1999).

3. RESULTS AND DISCUSSIONS

We can now state our theorems:
Theorem 3.1 Theorem 3.1 (Ankaralioglu and Aydin, 2008): The cyclically presented groups obtained from the word w generated with Dunwoody parameters $(1, b, 0,2)$ are isomorphic to the groups

Cyclic presentations and torus knots $k(d, 2)$
$S((d+1) / 2, d)$ when $b \quad$ is an odd positive integer and $d=2 a+b+c$.
Theorem 3.2: The polynomial associated with the cyclically presented group obtained from the word w generated with Dunwoody parameters $(1, k, 0,2)$, where k is an odd positive integer and $d=k+2$, coincides with the Alexander polynomial of the torus knot $K(d, 2)$.

Proof: As stated in the proof of theorem 3.1, the defining word w corresponding to Dunwoody parameters $(1, k, 0,2)$ has the following form
$x_{k+1}^{-1} x_{k-1}^{-1} x_{k-3}^{-1} \ldots x_{2}^{-1} x_{0}^{-1} x_{1} x_{3} x_{5} \ldots x_{k}$,
where $d=k+2$.
The corresponding polynomial with (1) is
$f(t)=-1+t-t^{2}+\ldots+t^{k}-t^{k+1}$
or more generally
$f(t)=\sum_{j=0}^{k+1}(-1)^{j+1} t^{j} \quad, j \equiv 0(\bmod d)$.
According to the values $p=d$ and $q=2$, the Alexander polynomial of the torus knot $K(d, 2)$ is

$$
\begin{equation*}
\Delta(t)=-\frac{\left(1-t^{2 d}\right)(1-t)}{\left(1-t^{d}\right)\left(1-t^{2}\right)}=-\frac{1+t^{d}}{1+t}=-\frac{1+t^{k+2}}{1+t}=-1+t-t^{2}+\ldots+t^{k}-t^{k+1} . \tag{3}
\end{equation*}
$$

Note that (2) and (3) are equivalent. This completes the proof.
Theorem 3.3 (Ankaralioglu and Aydin, 2008): The cyclically presented group obtained from the word w generated with Dunwoody parameters ($1, b, 0, d-2$) has the cyclic presentation

$$
<x_{1}, x_{2}, \ldots, x_{d} \mid x_{i+d-1} x_{i+d-3} x_{i+d-5} \ldots x_{i+2} x_{i}=x_{i+b} x_{i+b-2} \ldots x_{i+5} x_{i+3} x_{i+1}>,
$$

when b is an odd positive integer and $d=2 a+b+c$.

Theorem 3.4: The polynomial associated with the cyclically presented group obtained from the word w generated with Dunwoody parameters ($1, k, 0, k$) where k is an odd positive integer and $d=k+2$, coincides with the Alexander polynomial of the torus knot $K(d, 2)$.

Proof: As stated in the proof of theorem 3.3, the defining word w corresponding to Dunwoody parameters ($1, k, 0, k$) has the following form
$x_{1}^{-1} x_{3}^{-1} x_{5}^{-1} \ldots x_{k}^{-1} x_{k+1} x_{k-1} x_{k-3} \ldots x_{2} x_{0}$,
where $d=k+2$.
The corresponding polynomial with (4) is
$f(t)=1-t+t^{2}-\ldots-t^{k}+t^{k+1}$
or more generally
$f(t)=\sum_{j=0}^{k+1}(-1)^{j} t^{j} \quad, j \equiv 0(\bmod d)$.
According to the values $p=d$ and $q=2$, the Alexander polynomial of the torus knot $K(d, 2)$ is
$\Delta(t)=\frac{\left(1-t^{2 d}\right)(1-t)}{\left(1-t^{d}\right)\left(1-t^{2}\right)}=\frac{1+t^{d}}{1+t}=\frac{1+t^{k+2}}{1+t}=1-t+t^{2}-\ldots-t^{k}+t^{k+1}$.
Note that (5) and (6) are equivalent. The proof is complete.
Lemma 3.1 (Cattabriga and Mulazzani, 2005):
a) $K(a, b, c, r)$ and $K(a, c, b,-r)$ are equivalent;
b) $K(a, 0, c, r)$ and $K(a, c, 0, r)$ are equivalent.

