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Abstract
In this paper, an explicit characterization of the separation properties ST2, ∆T2, ST3, ∆T3
and Tychonoff objects are given in the topological category of proximity space. Further-
more, the (strongly) compact object and ∂-connected object are also characterized in the
category of proximity space. Moreover, we investigate the relationships among ST2, ∆T2,
ST3, ∆T3, the separation properties at a point p, the generalized separation properties
Ti, i = 0, 1, 2, T0, T1, T2 and Tychonoff objects in this category. Finally, we investi-
gate the relationships between ∂-connected object and (strongly) connected object in the
topological category of proximity space.
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1. Introduction
The notion of proximity on a set X was introduced in 1950 by Efremovich [18]. He

characterized the proximity relation “A is close to B” as a binary relation on subsets of a set
X. In the meanwhile, in 1941, a study was made by Wallace [39,40] regarding “separation
of sets”. This study can be considered as the primordial version of the proximity concept.
A large part of the early work in proximity spaces was done by Smirnov [37] and [38].

All our preliminary information on proximity spaces and more information can be found
in [32].

In later years, some authors such as Leader [28], Lodato [29] and Pervin [33] have worked
with weaker axioms than Efremovich’s proximity axioms.

Various generalizations of the usual separation properties of topology and for an ar-
bitrary topological category over sets separation properties at a point p are given in [2].
Baran [2] defined separation properties first at a point p, i.e., locally (see [3,5,6,10,13,24,
25]), then they are generalized this to point free definitions by using the generic element,
[22, p. 39], method of topos theory.

One of the uses of local separation properties is to define the notions of closedness and
strong closedness on arbitrary topological categories in set based topological categories.
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These notions are introduced by Baran [2,4,9] and they are used in [2,7,11,15,24] to gen-
eralize each of the notions of compactness, connectedness, Hausdorffness, and perfectness
to arbitrary set based topological categories. Also, it is shown in [10,11,13] that closedness
and strong closedness form an appropriate closure operator in the sense of Dikranjan and
Giuli [17] in some well-known topological categories. Moreover, the notions of each of
(strongly) closed morphisms and (strongly) compact objects in a topological category E

over SET are introduced in [7].
The main goal of this paper is
(1) to give the characterization of the separation properties ST2, ∆T2, ST3, ∆T3 and

Tychonoff objects in the topological category of proximity space,
(2) to characterize the (strongly) compact object and ∂-connected object in the topo-

logical category of proximity space,
(3) to show that the relationships among ST2, ∆T2, ST3, ∆T3 and the separation

properties at a point p, the generalized separation properties Ti, i = 0, 1, 2, T0,
T1, T2 and Tychonoff objects in this category, and between ∂-connected object
and (strongly) connected object in the topological category of proximity space.

2. Preliminaries
The following are some basic definitions and notations which we will use throughout

the paper.
Let E and B be any categories. The functor U : E −→ B is said to be topological or

that E is a topological category over B if U is concrete (i.e., faithful and amnestic), has
small (i.e., sets) fibers, and for which every U-source has an initial lift or, equivalently, for
which each U-sink has a final lift [1].

Note that a topological functor U : E −→ B is said to be normalized if constant objects,
i.e., subterminals, have a unique structure, [1, 5, 12,30,34].

Recall in [1] or [34], that an object X ∈ E (where X ∈ E stands for X ∈ Ob(E)), a
topological category, is discrete iff every map U(X) → U(Y ) lifts to a map X → Y for
each object Y ∈ E and an object X ∈ E is indiscrete iff every map U(Y ) → U(X) lifts to
a map Y → X for each object Y ∈ E.

Let E be a topological category and X ∈ E. A is called a subspace of X if the inclusion
map i : A → X is an initial lift (i.e., an embedding) and we denote it by A ⊂ X.
Definition 2.1. ([32]). An (Efremovich) proximity space is a pair (X, δ), where X is a
set and δ is a binary relation on the powerset of X such that

(P1) AδB iff BδA;
(P2) Aδ(B ∪ C) iff AδB or AδC;
(P3) AδB implies A, B ̸= ∅;
(P4) A ∩ B ̸= ∅ implies AδB;
(P5) Aδ̄B implies there is an E ⊆ X such that Aδ̄E and (X − E)δ̄B;

where Aδ̄B means it is not true that AδB.
A function f : (X, δ) → (Y, δ′) between two proximity spaces is called a proximity

mapping (or a p-map) iff f(A)δ′f(B) whenever AδB. It can easily be shown that f is a
p-map iff f−1(C)δ̄f−1(D) whenever Cδ̄′D.

