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Abstract
The object of the present paper is to study generalized weakly symmetric and weakly
Ricci symmetric (LCS)n-manifolds. Our aim is to bring out different type of curvature
restrictions for which (LCS)n-manifolds are sometimes Einstein and some other time
remain η-Einstein. Finally, the existence of such manifold is ensured by a non-trivial
example.
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1. Introduction
The notion of Lorentzian concircular structure manifolds (briefly (LCS)n-manifolds)

has been initiated by Shaikh [25]. Thereafter, a lot of study has been carried out. For
details we refer [5, 12,19,27–30,33] and the references therein.

The notion of weakly symmetric Riemannian manifold have been introduced by Tamássy
and Binh [34]. Thereafter, a lot research has been carried out in this topic. For details,
we refer to see [1, 2, 10,13,14,21–24,26,31,32] and the references there in.

In the spirit of Tamássy and Binh [34], a Riemannian manifold (Mn, g)(n > 2), is said
to be a weakly symmetric manifold, if its curvature tensor R̄ of type (0, 4) is not identically
zero and admits the identity

(∇XR̄)(Y, U, V, W ) = A1(X)R̄(Y, U, V, W )
+ B1(Y )R̄(X, U, V, W ) + B1(U)R̄(Y, X, V, W )
+ D1(V )R̄(Y, U, X, W ) + D1(W )R̄(Y, U, V, X) (1.1)

where A1, B1 & D1 are non-zero 1-forms defined by A1(X ) = g(X, σ1), B1(X) =
g(X, ϱ1) and D1(X) = g(X, π1), for all X and R̄(Y, U, V, W ) = g(R(Y, U)V, W ), ∇
being the operator of the covariant differentiation with respect to the metric tensor g. An
n-dimensional Riemannian manifold of this kind is denoted by (WS)n-manifold.
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Keeping in tune with Dubey [11], the author have introduced the notion of a general-
ized weakly symmetric Riemannian manifold (which is abbreviated hereafter as (GWS)n-
manifold). An n-dimensional Riemannian manifold is said to be generalized weakly sym-
metric if it admits the equation

(∇XR̄)(Y, U, V, W ) = A1(X)R̄(Y, U, V, W ) + B1(Y )R̄(X, U, V, W )
+B1(U)R̄(Y, X, V, W ) + D1(V )R̄(Y, U, X, W )
+D1(W )R̄(Y, U, V, X) + A2(X)Ḡ(Y, U, V, W )
+B2(Y )Ḡ(X, U, V, W ) + B2(U) Ḡ(Y, X, V, W )
+D2(V ) Ḡ(Y, U, X, W ) + D2(W ) Ḡ(Y, U, V, X ) (1.2)

where
Ḡ(Y, U, V, W ) = [g(U, V )g(Y, W ) − g(Y, V )g(U, W )] (1.3)

and Ai, Bi & Di are non-zero 1-forms defined by Ai(X ) = g(X, σi), Bi(X) = g(X, ϱi),
and Di(X) = g(X, πi), for i = 1, 2. The beauty of such (GWS)n-manifold is that it has
the flavour of

(i) locally symmetric space [7] (for Ai = Bi = Di = 0),
(ii) locally recurrent space [36] (for A1 ̸= 0, A2 = Bi = Di = 0),
(iii) generalized recurrent space [11] (for Ai ̸= 0. Bi = Di = 0),
(iv) pseudo symmetric space [8] (A1

2 = B1 = D1 = H1 ̸= 0, A2 = B2 = D2 = 0),
(v) generalized pseudo symmetric space [3] (for Ai

2 = Bi = Di = Hi ̸= 0),
(vi) semi-pseudo symmetric space [35] (Ai = B2 = D2 = 0, B1 = D1 ̸= 0),
(vii) generalized semi-pseudo symmetric space [4] (Ai = 0, Bi = Di ̸= 0),
(viii) almost pseudo symmetric space [9] (for A1 = H1 + K1, B1 = D1 = H1 ̸= 0 and

