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Abstract

The aim of the paper is to introduce a Kantorovich-Stancu type modification of a general-
ization of Szdsz operators defined via Boas-Buck type polynomials and to obtain rates of
convergence for these operators. Furthermore, we give the figures for comparing approxi-

mation properties of the operators K%a’ﬂ ) and B,.
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1. Introduction

The Szasz—Mirakyan operators are defined by

Su(fiz) = ey “,?kf (5) (1.1)

k=0 n

where n € N [23]. We consider f € C[0,00) for which the corresponding series is con-
vergent. Up to now, various operators via special functions, especially generalizations and
modifications of Szasz operators, have been introduced by many authors and have been
studied their approximation properties (see [1,2,8,13-15,19-22,24,25 27-29] ). In 1969,
Jakimovski et al. [16] defined a generalization of Szasz operators using Appell polynomials.
In 1974, Ismail [11] introduced another generalization of Szasz operators via Sheffer poly-
nomials. Inspired by the papers [11,16], f € C'[0,00) for which the corresponding series
is convergent, Varma et al. [27] studied many properties of the following generalization of
Szasz operators defined by means of the Brenke type polynomials

L (5:9) = iy 270 () (12

n
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under the assumptions

(i)  AQ)#0, “EE>0, 0<r<k, k=012,
(ii) B:|0, ) (0, 00), (1.3)
(#41) (1.4) and (1.5) converge for [t| < R, (R>1)

where

=> at", ag#0 and B(t thr by #0 (r>0) (1.4)
=0 r=0
are analytic functions and the Brenke type polynomials [5] are generated by

t) = Zpk (x) tk (1.5)
k=0
where
k
=> ap—rbz", k=0,1,2,...

In 2013, Aktas et al. in [1] defined the following Kantorovich-Stancu version of the
operators given by (1.2) for n € N, x > 0 and f € C'[0,00) for which the corresponding
series is convergent under the assumptions (1.3)

+ ﬁ . (k+a+1)/(n+pB)

a, c) n

K0 (fra) = A B (n2) Zpk n) / f(t)dt. (1.6)
(k+a)/(n+8)

For a = 8 = 0, this operator returns to the Kantorovich type of the operators given by
(1.2) [24]
(k+1)/
Ky (f;z) = A0 Bnr) Zpk (nx) / f
k/n
which gives the Kantorovich version of Szdsz-Mirakyan operators [4] in the special case of
B(t)=¢' and A(t) =
(k+1)/
K, (f;z):= ne_mE / f (1.7)

k/n

The approximation properties of the operators (1.7) can be found in [9, 18, 26,28, 30] and
the references cited therein.

In 2012, Sucu et al. [21] constructed linear positive operators by means of Boas-Buck
type polynomials which give the Brenke-type polynomials, Sheffer polynomials, and Appell
polynomials in the special cases. In [12], Boas-Buck-type polynomials are generated by

A(t)B(xzH (t)) = ipk (z) ¥ (1.8)
where A (t), B(t) and H (t) are analytic functi(f:s
AW =S ot (a0 #£0) . BH)= 3 bt" (b #£0)
H(t) = T; h,t” , (h1 #0).

These operators defined by Sucu et al. [21] are as follows for x > 0 and n € N

B (f:2) == 4777 mH Zpk w)f (7)) (1.10)

(1.9)
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which satisfy
(i) AQ)#£0, H((1)=1, pp(x) >0, k=0,1,2,...,
(ii) B:R— (0,00), (1.11)
(797) (1.8) and (1.9) converge for |t| < R, (R >1).
In the present paper, we consider a Kantorovich-Stancu version of the operators (1.10)
as follows

+ 5 (k+a+1)/(n+6)
B) (4. Y . n / 1.12
k+a)/(n+p5

under the assumption (1.11), f € C'[0,00) and 0 < o < 3, and we study the approximation
properties of these operators. We also present special cases of these operators including
Charlier polynomials and Gould-Hopper polynomials.

The case of H (t) =t in the operators (1.12) gives the Kantorovich-Stancu type opera-
tors (1.6) including Brenke-type polynomials. For B (t) = e’ , the operators (1.12) reduce
to the Kantorovich-Stancu type of the operators with Sheffer polynomials defined by Is-
mail [11]. In the special case of B(t) = e’ and H (t) = t, we have Kantorovich-Stancu
type of the operators with Appell polynomials introduced by Jakimovski et al. [16]. Also,
for A(t) = 1, B(t) = e' and H (t) = t, it turns out the Kantorovich-Stancu type of
Szasz-Mirakyan operators.

2. Approximation properties of the operators K(*#)

First, for the operators UC% o,5) given by (1.12), we shall give some auxiliary results to

prove the main theorem.