Observe that not every 4-tuple of non-negatif integers (a, b, c, r) determines a torus knot.

It can be easily seen that the polynomials associated with the cyclically presented groups obtained from the word w generated

Cyclic presentations and torus knots $k(d, 2)$
with Dunwoody parameters $(1, k, 0,2)$ and $(1,0, k, 2)$, and ($1, k, 0, k$) and $(1,0, k, k)$, where k is an odd positive integer, are equivalent and coincide with the Alexander polynomial of the torus knot $K(d, 2)$.

Theorem 3.5 (Ankaralioglu and Aydin, 2008) : The cyclically presented group obtained from the word w generated with Dunwoody parameters $(a, 1,0, a)$ has the cyclic presentation $<x_{1}, x_{2}, \ldots, x_{d} \mid x_{i+d-1} x_{i}=x_{i+d-2} x_{i+d-3}^{-1} x_{i+d-4} \ldots x_{i+3} x_{i+2}^{-1} x_{i+1}>$,
when a is a positive integer and $d=2 a+b+c$.
Theorem 3.6: The polynomial associated with the cyclically presented group obtained from the word w generated with Dunwoody parameters ($\frac{k+1}{2}, 1,0, \frac{k+1}{2}$), where k is an odd positive integer and $d=k+2$, coincides with the Alexander polynomial of the torus knot $K(d, 2)$.

Proof: As stated in the proof of theorem 3.5, the defining word w corresponding to Dunwoody parameters $\left(\frac{k+1}{2}, 1,0, \frac{k+1}{2}\right)$ has the following form
$x_{1}^{-1} x_{2} x_{3}^{-1} \ldots x_{k-2}^{-1} x_{k-1} x_{k}^{-1} x_{k+1} x_{0}$,
where $d=k+2$.
The corresponding polynomial with (7) is
$f(t)=1-t+t^{2}-\ldots-t^{k}+t^{k+1}$
or more generally
$f(t)=\sum_{j=0}^{k+1}(-1)^{j} t^{j} \quad, j \equiv 0(\bmod d)$.
According to the values $p=d$ and $q=2$, the Alexander polynomial of the torus knot $K(d, 2)$ is

$$
\begin{equation*}
\Delta(t)=\frac{\left(1-t^{2 d}\right)(1-t)}{\left(1-t^{d}\right)\left(1-t^{2}\right)}=\frac{1+t^{d}}{1+t}=\frac{1+t^{k+2}}{1+t}=1-t+t^{2}-\ldots-t^{k}+t^{k+1} . \tag{9}
\end{equation*}
$$

Note that (8) and (9) are equivalent. We are done.

Theorem 3.7 (Ankaralioglu and Aydin, 2008) : The cyclically presented group obtained from the word w generated with Dunwoody parameters ($a, 1,0, a+1$) has the cyclic presentation
$<x_{1}, x_{2}, \ldots, x_{d} \mid x_{i+1} x_{i+2}^{-1} x_{i+3} \ldots x_{i+d-4} x_{i+d-3}^{-1} x_{i+d-2}=x_{i} x_{i+d-1}>$,
when a is a positive integer and $d=2 a+b+c$.
Theorem 3.8: The polynomial associated with the cyclically presented group obtained from the word w generated with Dunwoody parameters $\left(\frac{k+1}{2}, 1,0, \frac{k+3}{2}\right)$, where k is an odd positive integer and $d=k+2$, coincides with the Alexander polynomial of the torus knot $K(d, 2)$.