A2 = B2 = D2 = 0),
(ix) almost generalized pseudo symmetric space [6] (Ai = Hi + Ki, Bi = Di = Hi ̸= 0),
(x) weakly symmetric space [34] ( for A1, B1, Di ̸= 0, A2 = B2 = D2 = 0).
Analogously, we have introduced generalized weakly Ricci symmetric (LCS)n-manifold

which is defined as follows
An n-dimensional Riemannian manifold is said to be generalized weakly Ricci symmetric

if it admits the equation
(∇XS)(Y, Z) = A1(X)S(Y, Z) + B1(Y )S(X, Z) + D1(Z)S(Y, X)

+A2(X)ḡ(Y, Z) + B2(Y )g(X, Z) + D2(Z)g(Y, X) (1.4)
where and Ai, Bi & Di are non-zero 1-forms defined by Ai(X ) = g(X, σi), Bi(X) =
g(X, ϱi), and Di(X) = g(X, πi), for i = 1, 2. The beauty of generalized weakly Ricci
symmetric manifold is that it has the flavour of Ricci symmetric, Ricci recurrent, gen-
eralized Ricci recurrent, pseudo Ricci symmetric, generalized pseudo Ricci symmetric,
semi-pseudo Ricci symmetric, generalized semi-pseudo Ricci symmetric, almost pseudo
Ricci symmetric, almost generalized pseudo Ricci symmetric and weakly Ricci symmetric
space as special cases.

Now, if the vectors associated to the 1-forms A1, B1 & D1 are respectively co-directional
with that of A2, B2 & D2 that is A1(X) = ϕA2(X), B1(X) = ϕB2(X) & D1(X) =
ϕD2(X) ∀ X, where ϕ being a non-zero constant function, then the relation (1.4) turnes
into

(∇XZ)(Y, U) = A1(X)Z(Y, U) + B1(Y ) Z(X, U) + D1(U)Z(X, U)
where Z(X, Y ) = S(X, Y ) + ϕ g(X, Y ) is well known Z-tensor introduced in ([15, 18]).
This leads to the following

Proposition 1.1. Every generalized weakly Ricci symmetric manifold is a weakly Z-
symmetric manifold provided the vector fields associated to the 1-forms A1, B1 & D1 are
co-directional with that of A2, B2 & D2 respectively.



On generalized weakly symmetric (LCS)n-manifolds 429

Our work is structured as follows. Section 2 is concerned with (LCS)n-manifolds and
some known results. In section 3, we have investigated a generalized weakly symmetric
(LCS)n-manifold and it is observed that such a space is an η-Einstein manifold provided
B∗(ξ) ̸= −α. We also tabled different type of curvature restrictions for which (LCS)n-
manifolds are sometimes Einstein and some other time remain η-Einstein. Section 4, is
concerned with a generalized weakly Ricci-symmetric (LCS)n-manifold which is found to
be an η-Einstein space. Finally, we have constructed an example of a generalized weakly
symmetric (LCS)n-manifold.

2. (LCS)n-manifolds and some known results
An n-dimensional Lorentzian manifold M is a smooth connected paracompact Hausdorff

manifold with a Lorentzian metric g, that is, M admits a smooth symmetric tensor field
g of type (0, 2) such that for each point p ∈ M , the tensor gp : TpM × TpM → R is a
non-degenerate inner product of signature (−, +, . . . , +), where TpM denotes the tangent
vector space of M at p and R is the real number space. A non-zero vector v ∈ TpM is said
to be timelike (resp., non-spacelike, null, spacelike) if it satisfies gp(U, U) < 0 (resp, ≤ 0,
= 0, > 0), [20]. The category to which a given vector falls is called its causal character.