Lemma 2.1. For each z € [0,00) , the Kantorovich-Stancu type operators (1.12) have the
following properties

KD (12) = 1, (2.1)

(@8) (g ) = B (nzH (1)) 24" (1) + (2 +1) A(1)
) (n+p)B (an(l)) T 2(n+B)A(1) ) (2.2)
g{(a B) (5 x) _ n*B" (nzH (1)) 22
(n+ B B (naH (1))
n [24°(1) + (20 +2) A1) + A1) H" ()] B' (naH (1)) 2.3
(n+5)° A(1) B (nzH (1)) '
1 " / /
St AFAD {347 (1) + A" (1)) +3 (20 + 1) A'(1) + (30> +3a+1) A(1) }.

Proof. From the generating function of the Boas-Buck-type polynomials given by (1.8),
a few calculations reveal that

> o (nz) = A1) B (nzH (1)),
k=0
> kpy (na) = A’ (1) B (nzH (1)) + nzA (1) B (nzH (1)),

i k?py, (nx) = n*2*A (1) B” (nxH (1)) + naB’ (nxH (1)) {24" (1) + A(1) + A(1) H"(1)}

+ B (nzH (1)) {A" (1) + A" (1)}.

By using these equalities, we obtain the assertions of the lemma by simple calculation. [
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Lemma 2.2. For each x € [0,00), we have

n?B" (nzH (1)) 2nB' (nxH (1))
(@h) (s — 2)2:2) = _ 72
X <( Vs ) {(m,@)?B(anu)) (n+ B) B (nzH (1)) 1}

{[2A’(1)+(2a+2)A(1)+H”(1)A( )| n B (nzH (1))
(n+B8)>A(1) B (nzH (1))
_2A’(1)+(2a+1)A(1)}x
(n+pB)A(1)
1 {47 () + Ca+2) A (1) + (0 +a+1/3) A1)}
(n+B)*A(1)

Theorem 2.3. Let

f(z)
14 22

18 convergent as T — oo}

Erz{f: z € [0,00),

and

B'(y)
I =1 I
v5% B (y) B )

If f € C[0,00) N E, then

=1. (2.4)

lim K™ (fi2) = f(z),

n—oo

8)

and the operators K%a’ converge uniformly in each compact subset of [0,00).

Proof. From Lemma 2.1, by considering the equality (2.4), one obtains

lim ?C( A) (si;x) =z’ i=0,1,2,

n—o0

where the convergence is satisfied uniformly in each compact subset of [0, 00) . Then, using
the universal Korovkin-type property (vi) of Theorem 4.1.4 in [3] completes the proof. O

Now, we compute the rates of convergence of the operators K%a’ﬂ) (f) to f by means
of a classical approach, the second modulus of continuity and Peetre’s K-functional.
Let f € C[0,00). Then for § > 0, the modulus of continuity of f which is denoted by
w (f;0) is defined by
w(fi6):= sup |f(z)—f(y)
x,y€[0,00)
lz—y|<é
where C[0,00) denotes the space of uniformly continuous functions on [0, 00). Then, for
any 0 > 0 and each z € [0, c0),

F@ - 1wl <w(o (28 4) 25)

holds.
One can estimate the rate of convergence of the sequence :K% o) (f) to f via the modulus
of continuity as follows.

Theorem 2.4. If f € C[0,00) N E, then we have

K0 (f50) - £ )] < 20 (£5/0n @)
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where

=\ % (@:8) ((s —z)? ;x) (2.6)
{ 23" na:H(l)) 2nB’ (nzH (1)) +1} )
)

(n+ B8)*B (nzH (1)) (n+f)B(nzH (1
+{ A" (1) + (2a +2) A (1) + H" (1) A(D)] n B (nzH (1))
(nt B2A) B (naH (1))
_2A’(1)+(2a+1)A(1)}
(B AQ)
1
T ArAQ)

{47 (1) + 2a+2) A (1) + (o +a+1/3) A(1)}.

Proof. Using linearity of the operators Klp ), (2.1) and (2.5), we get

L5 (k+a+1)/(n+pB)
(o) ( n _
KD (F9) = F @] S T B mer £ (s) = f ()] ds
(k+a)/(n+B)
L8 (k+a+1)/(n+p) | |
n S—X
< 1 :0)d
= A1) B (neH (1 Zp’“ (nz) / ( 5 )w<f’ ) ds
(k+a)/(n+p)
'8 (k+a+1)/(n+8)
n
< —x|d :0). (2.
< 1+A(1) B el (1 5Zpk nx) s —alds pw(f;d). (2.7)
(k+a)/(n+B)