In a (quasi-)proximity space (X, δ), we write A ≪ B if and only if A δ (X − B). The
relation ≪ is called p-neighborhood relation or the strong inclusion. When A ≪ B, we
say that B is a p-neighborhood of A or A is strongly contained in B [20] or [32].

We denote the category of proximity spaces and proximity mappings by Prox. Hunsaker
and Sharma [21] showed that the functor U : Prox −→ Set is topological.
Definition 2.2. ([35]). Let X be a nonempty set. A proximity-base on X is a binary
relation B on P (X) satisfying the axioms (B1) through (B5) given below:
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(B1) (∅, X) /∈ B;
(B2) If A ∩ B ̸= ∅ implies (A, B) ∈ B;
(B3) (A, B) ∈ B iff (B, A) ∈ B;
(B4) If (A, B) ∈ B and A ⊆ A∗, B ⊆ B∗ then (A∗, B∗) ∈ B;
(B5) If (A, B) /∈ B then there exists a set E ⊆ X such that (A, E) /∈ B and (X−E, B) /∈

B.
2.3 Let B be a proximity-base on a set X and let a binary relation δ on P (X) be defined

as follows: (A, B) ∈ δ if, given any finite covers {Ai : 1 ≤ i ≤ n} and {Bj : 1 ≤ j ≤ m}
of A and B respectively, then there exists a pair (i, j) such that (Ai, Bj) ∈ B. δ is a
proximity on X finer than the relation B [21] or [35].

2.4 Let X be a non-empty set, for each i ∈ I, (Xi, δi) be a proximity space and
fi : X → (Xi, δi) be a source in Prox. Define a binary relation B on P (X) as follows: for
A, B ∈ P (X), ABB iff fi(A)δifi(B), for all i ∈ I. B is a proximity-base on X [35, Theorem
3.8]. The initial proximity structure δ on X generated by the proximity base B is given
by for A, B ∈ P (X), AδB iff for any finite covers {Ai : 1 ≤ i ≤ n} and {Bj : 1 ≤ j ≤ m}
of A and B respectively, then there exists a pair (i, j) such that (Ai, Bj) ∈ B [35].

2.5 Let (X, δ) be a proximity space, Y a non-empty set and f a function from a
proximity space (X, δ) onto a set Y . The strong inclusion ≪∗ induced by the finest
proximity δ∗ on Y making f proximally continuous is given by: for every A, B ⊂ Y ,
A ≪∗ B if and only if, for each binary rational s in [0, 1], there is some Cs ⊂ Y such
that C0 = A, C1 = B and s < t implies f−1(Cs) ≪δ f−1(Ct) [20] or [41, p. 276], where
≪δ represents the strong inclusion induced by the proximity δ on X. In addition, if
f : (X, δ) → (X, δ∗) be a one-to-one p map, then A δ∗ B if and only if f−1(A) δ f−1(B)
[20, p. 591].

2.6 We write ∆ for the diagonal in X2, where X ∈ Prox. For X ∈ Prox we define the
wedge X2 ∨∆ X2, as the final structure, with respect to the map X2 ⨿

X2 −→ X2 ∨∆ X2,
that is the identification of the two copies of X2 along the diagonal ∆. An epi sink
{i1, i2 : (X2, δ) −→ (X2 ∨∆ X2, δ′)}, where i1, i2 are the canonical injections, in Prox is
a final lift if and only if the following statement holds. For each pair A, B in the different
component of X2 ∨∆ X2, Aδ′B iff there exist sets C, D in X2 such that Cδ{(x, y)} and
{(x, y)}δD with i−1

k (A) = C and i−1
j (B) = D for k, j = 1, 2 and k ̸= j. If A and B are in

the same component of wedge, then Aδ′B iff there exist sets C, D in X2 such that CδD
and i−1

k (A) = C and i−1
k (B) = D for some k = 1, 2. Specially, if ik(E) = A and ik(F ) = B,

then (ik(E), ik(F )) ∈ δ′ iff (i−1
k (ik(E)), i−1

k (ik(F ))) = (E, F ) ∈ δ. This is a special case of
2.5.