Let Mn be a Lorentzian manifold admitting a unit timelike concircular vector field ξ,
called the characteristic vecotor field of the manifold. Then we have

g(ξ, ξ) = −1. (2.1)

Since ξ is a unit concircular vector field, there exists a non-zero 1-form η such that for
g(X, ξ) = η(X) (2.2)

the equation of the following form holds
(∇Xη)(Y ) = α{g(X, Y ) + η(X)η(Y )} (α ̸= 0) (2.3)

for all vector fields X, Y where ∇ denotes the operator of covariant differentiation with
respect to the Lorentzian metric g and α is a non-zero scalar function satisfies

∇Xα = (Xα) = α(X) = ρη(X), (2.4)
ρ being a certain scalar function. If we put

ϕX = 1
α

∇Xξ, (2.5)

then from (2.3) and (2.5), we have
ϕX = X + η(X)ξ, (2.6)

from which it follows that ϕ is a symmetric (1, 1) tensor. Thus the Lorentzian mani-
fold Mntogether with the unit timelike concircular vector field ξ, its associated 1-form η
and (1,1) tensor field ϕ is said to be a Lorentzian concircular structure manifold (briefly
(LCS)n-manifold) [5]. In a (LCS)n-manifold, the following relations hold [25]:

η(ξ) = −1, ϕ ◦ ξ = 0, (2.7)
η(ϕX) = 0, g(ϕX, ϕY ) = g(X, Y ) + η(X)η(Y ), (2.8)

η(R(X, Y )Z) = (α2 − ρ)[g(Y, Z)η(X) − g(X, Z)η(Y )], (2.9)
R(X, Y )ξ = (α2 − ρ)[η(Y )X − η(X)Y ], (2.10)

S(X, ξ) = (n − 1)(α2 − ρ)η(X) (2.11)
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for any vector fields X, Y, Z.

Lemma 2.1. Let (Mn, g) be a (LCS)n-manifold. Then for any X; Y;Z the following
relation holds:

(∇W S)(X, ξ) = (n − 1)[α(α2 − ρ)g(X, W )
+(2αρ − β)η(W )η(X)] − αS(X, W ) (2.12)

In this connection we would like to mention that equation (2.3) is the defining property
of concircular or unit time-like torse-forming vector field. In ([16], Theorem 2.1), the
authors proved that a Lorentzian manifold is twisted, i.e. the metric is written in the form

ds2 = −dt2 + f(t, xγ)2g̃αβdxαdxβ,

if and only if it admits a unit time-like torse-forming vector field. Moreover eq (2.4) and
the consequent integrability relations (2.10) and (2.11) in [16] ensure that the unit time-
like vector is an eigen vector of the Ricci tensor. Also, Proposition 3.7 of [17] ensures that
the space-time is a generalized Robertson-Walker space-time, i.e. the metric is written in
the form

ds2 = −dt2 + f(t)2g̃αβdxαdxβ,

g̃ being the metric tensor of a n − 1 dimensional Riemannian manifold.

3. Generalized weakly symmetric (LCS)n-manifold
A non-flat n-dimensional (LCS)n-manifold (Mn; g) (n > 2), is termed as generalized

weakly symmetric manifold, if its Riemannian curvature tensor R̄ of type (0; 4) is not
identically zero and admits the identity

(∇XR̄)(Y, U, V, W ) = A∗(X)R̄(Y, U, V, W ) + B∗(Y )R̄(X, U, V, W )
+B∗(U)R̄(Y, X, V, W ) + D∗(V )R̄(Y, U, X, W )
+D∗(W )R̄(Y, U, V, X ) + α∗(X)G(Y, U, V, W )
+β∗(Y )G(X, U, V, W ) + β∗(U) G(Y, X, V, W )
+γ∗(V ) G(Y, U, X, W ) + γ∗(W ) G(Y, U, V, X ) (3.1)

where

G(Y, U, V, W ) = [g(U, V )g(Y, W ) − g(Y, V )g(U, W )] (3.2)
and A∗, B∗, D∗, α∗, β∗ & γ∗ are non-zero 1-forms which are defined as A∗(X) =

g(X, θ1), B∗(X) = g(X, ϕ1), D∗(X) = g(X, π1), α∗(X) = g(X, θ2), β∗(X) = g(X, ϕ2) and
γ∗(X) = g(X, π2).

