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Abstract
Let X, Y , and Z be topological modules over a topological ring R. In the first part of
the paper, we introduce three different classes of bounded bigroup homomorphisms from
X × Y into Z with respect to the three different uniform convergence topologies. We
show that these spaces form again topological modules over R. In the second part, we
characterize bounded sets in the arbitrary product of topological groups with respect to
the both product and box topologies.
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1. Introduction and preliminaries
In [4], some notions for bounded group homomorphisms on a topological ring have been

introduced. Also, it has been proved that each class of bounded group homomorphisms on
a topological ring, with respect to an appropriate topology, forms a topological ring. Also,
an analogous statement for topological groups and bounded homomorphisms between them
has been investigated in [3]. Since every topological ring can be viewed as a topological
module over itself, it is not a hard job to see that we can consider the concepts of topological
modules of bounded group homomorphisms on a topological module. In fact, the results
in [4], can be generalized to topological modules in a natural way. Recall that a topological
module X is a module with a topology over a topological ring R such that the addition
( as a map from X × X into X), and the multiplication ( as a map from R × X into
X) are continuous. There are many examples of topological modules, for instance, every
topological vector space is a topological module over a topological field, every abelian
topological group is a topological module over Z, where Z denotes the ring of integers
with the discrete topology, and also every topological ring is a topological module over
each of its subrings. So, it is of independent interest if we consider possible relations
between algebraic structures of a module and its topological properties. In the first part
of the present paper, we are going to consider bounded bigroup homomorphisms between
topological modules. We endow each class of bounded bigroup homomorphisms to a
uniform convergence topology and we show that under the assumed topology, each class of
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them, forms a topological module. In addition, we see that if each class of bounded bigroup
homomorphisms is uniformly complete. In the following, by a bigroup homomorphism on
Cartesian product X × Y , we mean a map which is group homomorphism on X and Y ,
respectively. Also, note that if X is a topological module over topological ring R, then,
B ⊆ X is said to be bounded if for each zero neighborhood W ⊆ X, there exists zero
neighborhood V ⊆ R such that V B ⊆ W . Finally, as a special case, we consider bounded
sets in arbitrary Cartesian products of abelian topological groups. For more information
about topological modules, topological rings, topological groups, and the related notions,
see [1–8].

2. Bounded bigroup homomorphisms
Definition 2.1. Let X, Y , and Z be topological modules over a topological ring R. A
bigroup homomorphism σ : X × Y → Z is said to be:

i. n-bounded if there exist some zero neighborhoods U ⊆ X and V ⊆ Y such that
σ(U, V ) is bounded in Z.

ii. n
2 -bounded if there exists a zero neighborhood U ⊆ X such that for each bounded
set B ⊆ Y , σ(U, B) is bounded in Z.

iii. b-bounded if for every bounded subsets B1 ⊆ X and B2 ⊆ Y , σ(B1, B2) is bounded
in Z.

The first point is that these concepts of bounded bigroup homomorphisms are far from
being equivalent. In prior to anything, we show this.

Example 2.2. Let X = RN, the space of all real sequences, with the coordinate-wise
topology and the pointwise product. It is easy to see that X is a topological module over
itself. Consider the bigroup homomorphism σ : X × X → X defined by σ(x, y) = xy, in
which the product is given by pointwise. It is not difficult to see that σ is b-bounded but
since X is not locally bounded, it can not be n-bounded.

Also, the above example may apply to determine a b-bounded bigroup homomorphism
which is not n

2 -bounded.

Example 2.3. Let X be ℓ∞, the space of all bounded real sequences, with the topol-
ogy induced by the uniform norm and pointwise product. Suppose Y is ℓ∞, with the
coordinate-wise topology and pointwise product. Consider the bigroup homomorphism σ
from X × Y to Y as in Example 2.2. It is easy to see that σ is n

2 -bounded but it is not
n-bounded. For, suppose ε > 0 is arbitrary. Assume that N

(0)
ε is the ball with centre zero

and radius ε in X. If U is an arbitrary zero neighborhood in Y , without loss of generality,
we may assume that U is of the form

(−ε1, ε1) × . . . × (−εr, εr) × R × R × . . . ,

in which, εi > 0. Fix 0 < δ < min{εi}. Consider the sequence (an) ⊆ U defined
by an = (δ, . . . , δ, n, . . . , n, o, . . .), in which δ is appeared r times and n equips n − r

components. Now, it is not difficult to see that σ(N (0)
ε , (an)) can not be a bounded subset

of Y .