2.7 Let X be a non-empty set. The discrete proximity structure δ on X is given by for
A, B ⊂ X, AδB iff A ∩ B ̸= ∅ [32, p. 9].

2.8 Let X be a non-empty set. The indiscrete proximity structure δ on X is given by
for A, B ⊂ X, AδB iff A ̸= ∅ and B ̸= ∅ [19, p. 5].

3. ST2, ∆T2, ST3 and ∆T3 objects in proximity spaces
In this section, the characterization of ST2, ∆T2 ST3 and ∆T3 objects in this category

are given. Furthermore, we investigate the relationships among ST2, ∆T2, ST3, ∆T3, the
separation properties at a point p, the generalized separation properties Ti, i = 0, 1, 2, T0,
T1 and T2 in the topological category of (Efremovich) proximity spaces.

Let B be set and p ∈ B. The infinite wedge product ∨∞
p B is formed by taking countably

many disjoint copies of B and identifying them at the point p. Let B∞ = B × B ×
... be the countable cartesian product of B. Define A∞

p : ∨∞
p B → B∞ by A∞

p (xi) =
(p, p, ..., p, x, p, ...), where xi is in the i-th component of the infinite wedge and x is in the
i-th place in (p, p, ..., p, x, p, ...) (infinite principal p-axis map), and ▽∞

p : ∨∞
p B −→ B by

▽∞
p (xi) = x for all i ∈ I (infinite fold map), [2, 4].
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Note, also, that A∞
p is the unique map arising from the multiple pushout of p : 1 → B

for which A∞
p ij = (p, p, ..., p, id, p, ...) : B → B∞, where the identity map, id, is in the j-th

place [11].

Definition 3.1. (cf. [2,4]). Let U : E −→ Set be a topological functor, X an object in E

with U(X) = B. Let F be a nonempty subset of B. We denote by X/F the final lift of
the epi U-sink q : U(X) = B → B/F = (B\F ) ∪ {∗}, where q is the epi map that is the
identity on B\F and identifying F with a point {∗}.

Let p be a point in B.
(1) p is closed iff the initial lift of the U-source {A∞

p : ∨∞
p B → U(X∞) = B∞ and

∇∞
p : ∨∞

p B → UD(B) = B} is discrete.
(2) F ⊂ X is closed iff {∗}, the image of F , is closed in X/F or F = ∅.
(3) F ⊂ X is strongly closed iff X/F is T1 at {∗} or F = ∅.
(4) If B = F = ∅, then we define F to be both closed and strongly closed.
(5) X is ST2 iff ∆, the diagonal, is strongly closed in X2, [4].
(6) X is ∆T2 iff ∆, the diagonal, is closed in X2, [4].
(7) X is ∆T3 iff X is T1 and X/F is ∆T2 if it is T1, where F ̸= ∅ in U(X), [8].
(8) X is ST3 iff X is T1 and X/F is ST2 if it is T1, where F ̸= ∅ in U(X), [8].

Recall that a prebornological space is a pair (B,F), where F is a family of subsets of
B that is closed under nonempty finite union and contains all finite nonempty subsets of
B. A morphism (B,F) → (B1,F1) of such spaces is a function f : B → B1 such that
f(C) ∈ F1 if C ∈ F. We denote by P Born, the category thus obtained. This category is
topological category over Set, [9].

The category P rord of preordered spaces has as objects the pairs (B, R), where B is a
set and R is a reflexive and transitive relation on B and has as morphism (B, R) → (B1, R1)
those functions f : B → B1 such that if aRb, then f(a)R1f(b) for all a, b ∈ B. This category
is topological category over Set, [13].

Lemma 3.2. ([13, Theorem 3.6]). Let (B, R) be a preordered set (i.e., R is a reflexive
and transitive relation on B), and ∅ ̸= F ⊂ B. Then,

(i) F is a closed subset of B iff for any x ∈ B, if there exists a, b ∈ F such that xRa
and bRx, then x ∈ F .

(ii) F is a strongly closed subset of B iff for each x ∈ B, if there exists a ∈ F such
that xRa or aRx, then x ∈ F .

Lemma 3.3. ([4, Theorem 3.9 and 3.10]). Let (B,F) be a prebornological space. Then,
(i) A subset F ⊂ B is closed iff B = F or F = ∅.
(ii) All subsets of B are strongly closed.