Now, contracting U over V in both sides of (3.1) we find
(∇XS)(Y, W ) = A∗(X)S(Y, W ) + B∗(Y )S(X, W ) + D∗(W )S(Y, X)

−B∗(R(Y, X)W ) + D∗(R(X, W )Y ) + (n − 1)[α∗(X)
g(Y, W ) + β∗(Y )g(X, W ) + γ∗(W )g(Y, X)] − β∗(Y )g(X, W )
+ [β∗(X) + γ∗(X)]g(Y, W ) − γ∗(W )g(X, Y ) (3.3)

which yields
(n − 1)[α(α2 − ρ)g(X, W ) + (2αρ − β)η(W )η(X)] − αS(X, W )

= (α2 − ρ)[(n − 1){A∗(X)η(W ) + D∗(W )η( X)} + η(W )B∗(X)
− g(X, W )B∗(ξ) + η(W )D∗(X) − η(X)D∗(W )] + B∗(ξ)S(X, W )
+ (n − 1)[α∗(X)η(W ) + β∗(ξ)g(X, W ) + γ∗(W )η(X )]
− β∗(ξ) g(X, W ) + [β∗(X) + γ∗(X)] η(W ) − γ∗(W )η(X) (3.4)
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for Y = ξ. Setting X = W = ξ in the foregoing equation, we obtain

−(2αρ − β) = (α2 − ρ)[A∗(ξ) + B∗(ξ) + D∗(ξ)]
+[α∗(ξ) + β∗(ξ) + γ∗(ξ)]. (3.5)

In a weakly symmetric (LCS)n-manifold we have the relation (3.4). Setting X = ξ in
(3.4) we get

(n − 2)[(α2 − ρ)D∗(W ) + γ∗(W )] = [(n − 1){(2αρ − β) + (α2 − ρ){A∗(ξ) + B∗(ξ)}}
+ (α2 − ρ)D∗(ξ)]η(W ) + [(n − 1){α∗(ξ) + β∗(ξ)}
+ γ∗(ξ)]η(W ). (3.6)

In view of (3.5), the relation (3.6) reduces to

[(α2 − ρ)D∗(W ) + γ∗(W )] = −[(α2 − ρ)D∗(ξ) + γ∗(ξ)]η(W ). (3.7)

Again, contracting over Y and W in (3.1) we get

(∇XS)(U, V ) = A∗(X)S(U, V ) + B∗(R(X, U)V ) + B∗(U)S(X, V )
+D∗(V )S(U, X) + D∗(R(X, V )U) + (n − 1)[{α∗(X)g(U, V )
+β∗(U)g(X, V ) + γ∗(V )g(X, U)}] + [γ∗(X)g(U, V )
−γ∗(V )g(U, X) + β∗(X)g(U, V ) − β∗(U)g(X, V ). (3.8)

Setting V = ξ in (3.8) and using (2.12), (2.11), we get

(n − 1)[α(α2 − ρ)g(X, U) + (2αρ − β)η(U)η(X)] − αS(X, U)
= (α2 − ρ)[(n − 1){A∗(X)η(U) + B∗(U)η(X)} + B∗(X)η(U) − B∗(U)η(X)

+ D∗(X)η(U) − +D∗(ξ)g(X, U)] + D∗(ξ)S(U, X) + (n − 1)[{α∗(X)η(U)
+ β∗(U)η(X) + γ∗(ξ)g(X, U)}] + [γ∗(X)η(U)
− γ∗(ξ)g(U, X) + β∗(X)η(U) − β∗(U)η(X), (3.9)

which turns into

[(α2 − ρ)B(U) + β(U)] = −[(α2 − ρ)B(ξ) + β(ξ)]η(U) (3.10)

for X = ξ and

[(α2 − ρ)A∗(X) + α∗(X)] = −[(α2 − ρ)A∗(ξ) + α∗(ξ)]η(X) (3.11)

for U = ξ. In view of (3.5), (3.7), (3.10) and (3.11) we have

(2αρ − β)η(X) = (α2 − ρ)[A∗(X) + B∗(X) + D∗(X)]
+[α∗(X) + β∗(X) + γ∗(X)]. (3.12)