If we apply the Cauchy-Schwarz inequality for integration, it follows

(k4+a+1)/(n+8) (k+a+1)/(n+5) 12
|s —x|ds < 7 |s — x> ds ,
(k4a)/(n+8) (k+a)/(n+pB)
which gives
0o (k+a+1)/(n+p)
> pr (na) / |s — x| ds
k=0 (k+)/(n+8)
- (ko t1)/(n+6) 12
2
< NE: l;)pk (nx) / |s — x|"ds . (28)

(kta)/(n+p)
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Considering Cauchy-Schwarz inequality for summation on the right hand side of (2.8), one
can easily obtain

0 (k+a+1)/(n+B)
Zpk (nx) / |s — x| ds
k=0 (k+a)/(n-+8)

<

VAW BaH W) (AW B®aH (1), ap) 2. )"
Vn+p ( . <( )>>

A(1) B (nzH (1)) a . 1/2
= i B (9{1(1 A ((s—x)Q,x))
_A(1)B(nzH (1)) 1/2

- P (An (2)) (2.9)

where A, (x) is given by (2.6). Taking into account this inequality in (2.7) leads to
() ( . 1 .
KD (fi2) = ] (@) <41+ 50 (@) oo (f:6).
If we get & = /Ay, (z), we obtain the desired. O

Now, we give the rates of convergence of the operators fK%a’ﬂ ) to f by means of the

second modulus of continuity and Peetre’s K-functional.
We remind that the second modulus of continuity of f € Cp[0,00) is defined by

wa (f;0) := sup [[f(-+26) =2f (- +1)+ [ (e,
0<t<s

where Cp[0,00) denotes the class of real valued functions defined on [0,00) that are
bounded and uniformly continuous with the norm || f[|c, = sup,ejo,o0) [ (#)]-
Peetre’s K-functional of the function f € Cp [0, 00) is defined by

K(fi0):= _dnt {If = 5llo, +blsllcs } (2.10)
where
C%10,00) :={g € Cp[0,00) : ¢',¢" € Cp[0,00)}
and the norm |lgllce = llgllc, + 19'llc, + 19" llc, (see [7]). Also, in [6] we have the

following inequality:
K (f:8) < M {wz (f:V3) + min (1.6) | /], } (2.11)
for all 6 > 0 where M is a constant which is independent of the function f and 9.

Theorem 2.5. Let f € C%[0,00). For the operators %) defined by (1.12), we have

K (f2) = £ @) < CUflles,
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where

¢ =Co(z) = [{2( n2B" (nxH (1)) nB' (nzH (1)) n 1 } 22

n+B)°B(nzH (1)) (n+pB)B(nzH (1)) 2
N { 24" (1) + 2a +2) A(1) + H" (1) A(1)] nB' (nzH (1))
2(n+ )2 A(1) B (nzH (1))

C2A (D) + (2a+1) A1) n nB'(nzH (1)) 1}36

2(n+B)A(1) (n + B) B (nzH (1))
+6(n+;)2A(1) {347 (1) + (6 +6) A’ (1)) + (30 +3a+ 1) A(1)}

24" (1) + (2 + l)A(l)]
2(n+B)A(1)

Proof. From the Taylor expansion of f, the linearity of the operators iKSLa”B ) and the
equality (2.1), we may write for n € (z, s)

KD (f12) = 1 () = @ KED (5 —a2) + T 9co0) (i) . (212)

Using the results in Lemma 2.1, we have

nB'(nzH (1)) 1} - 24" (1) 4+ (2a+1) A(1)
(n+ ) B(nzH (1))

O

for s > x. Thus, by considering Lemmas 2.1 and 2.2 in (2.12), we obtain

Kﬁla’ﬁ) (s —z;x) = {

K ()~ (@)] < 10D (5 = 30) [ £y + 55 (5= 2052) 1

_ H n*B"(nzH (1))  nB (naH (1)) 1 e
2(n+B)?B(nzH (1)) (n+B)B(nzH (1)) 2
N { 247 (1) + (2a+2) A(1) + H" (1) A(1)] nB' (nzH (1))
2(n+B)*A(1) B (nzH (1))
C2A (D) + (2a+1)AQ1) nB'(nzH (1)) 1}
2(n+B)A(1) (n+ ) B (nzH (1))

1
* 6(n+p3)>A(1)
24" (1) + (2a + 1)A(1)} 1Flls
2(n+B)A(1) Cp

which completes the proof. O

3A" (1) + (6 +6) A’ (1)) + (3a® +3a+1) A(1)
{ ( ) AW}

Theorem 2.6. If f € Cp|0,00), then
5 (f12) = 1 ()] < 2M {uws (£;V/8) +min (1,6) | /]|, }
holds where
§ 1= b (2) = 560 (2)

and the constant M > 0 is independent of f and §. Also, (, () is given as in Theorem
2.5.
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Proof. We assume that g € C%[0,0) . From Theorem 2.5, we can get
KD (fr2) = f ()] < | K@D (f = gio)| + | KD (g52) — g (2)] + |g (2) = f ()
<2[|f = glig, +<llgllez
=2{lIf = gllc, +3llgllez ] - (2.13)