Example 2.4. Let X be ℓ∞, with pointwise product and the uniform norm topology, and
Y be ℓ∞, with the zero multiplication and the topology induced by norm. Consider σ from
X×Y to X as in Example 2.2. Then, σ is n-bounded but it is not n

2 -bounded. For, suppose
ε > 0 is arbitrary. Consider the sequence (an) in Y defined by an = (1

ε , . . . , n
ε , 0, . . .). (an)

is bounded in Y but σ(N (0)
ε , (an)) contains the sequence (1, . . . , n, 0, . . .) which is not

bounded in X.
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Since topological modules are topological spaces, we can consider the concept of jointly
continuity for a bigroup homomorphism between topological modules. The interesting
result in this case, in spite of the case related to topological vector spaces and topological
groups notions, is that there is no relation between jointly continuous bigroup homomor-
phisms and bounded ones; see [3,7] for more details on these concepts. To see this, consider
the following example.

Example 2.5. Let X be ℓ∞, with the pointwise product and coordinate-wise topology,
and Y be ℓ∞, with the zero multiplication and the uniform norm topology. Consider the
bigroup homomorphism σ from X × X into Y as in Example 2.2. Indeed, σ is b-bounded
and n-bounded but it is easy to see that σ can not be jointly continuous.

The class of all n-bounded bigroup homomorphisms on a topological module X is de-
noted by Bn(X × X) and is equipped with the topology of uniform convergence on some
zero neighborhoods, namely, a net (σα) of n-bounded bigroup homomorphisms converges
uniformly to zero on some zero neighborhoods U, V ⊆ X if for each zero neighborhood
W ⊆ X there is an α0 with σα(U, V ) ⊆ W for each α ≥ α0. The set of all n

2 -bounded
bigroup homomorphisms on a topological module X is denoted by B n

2
(X × X) and it is

assigned with the topology of σ-uniformly convergence on some zero neighborhood. We
say that a net (σα) of n

2 -bounded bigroup homomorphisms converges σ-uniformly to zero
on some zero neighborhood if there exists a zero neighborhood U ⊆ X such that for
each bounded set B ⊆ X and for each zero neighborhood W ⊆ X there is an α0 with
σα(U, B) ⊆ W for each α ≥ α0. Finally, the class of all b-bounded bigroup homomor-
phisms on a topological module X is denoted by Bb(X × X) and is endowed with the
topology of uniform convergence on bounded sets which means a net (σα) of b-bounded
bigroup homomorphisms converges uniformly to zero on bounded sets B1, B2 ⊆ X if for
each zero neighborhood W ⊆ X there is an α0 with σα(B1, B2) ⊆ W for each α ≥ α0. In
this part of the paper, we show that the operations of addition and module multiplication
are continuous in each of the topological modules Bn(X ×X), B n

2
(X ×X), and Bb(X ×X)

with respect to the assumed topology, respectively. So, each of them forms a topological
R-module.

Theorem 2.6. The operations of addition and module multiplication in Bn(X × X) are
continuous with respect to the topology of uniform convergence on some zero neighborhoods.