Now, making use of (3.10)-(3.12) in (3.4), we find that

−[α + B∗(ξ)]S(X, W ) =[(n − 2)β∗(ξ) − (α2 − ρ){(n − 1)α + B∗(ξ)}]g(X, W )
− (n − 2)[(2αρ − β)η(W )η(X) + (α2 − ρ){A∗(X)η(W )
+ D∗(W )η(X)} + {α∗(X)η(W ) + γ∗(W )η(X )}] (3.13)

which leaves

S(X, W ) =
[
(α2 − ρ) + (n − 2)

(
(α2 − ρ)α − β∗(ξ)

α + B∗(ξ)

)]
g(X, W )

−(n − 2)[(α2 − ρ)B∗(ξ) + γ∗(ξ)]
[α + B∗(ξ)]

η(W )η(X) (3.14)
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after a straight forward calculation. Approaching in a different manner, we can also have

S(X, W ) =
[
(α2 − ρ) + (n − 2)

(
(α2 − ρ)α − γ∗(ξ)

α + D∗(ξ)

)]
g(X, W )

−(n − 2)[(α2 − ρ)D∗(ξ) + β∗(ξ)]
[α + D∗(ξ)]

η(W )η(X). (3.15)

This leads to the followings.

Theorem 3.1. A generalized weakly symmetric (LCS)n-manifold Mn(ϕ, ξ, η, g)(n > 2)
is an η-Einstein provided that B∗(ξ) ̸= −α.

Theorem 3.2. In an (LCS)n-manifold the following table hold good

Type of curvature restriction
Nature of the space

corresponding to
curvature restriction

locally symmetric space Einstein space
locally recurrent space Einstein space
generalized recurrent space Einstein space
pseudo symmetric space η-Einstein space
generalized pseudo
symmetric space η-Einstein space

semi-pseudo symmetric space η-Einstein space
generalized semi-pseudo
symmetric space η-Einstein space

almost pseudo
symmetric space η-Einstein space

almost generalized pseudo
symmetric space η-Einstein space

weakly symmetric space η-Einstein space

Note that if a manifold is locally recurrent, then it is Ricci recurrent, i.e. ∇kRjl = βkRjl,
for a non-null one form βk which leaves after transvection ∇kR = βkR. Consequently, the
manifold is Ricci flat as it is known that the scalar curvature of an Einstein manifold is
constant. Thus we can state the following corollary.

Corollary 3.3. Every locally recurrent (LCS)n manifold is Ricci flat.

4. Generalized weakly Ricci symmetric (LCS)n-manifold
A non-flat n-dimensional (LCS)n-manifold (Mn; g) (n > 2), is said to be a generalized

weakly Ricci symmetric manifold, if its Ricci tensor S of type (0, 2) is not identically zero
and admits the identity

(∇XS)(Y, Z) = A∗
1(X)S(Y, Z) + B∗

1(Y )S(X, Z) + D∗
1(Z)S(Y, X)

+A∗
2(X)g(Y, Z) + B∗

2(Y )g(X, Z) + D∗
2(Z)g(Y, X) (4.1)

where A∗
i , B∗

i & D∗
i are non-zero 1-forms which are defined as A∗

i (X) = g(X, θi),
B∗

i (X) = g(X, ϕi), D∗
i (X) = g(X, πi) for i = 1, 2. Setting, Y = ξ in (4.1) and then making

use of (2.12), we have
(n − 1)[α(α2 − ρ)g(X, Z) + (2αρ − β)η(Z)η(X)] − αS(X, Z)

= (α2 − ρ)(n − 1)[A∗
1(X)η(Z) + D∗

1(Z)η(X)] + B∗
1(ξ)S(X, Z)

+ A∗
2(X)η(Z) + B∗

2(ξ)g(X, Z) + D∗
2(Z) η(X) (4.2)
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which yields