Remark 3.4. (1) In T op, the notion of closedness coincides with the usual one [2] and
F is strongly closed iff F is closed and for each x /∈ F there exists a neighbourhood
of F missing x, [2]. If a topological space is T1, then the notions of closedness and
strong closedness coincide, [2].

(2) In general, for an arbitrary topological category, the notions of closedness and
strong closedness are independent of each other. To see this, let B = {−1, 1},
R = {(−1, 1), (−1, −1), (1, 1)} and F = {1}. Then (B, R) is a preordered set and
by 3.2, F is closed, but F is not strongly closed. On the other hand, let B = R,
the set of real numbers, and F = P (R) − {∅}, the set of all nonempty subsets of
R. Note, [9] Remark 3.2, that (B,F) is a prebornological space and by 3.3, Q, the
set of rational numbers, is strongly closed, but Q is not closed.

Theorem 3.5. (cf. [26]). Let (X, δ) be a (Efremovich) proximity space and p ∈ X.
(1) {p} is closed in X iff for any B ⊂ X, if {p}δB, then p ∈ B .
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(2) ∅ ̸= F ⊂ X is closed iff x ∈ F whenever {x}δF for all x ∈ X.
(3) ∅ ̸= F ⊂ X is strongly closed iff x ∈ F whenever {x}δF for all x ∈ X.

Definition 3.6. Let E be a topological category over Set, X an object in E and F be a
nonempty subset of X.

(1) F ⊂ X is open iff F c, the complement of F , is closed in X.
(2) F ⊂ X is strongly open iff F c, the complement of F , is strongly closed in X, [15].

Note that in T op the notion of openness coincides with the usual one, [15]. If a topo-
logical space is T1, then the notions of openness and strong openness coincide, [15].

Theorem 3.7. ([26]). Let (X, δ) be a (Efremovich) proximity space. ∅ ̸= F ⊂ X is
(strongly) open iff x ∈ F c whenever {x}δF c for all x ∈ X.

Definition 3.8. ([41, p. 268]). Let (X, δ) be a (Efremovich) proximity space and A ⊂ X.
Define Ā = {x|xδA} and if Ā = A, then A is said to be closed.

Remark 3.9. (1) Let (X, δ) be a (Efremovich) proximity space and A ⊂ X. A is
closed (in the usual above sense) iff for each x ∈ X, if xδA, then x ∈ A.

(2) Let (X, δ) be a (Efremovich) proximity space. It follows from 3.5 and Definition
3.8 that the notions of closedness (in our sense) and strong closedness coincide
with the notion of closedness in the usual sense, [26].

Theorem 3.10. Let (X, δ) be a (Efremovich) proximity space. Then (X, δ) is ST2 or ∆T2
iff δ is separated (Hausdorff) (Efremovich) proximity i.e., if {x}δ{y}, then x = y.

Proof. (X, δ) is ST2 or ∆T2 iff by Definition 3.1 (5) ((6)) ∆ is strongly closed (closed)
iff by Theorem 3.5 (3) (Theorem 3.5 (2)), letting F = ∆ for each (x, y) ∈ X2 if there
exists (a, a) in ∆ such that {(x, y)}δ2{(a, a)} (δ2 is the product proximity structure on
X2), then (x, y) ∈ ∆ i.e., x = y. We will show that if (X, δ) is ST2 or ∆T2, then δ is
separated (Hausdorff) proximity. If {x}δ{y}, then we have clearly {(x, y)}δ2{(y, y)} or
{(x, x)}δ2{(x, y)} and consequently (x, y) ∈ ∆ i.e., x = y since (X, δ) is ST2 or ∆T2.
Hence δ is separated (Hausdorff) (Efremovich) proximity.

Conversely if δ is separated (Hausdorff) (Efremovich) proximity, then clearly ∆ is
strongly closed (closed) i.e., (X, δ) is ST2 or ∆T2. �
Example 3.11. Let X = {a, b} and δ = {(X, X), ({a}, {a}), ({b}, {b}), (X, {a}),
({a}, X), (X, {b}), ({b}, X)}. Then (X, δ) is ST2 or ∆T2 since {a}δ{b}, then a = b.

Theorem 3.12. Let (X, δ) be a (Efremovich) proximity space. If (X, δ) is ST2 or ∆T2,
then (X/F, δ∗) is ST2 or ∆T2.