Proof. Suppose two nets (σα) and (γα) of n-bounded bigroup homomorphisms converge
to zero uniformly on some zero neighborhoods U, V ⊆ X. Let W be an arbitrary zero
neighborhood in X. So, there is a zero neighborhood W1 with W1 + W1 ⊆ W . There are
some α0 and α1 such that σα(U, V ) ⊆ W1 for each α ≥ α0 and γα(U, V ) ⊆ W1 for each
α ≥ α1. Choose an α2 with α2 ≥ α0 and α2 ≥ α1. If α ≥ α2 then (σα + γα)(U, V ) ⊆
σα(U, V )+γα(U, V ) ⊆ W1 +W1 ⊆ W . Thus, the addition is continuous. Now, we show the
continuity of the module multiplication. Suppose (rα) is a net in R which is convergent to
zero. There are some neighborhoods V1 ⊆ R and W2 ⊆ X such that V1W2 ⊆ W . Find an
α3 with σα(U, V ) ⊆ W2 for each α ≥ α3. Take an α4 such that (rα) ⊆ V1 for each α ≥ α4.
Choose an α5 with α5 ≥ α3 and α5 ≥ α4. If α ≥ α5 then rασα(U, V ) ⊆ V1W2 ⊆ W , as
asserted. �
Theorem 2.7. The operations of addition and module multiplication in B n

2
(X × X) are

continuous with respect to the topology of σ-uniform convergence on some zero neighbor-
hood.

Proof. Suppose two nets (σα) and (γα) of n
2 -bounded bigroup homomorphisms converge

to zero σ-uniformly on some zero neighborhood U ⊆ X. Fix a bounded set B ⊆ X. Let
W be an arbitrary zero neighborhood in X. So, there is a zero neighborhood W1 with
W1 + W1 ⊆ W . There are some α0 and α1 such that σα(U, B) ⊆ W1 for each α ≥ α0 and
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γα(U, B) ⊆ W1 for each α ≥ α1. Choose an α2 with α2 ≥ α0 and α2 ≥ α1. If α ≥ α2
then (σα + γα)(U, B) ⊆ σα(U, B) + γα(U, B) ⊆ W1 + W1 ⊆ W . Thus, the addition is
continuous. Now, we show the continuity of the module multiplication. Suppose (rα) is a
net in R which is convergent to zero. There are some neighborhoods V1 ⊆ R and W2 ⊆ X
such that V1W2 ⊆ W . Find an α3 with γα(U, B) ⊆ W2 for each α ≥ α3. Take an α4 such
that (rα) ⊆ V1 for each α ≥ α4. Choose an α5 with α5 ≥ α3 and α5 ≥ α4. If α ≥ α5 then
rασα(U, B) ⊆ V1W2 ⊆ W , as we wanted. �
Theorem 2.8. The operations of addition and module multiplication in Bb(X × X) are
continuous with respect to the topology of uniform convergence on bounded sets.

Proof. Suppose two nets (σα) and (γα) of b-bounded bigroup homomorphisms converge to
zero uniformly on bounded sets. Fix two bounded sets B1, B2 ⊆ X. Let W be an arbitrary
zero neighborhood in X. So, there is a zero neighborhood W1 with W1 + W1 ⊆ W . There
are some α0 and α1 such that σα(B1, B2) ⊆ W1 for each α ≥ α0 and γα(B1, B2) ⊆ W1 for
each α ≥ α1. Choose an α2 with α2 ≥ α0 and α2 ≥ α1. If α ≥ α2 then (σα +γα)(B1, B2) ⊆
σα(B1, B2) + γα(B1, B2) ⊆ W1 + W1 ⊆ W . Thus, the addition is continuous. Now, we
show the continuity of the module multiplication. Suppose (rα) is a net in R which
is convergent to zero. There are some neighborhoods V1 ⊆ R and W2 ⊆ X such that
V1W2 ⊆ W . Find an α3 with γα(B1, B2) ⊆ W2 for each α ≥ α3. Take an α4 such that
(rα) ⊆ V1 for each α ≥ α4. Choose an α5 with α5 ≥ α3 and α5 ≥ α4. If α ≥ α5 then
rασα(B1, B2) ⊆ V1W2 ⊆ W , as asserted. �

In this step, we investigate whether each class of bounded bigroup homomorphisms is
uniformly complete. The answer for Bb(X × X) is affirmative but for other cases there
exist counterexamples.