Since the left-hand side of inequality (2.13) does not depend on the function g € C% [0, 00) , it
follows from Peetre’s K-functional K (f;¢) defined by (2.10)

5D (f12) — £ (2)] < 2K (£:9).
By using the relation (2.11) in the last inequality, we obtain
5D (fr) = £ (@)] < 2M {ws (£V/5) + min (1,6) [, } -
This concludes the proof. O

We note that A, (,, 0, — 0 when n — oo under the assumption (2.4) in Theorems 2.4-
2.6.

Remark 2.7. For « = = 0, the operators (1.12) reduces to the Kantorovich type
operators including Boas-Buck-type polynomials given by

(k+1)/n

K (f;z) = A0 B an Zpk n) / f(t)dt.

k/n

For a = 8 = 0, the results given above are satisfied by the Kantorovich type operators
including Boas-Buck-type polynomials.

Remark 2.8. In the case of H (t) = t, the results obtained in the paper capture the results
obtained for Kantorovich-Stancu type operators (1.6) including Brenke-type polynomials
in [1].

3. Special cases of the operators ngf‘ﬁ)

Case 1. Gould-Hopper polynomials g,‘f,“ (z,h) are defined through the identity

k
d+1 h) = [d§+:1} k! B k—(d+1)m
9 (@ )_m:o ml(k—(d+ )m)"

where, as usual, [.] denotes the integer part [10], and they have generating function of the
form "

et exp(xt) ngH (x,h) E (3.1)
Gould-Hopper polynomials are Boas-Buck- type polynomlals with for the special case of
A(t) =M™ B(t) = ¢! and H (t) = t in (1.8). From (1.12), Kantorovich-Stancu type
operators including the Gould-Hopper polynomials are as follows:

(k+a+1)/(n+8)
oo d+1
o nzx, h
“9) (f,2) = (n+ ) ey G 1) F () dt
k=0 (k+a)/(n+8)

where z € [0,00) and h > 0 in [1].
Case 2. The Charlier polynomials C}, (a) (z) are generated by

( ) ZC k, < a
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Charlier polynomials are the Boas-Buck-type polynomials for the choice A (t) = €' ,

B(t) =¢"and H(t) =In(1— %) in (1.8). In order to ensure the restrictions (1.11) and
the assumption (2.4), we get the generating function as

—(a—1)zIn(1-t/a — a tk
ote—(a—Dan(1 t/):kz:oclgr)(_(a_l)x)k!’ lt| <a, a>1.

In this case, the operator (1.12) turns to

(k+a+1)/(n+8)
B 1 (a—1)nz ©© C(a) —(a -1 nzx
Tr(Laﬁ) (f;xz):=(n+pH)e ! <1 — a> Z ( (k‘ Jnz) f(t)dt.
k=0 (k+a)/(n+8)

For a = 8 = 0, we have Szasz-Kantorovich type operators based on Charlier polynomials
in [17].

4. Some graphical representations

In this section, we give the graphs to compare approximation properties of the operators
%P with B,,.

Firstly, we use f(z) = ¢ %, a =1, 8 =2, H(t) =t, A(t) = 1, B(t) = €' and
n = 10, 20, 50, 100 for operators JCS{I’B). In Figure 1, red color line for n = 10, green color

line for n = 20, brown color line for n = 50, purple color line for n = 100 and black color
line for f(x).

04T

02T

0.0 —_— |
0.0 0.1 02 0.3 0.4 0.5

Figure 1

Now, we use f(z) = sin(27z), a =1, =2, H(t) =t, A(t) =1, B(t) = ¢' and
n = 20, 50, 100, 200, 500 for operators IK%Q”B). In Figure 2, navy color line for n = 20, light
green color line for n = 50, blue color line for n = 100, pink color line for n = 200, green
color line for n = 500 and black color line for f(z) in x € [0.5, 1].
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10T
}..
0.5
0.0 ¢ I = I = I = i = |
0.6 0.7 0.8 09 0
X
05T
S
-1.0 —
Figure 2

Finally, we compare the operators K%a”g) with B, for f (z) =e ™, n=100, a=1, f =
2, H(t) =t, A(t) =1, B(t) = ¢'. In Figure 3, red color line for JC%O"B), blue color line for
B, black color line for f(x).

1]

04T

Figure 3
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