Proof. Suppose (X, δ) is ST2 or ∆T2. Let x and y be any distinct pair of points in X/F .
By Theorem 3.10, we only need to show that ({x}, {y}) /∈ δ∗, where δ∗ is the structure on
X/F induced by q.

Suppose that x ̸= ∗. By definition of q map, there exist x ∈ X and F ⊂ X such that
q(x) = x and q(z) = ∗ for any z ∈ F . Since x ̸= z for any z ∈ F (x /∈ F ) and (X, δ) is
ST2 or ∆T2, then {x} δ {z}. By the condition (P2) of Definition 2.1 we obtain {x} δ F .
Then we have {x} δ F = q−1({x}) δ q−1({∗}). It follows that by p-neighborhood relation
definition and 2.5, for each binary rational s in [0, 1] there is some Cs ⊂ X/F such that
C0 = {x}, C1 = {∗}z and s < t implies q−1(Cs) ≪δ q−1(Ct) = q−1({x}) ≪δ (q−1({∗}))z =
q−1({x}) ≪δ q−1({∗}z) if and only if {x} ≪∗ {∗}z. Hence {x} δ

∗ {∗}, i.e., ({x}, {∗}) /∈ δ∗.
Let x ̸= y ̸= ∗. By definition of q map, there exists a pair x, y ∈ X such that q(x) =

x and q(y) = y. In this case q map can be considered as one-to-one map. Suppose
that {x} δ∗ {y}. By definition of q map and 2.5, we have {x} δ∗ {y} if and only if
q−1({x}) δ q−1({y}) = {x} δ {y}. But {x} δ {y} since (X, δ) is ST2 or ∆T2. Hence
{x} δ

∗ {y} i.e., ({x}, {y}) /∈ δ∗.
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Consequently for each distinct points x and y in X/F , we have ({x}, {y}) /∈ δ∗. Hence
by Theorem 3.10, (X/F, δ∗) is ST2 or ∆T2. �
Theorem 3.13. (cf. [26, 27]). Let (X, δ) be a (Efremovich) proximity space and p ∈ X.

(1) (X, δ) is T1 at p iff for each x ̸= p, ({x}, {p}) /∈ δ.
(2) (X, δ) is T0 at p iff for each x ̸= p, ({x}, {p}) /∈ δ.
(3) All (Efremovich) proximity spaces are T ′

0 at p.
(4) (X, δ) is T 0 if and only if, for each distinct pair x and y in X, ({x}, {y}) /∈ δ.
(5) An Efremovich proximity space is T ′

0.
(6) (X, δ) is T1 if and only if, for each distinct pair x and y in X, ({x}, {y}) /∈ δ.
(7) An Efremovich proximity space is PreT 2, ([12]).
(8) (X, δ) is PreT ′

2 ([12]) if and only if, for each distinct pair x and y in X, ({x}, {y}) /∈
δ.

(9) (X, δ) is T 2 ([11]) iff, for each distinct pair x and y in X, ({x}, {y}) /∈ δ.
(10) (X, δ) is T ′

2 ([11]) iff, for each distinct pair x and y in X, ({x}, {y}) /∈ δ.

Definition 3.14. (cf. [32, 36]). An Efremovich proximity space (X, δ) is said to be a
• T0-space if x ̸= y for x, y ∈ X implies that xδ̄y.
• T1-space if x ̸= y for x, y ∈ X implies that xδ̄y.
• T2-space (Hausdorff) if x δ y for x, y ∈ X implies that x = y.

Theorem 3.15. An (Efremovich) proximity space (X, δ) is ST3 or ∆T3 if and only if, δ
is separated (Hausdorff) (Efremovich) proximity i.e., if {x}δ{y}, then x = y.

Proof. It follows from Definition 3.1 (7), (8) and Theorems 3.12, 3.13 (6). �
We give explicit relationships among the generalized separation properties ST2, ∆T2,

ST3, ∆T3, the separation properties at a point p, the generalized separation properties Ti,
i = 0, 1, 2, T0, T1 and T2 in the topological category of (Efremovich) proximity spaces.

Remark 3.16. Let (X, δ) be a (Efremovich) proximity space and p ∈ A.
(i) By Theorems 3.10, 3.13 and 3.15, then the followings are equivalent:

(1) (X, δ) is
−
T0 at p for all p ∈ A.

(2) (X, δ) is T1 at p for all p ∈ A.
(3) (X, δ) is STi, i = 2, 3.
(4) (X, δ) is ∆Ti, i = 2, 3.