Remark 2.9. The class Bn(X × X) can contain a Cauchy sequence whose limit is not an
n-bounded bigroup homomorphism. Let X = RN, the space of all real sequences, with the
coordinate-wise topology and the pointwise product. Define the bigroup homomorphisms
σn on X as follows:

σn(x, y) = (x1y1, . . . , xnyn, 0, . . .),
in which x = (xi)∞

i=1 and y = (yi)∞
i=1. Each σn is n-bounded. For, if

Un = {x ∈ X, |xj | < 1, j = 0, 1, . . . , n},

then, σn(Un, Un) is bounded in X. Also, (σn) is a Cauchy sequence in Bn(X ×X). Because
if W is an arbitrary zero neighborhood in X, without loss of generality, we may assume
that it is of the form

W = (−ε1, ε1) × . . . × (−εr, εr) × R × R × . . . ,

in which εi > 0. So, for m, n > r; we have (σn − σm)(X, X) ⊆ W . Also, (σn) converges
uniformly on (X, X) to the bigroup homomorphism σ defined by

σ(x, y) = (x1y1, x2y2, . . .).
But we have seen in Example 2.2 that σ is not n-bounded.

Remark 2.10. The class B n
2
(X × X) can contain a Cauchy sequence whose limit is not

an n
2 -bounded bigroup homomorphism. Let X be ℓ∞, with the pointwise product and

the uniform norm topology, and Y be ℓ∞, with the zero multiplication and the topology
induced by norm. Consider bigroup homomorphisms σn from X × Y to X as in Remark
2.9. It is not difficult to see that each σn is n

2 -bounded. Also, (σn) is a Cauchy sequence
in B n

2
(X × X) which is convergent σ-uniformly on X to the bigroup homomorphism σ

described in Example 2.4, so that it is not an n
2 -bounded bigroup homomorphism.

Proposition 2.11. Suppose a net (σα) of b-bounded bigroup homomorphisms converges
to a bigroup homomorphism σ uniformly on bounded sets. Then σ is also b-bounded.
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Proof. Fix bounded sets B1, B2 ⊆ X. Let W be an arbitrary zero neighborhood in X.
There is a zero neighborhood W1 such that W1 + W1 ⊆ W . Choose a zero neighborhood
V1 ⊆ R and a zero neighborhood W2 ⊆ X with V1W2 ⊆ W1. There is an α0 such that
(σα − σ)(B1, B2) ⊆ W2 for each α ≥ α0. Fix an α ≥ α0. So, there is a zero neighborhood
V2 ⊆ V1 with V2σα(B1, B2) ⊆ W2. Therefore,

V2σ(B1, B2) ⊆ V2σα(B1, B2) + V2W2 ⊆ W2 + V1W2 ⊆ W1 + W1 ⊆ W.

�

3. Bounded sets in topological groups
Let us start with some remarks on boundedness which clarify the context. Suppose X

is a topological vector space. When one wants to define a bounded set in X, there are two
absolutely fruitful tools; scalar multiplication and absorbing neighborhoods at zero. These
objects help us to match our intrinsic of boundedness in topological vector spaces; namely,
a subset is bounded if it lies in a big enough ball. Now, consider the case when G is a
topological group. These two handy material are not available. Of course, it is possible to
define bounded sets in a topological group by replacing scalar multiplication with group
multiplication in the definition of a bounded set in a topological vector space but this does
not meet our intuition of a bounded set since for example the multiplicative group S1 is
not bounded in this manner. In addition, it is also possible to consider boundedness in a
topological group like totally boundedness in a topological vector space but this one also
does not match our intrinsic since it is similar to compactness in the additive group R.
Following [3], a subset B in an abelian topological group G is called bounded if for each
neighborhood U of the identity, there is an n ∈ N such that B ⊆ nU . Let (Gα)α∈Λ be a
family of abelian topological groups and G =

∏
α∈Λ Gα. It is an easy job to see that G is

again an abelian topological group with respect to the both product and box topologies.
In this step, we characterise bounded sets of G in terms of bounded sets of (Gα)′s. All
topological groups are assumed to be abelian and Hausdorff.

First, we improve [3, Theorem 1].