Proof: As stated in the proof of theorem 3.7, the defining word w corresponding to Dunwoody parameters ($\frac{k+1}{2}, 1,0, \frac{k+3}{2}$) has the following form
$x_{k+1}^{-1} x_{0}^{-1} x_{1} x_{2}^{-1} x_{3} \ldots x_{k-2} x_{k-1}^{-1} x_{k}$,
where $d=k+2$.
The corresponding polynomial with (10) is
$f(t)=-1+t-t^{2}+\ldots+t^{k}-t^{k+1}$
or more generally
$f(t)=\sum_{j=0}^{k+1}(-1)^{j+1} t^{j} \quad, j \equiv 0(\bmod d)$.
According to the values $p=d$ and $q=2$, the Alexander polynomial of the torus knot $K(d, 2)$ is
$\Delta(t)=-\frac{\left(1-t^{2 d}\right)(1-t)}{\left(1-t^{d}\right)\left(1-t^{2}\right)}=-\frac{1+t^{d}}{1+t}=-\frac{1+t^{k+2}}{1+t}=-1+t-t^{2}+\ldots+t^{k}-t^{k+1}$.
Note that (11) and (12) are equivalent. This completes the proof.
It can be easily seen that the polynomials associated with the cyclically presented groups obtained from the word w generated with Dunwoody parameters ($\frac{k+1}{2}, 1,0, \frac{k+1}{2}$) and ($\frac{k+1}{2}, 0,1, \frac{k+1}{2}$), and

Cyclic presentations and torus knots $k(d, 2)$
$\left(\frac{k+1}{2}, 1,0, \frac{k+3}{2}\right)$ and $\left(\frac{k+1}{2}, 0,1, \frac{k+3}{2}\right)$, where k is an odd positive integer, are equivalent and coincide with the Alexander polynomial of the torus knot $K(d, 2)$.

Corollary 3.1: The polynomials associated with the cyclically presented groups obtained from the word w generated with Dunwoody
parameters
$(1, k, 0,2),(1,0, k, 2),(1, k, 0, k),(1,0, k, k),\left(\frac{k+1}{2}, 1,0, \frac{k+1}{2}\right),\left(\frac{k+1}{2}, 0,1, \frac{k+1}{2}\right),\left(\frac{k+1}{2}, 1,0, \frac{k+3}{2}\right),\left(\frac{k+1}{2}, 0,1, \frac{k+3}{2}\right)$, where k is an odd positive integer and $d=k+2$, coincide (up to sign) with the Alexander polynomial of the torus knot $K(d, 2)$.

REFERENCES

Ankaralioglu, N., Aydin, H. 2008. Some Dunwoody parameters and cyclic presentations. General Mathematics, 16(2), 85-93.
Aydin, H., Gultekin, I. and Mulazzani, M. 2003. Torus Knots and Dunwoody Manifolds. Siberian Math. J., 45, 1-6.
Burde, G., Zieschang, H. 1985. Knots, Berlin, New York, Walter de Gruyter.
Cattabriga, A., Mulazzani, M. 2005. Representations of (1,1)-knots, Fundamenta Mathematicae., 188, 45-57.

Cavicchioli, A., Hegenbarth, F., Kim, A.C. 1999. On Cyclic Branched Covering of Torus Knots. J. Geom., 64, 55-66.
Cavicchioli, A., Ruini, B., Spaggiari,F. 2001. On a Conjecture of M. J. Dunwoody. Algebra colloq., 8, 169-218.
Dunwoody, M. J. Cyclic Presentations and 3-Manifolds. In Proc. Inter Conf., Groups Korea'94, Walter De Gruyter, 47-55, 1995, Berlin, New York.
Graselli, L., Mulazzani, M. 2001. Genus one 1-bridge knots and Dunwoody manifolds. Forum Math. 13, 379-397.

Johnson, D.L., (1990). Presentations of Groups. Cambridge University Press.

[^0]: *Sorumlu yazar: ankarali@atauni.edu.tr