(α2 − ρ)(n − 1)[A∗
1(ξ) + B∗

1(ξ) + D∗
1(ξ)] + [A∗

2(ξ) + B∗
2(ξ) + D∗

2(ξ) ]
= −(n − 1)(2αρ − β), (4.3)

for X = Z = ξ.
Setting Z = ξ in (4.2) we obtain

(n − 1)(α2 − ρ)[A∗
1(X) + A∗

1(ξ)] = −[A∗
2(X) + A∗

2(ξ)η(X)]. (4.4)

Proceeding in a similar manner we can find

(α2 − ρ)(n − 1)[B∗
1(X) + B∗

1(ξ)] = −[B∗
2(X) + B∗

2(ξ)η(X)], (4.5)
(α2 − ρ)(n − 1)[D∗

1(X) + D∗
1(ξ)] = −[D∗

2(ξ) + D∗
2(X)η(X)]. (4.6)

Theorem 4.1. In a generalized weakly Ricci symmetric (LCS)n-manifold Mn(ϕ, ξ, η, g)(n >
2) the 1-forms are related by

(α2 − ρ)(n − 1)[A∗
1(X) + B∗

1(X) + D∗
1(X)] + [A∗

2(X) + B∗
2(X) + D∗

2(X)]
= (n − 1)(2αρ − β)η(X). (4.7)

Proof. Adding (4.4), (4.5) & (4.6) and then making use of (4.3) in the resultant, one can
easily obtain (4.7). �

Now, making use of (4.3)-(4.7)in (4.2), we find that

S(X, Z) =
[

(n − 1)α(α2 − ρ) − B∗
2(ξ)

α + B∗
1(ξ)

]
g(X, Z)

−
[

(α2 − ρ)(n − 1)B∗
1(ξ) + B∗

2(ξ)
α + B∗

1(ξ)

]
η(X)η(Z) (4.8)

This leads to the followings

Theorem 4.2. A generalized weakly Ricci symmetric (LCS)n-manifold Mn(ϕ, ξ, η, g) is
an η-Einstein provided that B∗

1(ξ) ̸= −α.

Theorem 4.3. In an (LCS)n-manifold the following table holds good

Type of curvature restriction
Nature of the space
corresponding to
curvature restriction

Ricci symmetric space Einstein space
Ricci recurrent space Einstein space
generalized Ricci-recurrent space Einstein space
pseudo Ricci-symmetric space η-Einstein space
generalized pseudo
Ricci-symmetric space η-Einstein space

semi-pseudo Ricci-symmetric space η-Einstein space
generalized semi-pseudo
Ricci-symmetric space η-Einstein space

almost pseudo
Ricci-symmetric space η-Einstein space

almost generalized pseudo
Ricci-symmetric space η-Einstein space

weakly Ricci-symmetric space η-Einstein space
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Note that if a manifold is Ricci recurrent, i.e. ∇kRjl = βkRjl, for a non-null one form
βk which leaves after transvection ∇kR = βkR. Consequently, the manifold is Ricci flat
as it is known that the scalar curvature of an Einstein manifold is constant. Thus we can
state the following corollary.

Corollary 4.4. Every locally Ricci recurrent (LCS)n manifold is Ricci flat.

5. Existence of generalized weakly symmetric (LCS)3-manifold
Example 5.1. Let M3(ϕ, ξ, η, g) be an (LCS)n-manifold (M3, g) with a ϕ-basis

e1 = ez
(

x
∂

∂x
+ y

∂

∂y

)
, e2 = ϕe1 = ez ∂

∂y
, e3 = ξ = e2z ∂

∂z
.

Then from Koszul’s formula for Lorentzian metric g, we can obtain the Levi-Civita con-
nection as follows

∇e1e3 = −e2ze1, ∇e1e2 = 0, ∇e1e1 = −e2ze3,

∇e2e3 = −e2ze2, ∇e2e2 = −e2ze3 − eze1, ∇e2e1 = −e2ze2,

∇e3e3 = 0, ∇e3e2 = 0, ∇e3e1 = 0.