Theorem 3.1. Let (Gα)α∈Λ be a family of abelian topological groups and G =
∏

α∈Λ Gα

with the product topology. Then B ⊆ G is bounded if and only if there exists a family of
subsets (Bα)α∈Λ such that each Bα ⊆ Gα is bounded and B ⊆

∏
α∈Λ Bα.

Proof. Suppose B ⊆ G is bounded. Put

Bα = {x ∈ Gα : ∃y = (yβ) ∈ B and x is α -th coordinate of y}.

Each Bα is bounded. For, if Uα is a neighborhood of identity in Gα, put
U = Uα ×

∏
β ̸=α

Gβ.

Indeed, U is a neighborhood of identity in G. Therefore there is a positive integer n with
B ⊆ nU so that Bα ⊆ nUα. Now, it is not difficult to see that B ⊆

∏
α∈Λ Bα. The

converse is a consequence of [3, Theorem 1]. �
Note that in a general abelian topological group, every singleton is not necessarily

bounded; in other words, not every neighborhood at identity is absorbing. For example,
let G be an abelian topological group. Put H = G × Z2 with the product topology. Then
G × {0} is a zero neighborhood which is not absorbing. On the other hand, when G is
a connected abelian group, by [2, Chapter III, Theorem 6], G is absorbed by positive
powers of any neighborhood at identity so that singletons will be bounded. Nevertheless,
connectedness is a sufficient condition; consider the additive group Q. In the case when in
a topological group G, singletons are bounded, compact sets are bounded and therefore
we can consider the notion " Heine-Borel" property. Recall that G has the Heine-Borel
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property if every closed bounded subset of G is compact. Now, we have the following
result.

Corollary 3.2. Suppose (Gα)α∈Λ are a family of topological groups in which singletons are
bounded and G =

∏
α∈Λ Gα with the product topology. Then singletons are also bounded

in G.

Corollary 3.3. Let (Gα)α∈Λ be a family of topological groups in which singletons are
bounded and G =

∏
α∈Λ Gα with the product topology. Then G has the Heine-Borel property

if and only if each Gα has.

Theorem 3.4. Let (Gα)α∈Λ be a family of abelian topological groups and G =
∏

α∈Λ Gα

with the box topology. Then B ⊆ G is bounded if and only if there exists a finite set
{α1, . . . , αk} of indices such that B ⊆ Bα1 × . . . × Bαk

×
∏

β∈Λ−{α1,...,αk}{eβ}, where eβ

denotes the identity element of Gβ.

Proof. Suppose B ⊆ G is bounded and there is a net (cα) of non-identity elements of (Gα)
such that each cα belongs to a component of B. There is a neighborhood Uα at identity
element eα in Gα such that cα ̸∈ Uα. Partition the index set to a countable collection
(An). For each α ∈ An, take a neighborhood Vα at identity with nVα ⊆ Uα. Put

B1 =
∏
α∈Λ

{cα}.

Obviously, B1 should be bounded in G. Now, suppose V is a neighborhood at identity of
the form

V =
∏
α∈Λ

Vα.

It is not a difficult job to see that there is no M > 0 with B1 ⊆ MV ; for, in this
case, cα ∈ MVα ⊆ nVα ⊆ Uα, a contradiction. Therefore, for all but finitely many
components, B should have identity elements. Also, by a similar argument that we had
in the first direction of the proof of Theorem 3.1, we conclude that for some {α1, . . . , αk},
B ⊆ Bα1 × . . . × Bαk

×
∏

β∈Λ−{α1,...,αk}{eβ}, in which, each Bαi is bounded in Gαi . The
other direction is trivial. �

Remark 3.5. Considering the proof of Theorem 3.4, we conclude that in the box topology,
singletons are never bounded so that in such spaces compact sets are not bounded in
general.

Corollary 3.6. Let (Gα) be a family of abelian topological groups and G =
∏

α∈Λ Gα

with the box topology. Then singletons are not bounded, in general. In particular, G
is never connected by [2, Chapter III, Theorem 6] even when all of G′

αs are connected.
Nevertheless, consider this point that by [2, Chapter III, Exercise 8], product topology
preserves connectedness.
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