From the above it can be easily seen that (ϕ, ξ, η, g) is an (LCS)3 structure on M . Conse-
quently M3(ϕ, ξ, η, g) is an (LCS)3-manifold with α = −e2z ̸== 0 and ρ = 2e4z. Using the
above relations, one can easily calculate the non-vanishing components of the curvature
tensor R̄ (up to symmetry and skew-symmetry)

R̄(e1, e2, e1, e2) = (1 − e2z)e2z

R̄(e1, e3, e1, e3) = −e4z = R̄(e2, e3, e2, e3).

Since {e1, e2, e3} forms a basis, any vector field X, Y, U, V ∈ χ(M) can be written as

X =
3∑
1

aiei, Y =
3∑
1

biei, U =
3∑
1

ciei, V =
3∑
1

diei,

Then

R̄(X, Y, U, V ) = [(a1b2 − a2b1)(c1d2 − c2d1)](1 − e2z)e2z

−[(a1b3 − a3b1)(c1d3 − c3d1)]e4z

−[(a2b3 − a3b2)(c2d3 − c3d2)]e4z

= T1 (say),
R̄(e1, Y, U, V ) = −b3(c1d3 − c3d1)e4z + b2(c1d2 − c2d1(1 − e2z)e2z

= λ1 (say),
R̄(e2, Y, U, V ) = −b3(c2d3 − c3d2)e4z − b1(c1d2 − c2d1)(1 − e2z)e2z

= λ2 (say),
R̄(e3, Y, U, V ) = b1(c1d3 − c3d1)e4z + b2(c2d3 − c3d2)e4z = λ3 (say),
R̄(X, e1, U, V ) = a3(c1d3 − c3d1)e4z − a2(c1d2 − c2d1)(1 − e2z)e2z

= λ4 (say),
R̄(X, e2, U, V ) = a3(c2d3 − c3d2)e4z + a1(c1d2 − c2d1)(1 − e2z)e2z

= λ5 (say),
R̄(X, e3, U, V ) = −a1(c1d3 − c3d1)e4z − a2(c2d3 − c3d2)e4z = λ6 (say),
R̄(X, Y, e1, V ) = −d3(a1b3 − a3b1)e4z + d2(a1b2 − a2b1)(1 − e2z)e2z

= λ7 (say),
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R̄(X, Y, e2, V ) = −d3(a2b3 − a3b2)e4z − d1(a1b2 − a2b1)(1 − e2z)e2z

= λ8 (say),
R̄(X, Y, e3, V ) = d1(a1b3 − a3b1)e4z + d2(a2b3 − a3b2) = λ9 (say),
R̄(X, Y, U, e1) = c3(a1b3 − a3b1)e4z − c2(a1b2 − a2b1)(1 − e2z)e2z

= λ10 (say),
R̄(X, Y, U, e2) = c3(a2b3 − a3b2)e4z + c1(a1b2 − a2b1)(1 − e2z)e2z

= λ11 (say),
R̄(X, Y, U, e3) = −c1(a1b3 − a3b1)e4z − c2(a2b3 − a3b2)e4z = λ12 (say),
Ḡ(X, Y, U, V ) = (b1c1 + b2c2 − b3c3)(a1d1 + a2d2 − a3d3)

−(a1c1 + a2c2 − a3c3)(b1d1 + b2d2 − b3d3) = T2 (say),
Ḡ(e1, Y, U, V ) = (b2c2 − b3c3)d1 − (b2d2 − b3d3)c1 = ω1 (say),
Ḡ(e2, Y, U, V ) = (b1c1 − b3c3)d2 − (b1d1 − b3d3)c2 = ω2 (say),
Ḡ(e3, Y, U, V ) = −(b1c1 + b2c2)d3 + (b1d1 + b2d2)c3 = ω3 (say),
Ḡ(X, e1, U, V ) = (a2d2 − a3d3)c1 − (a2c2 − a3c3)d1 = ω4(say),
Ḡ(X, e2, U, V ) = (a1d1 − a3d3)c2 − (a1c1 − a3c3)d2 = ω5(say),
Ḡ(X, e3, U, V ) = −(a1d1 + a2d2)c3 + (a1c1 + a2c2)d3 = ω6 (say),
Ḡ(X, Y, e1, V ) = (a2d2 − a3d3)b1 − (b2d2 − b3d3)a1 = ω7 (say),
Ḡ(X, Y, e2, V ) = (a1d1 − a3d3)b2 − (b1d1 − b3d3)a2 = ω8 (say),
Ḡ(X, Y, e3, V ) = −(a1d1 + a2d2)b3 + (b1d1 + b2d2)a3 = ω9 (say),
Ḡ(X, Y, U, e1) = (b2c2 − b3c3)a1 − (a2c2 − a3c3)b1 = ω10 (say),
Ḡ(X, Y, U, e2) = (b1c1 − b3c3)a2 − (a1c1 − a3c3)b2 = ω11 (say),
Ḡ(X, Y, U, e3) = −(b1c1 + b2c2)a3 + (a1c1 + a2c2)b3 = ω12 (say),

and the components which can be obtained from these by the symmetry properties. Now,
we calculate the covariant derivatives of the non-vanishing components of the curvature
tensor as follows

(∇e1R̄)(X, Y, U, V ) = e2z[a1λ3 + a3λ1 + b1λ6 + b3λ4

+c1λ9 + c3λ7 + d1λ12 + b3λ10],

(∇e2R̄)(X, Y, U, V ) = e2z[(a1 + a3)λ2 + a2λ3 + (b1 + b3)λ5 + b2λ6

+(c1 + c3)λ8 + c2λ9 + (d1 + d3)λ11 + d2λ12]
+ez[a2λ1 + b2λ4 + c2λ7 + d2λ10,

(∇e3R̄)(X, Y, U, V ) = 2[(a1b2 − a2b1)(c1d2 − c2d1)](1 − 2e2z)e4z

−4[(a1b3 − a3b1)(c1d3 − c3d1)]e6z

−4[(a2b3 − a3b2)(c2d3 − c3d2)]e6z.

For the following choice of the the 1-forms

A∗
1(e1) = e2z[a1λ3 + a3λ1 + b1λ6 + b3λ4

T1
,

A∗
2(e1) = c1λ9 + c3λ7 + d1λ12 + b3λ10

T2
,

A1(e2) = −e2z{(a1 + a3)λ2 + a2λ3 + (b1 + b3)λ5 + b2λ6(c1 + c3)λ8 + c2λ9 + d1}
T1

,
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A∗
2(e2) = −e2z{d3)λ11 + d2λ12} + ez{a2λ1 + b2λ4 + c2λ7 + d2λ10}

T2
,

A∗
1(e3) = −4,

B∗
1(e3) = 1

a3λ3 + b3λ6
,

B∗
2(e3) = 1

a3ω3 + b3ω6
,

D∗
1(e3) = − 1

c3λ9 + d3λ12
,

D∗
2(e3) = − 1

c3ω9 + d3ω12
,

A∗
2(e3) = −2(a1b2 − a2b1)(c1d2 − c2d1)e2z

T2
,

one can easily verify the relations
(∇eiR̄)(X, Y, U, V ) = A∗

1(ei)R̄(X, Y, U, V )
+B∗

1(X)R̄(ei, Y, U, V ) + B∗
1(Y )R̄(X, ei, U, V )

+D∗
1(U)R̄(X, Y, ei, V ) + D∗

1(V )R̄(X, Y, U, ei)
+A∗

2(ei)Ḡ(X, Y, U, V )
+B∗

2(X)Ḡ(ei, Y, U, V ) + B∗
2(Y )Ḡ(X, ei, U, V )

+D∗
2(U)Ḡ(X, Y, ei, V ) + D∗

2(V )Ḡ(X, Y, U, ei)
for i = 1, 2, 3.

From the above, we can state the following theorem.

Theorem 5.2. There exists an (LCS)3-manifold (M3, g) which is a generalized weakly
symmetric.
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