(ii) By Theorems 3.10, 3.13 and 3.15, if (X, δ) is STi or ∆Ti, i = 2, 3, then (X, δ) is T ′
0 at

p for all p ∈ A. But the reverse of implication is not true, in general. For example,
let X = {a, b} and δ = {(X, X), ({a}, {a}), ({b}, {b}), (X, {a}),({a}, X), (X, {b}),
({b}, X), ({a}, {b}), ({b}, {a})}. Then (X, δ) is T ′

0 at a but it is not STi or ∆Ti,
i = 2, 3, at a since ({a}, {b}) ∈ δ but a ̸= b.

(iii) By Theorems 3.10, 3.13, 3.15, and Definition 3.14, then the followings are equiva-
lent:

(1) (X, δ) is T 0.
(2) (X, δ) is Ti, i = 0, 1, 2.
(3) (X, δ) is T1.
(4) (X, δ) is PreT ′

2.
(5) (X, δ) is T 2.
(6) (X, δ) is T ′

2.
(7) (X, δ) is STi, i = 2, 3.
(8) (X, δ) is ∆Ti, i = 2, 3.
(9) For any distinct pair of points a and b in X, ({a}, {b}) /∈ δ.

(iv) By Theorems 3.10, 3.13 and 3.15, if (X, δ) is STi or ∆Ti, i = 2, 3, then (X, δ) is T ′
0 or

PreT 2. But the reverse of implication is not true, in general. For example, let X =
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{a, b} and δ = {(X, X), ({a}, {a}), ({b}, {b}), (X, {a}), ({a}, X), (X, {b}), ({b}, X),
({a}, {b}), ({b}, {a})}. Then, (X, δ) is T ′

0 and PreT 2 but it is not STi or ∆Ti,
i = 2, 3, since ({a}, {b}) ∈ δ but a ̸= b.

4. Connectedness and compactness
In this section, the characterization of the notion of the ∂-connected object and (strongly)

Compact object in this category are given. We investigate the relationships between ∂-
connected object and (strongly) connected object in this category.

Recall that the notions of each of (strongly) closed morphisms and (strongly) compact
objects in a topological category E over SET are introduced in [7].

Definition 4.1. (cf. [7]) Let U : E −→ Set be a topological functor, X and Y be objects
in E, and f : X → Y a morphism in E. Then,

(1) f is said to be closed iff the image of each closed subobject of X is a closed
subobject of Y .

(2) f is said to be strongly closed iff the image of each strongly closed subobject of X
is a strongly closed subobject of Y .

(3) X is compact iff the projection π2 : X × Y → Y is closed for each object Y in E.
(4) X is strongly compact iff the projection π2 : X × Y → Y is strongly closed for

each object Y in E.

Note that for the category T op of topological spaces, the notions of closed morphism
and compactness reduce to the usual ones ([16, p.97 and p.103]).

Lemma 4.2. (1). Let f : (X, δ) → (Y, δ′) be a p-map in Prox. If D ⊂ Y is (strongly)
closed, so also is f−1(D).

(2) Let (Y, δ′) be a (Efremovich) proximity space. If N ⊂ Y is (strongly) closed and
M ⊂ N is (strongly) closed, so also is M ⊂ Y .

Proof. (1) Suppose D ⊂ Y is (strongly) closed and x ∈ f−1(D). By 3.5 (2) (3.5 (3)),
y ∈ D whenever {y}δ′D for all y ∈ Y . We need to show that, x ∈ f−1(D) whenever
{x}δf−1(D) for all x ∈ X. Note that f(x) ∈ f(f−1(D)) ⊂ D and {f(x)}δ′D since f is
p-map and D ⊂ B is closed. Thus, f−1(D) is closed.

The proof for strongly closedness is similar.
(2) Suppose N ⊂ Y and M ⊂ N are strongly closed, y ∈ Y and there exists a ∈ M

such that yδ′a. By 3.5 (3), we need to show that y ∈ M . Since N ⊂ Y is strongly closed
and M ⊂ N , by 3.5 (3), y ∈ N . It follows that y ∈ M since M ⊂ N is strongly closed.

The proof for closedness is similar. �
Lemma 4.3. All objects in Prox are (strongly) compact.

Proof. Let (B, δ) be a (Efremovich) proximity space. By Definition 4.1 (3) (4.1 (4)), we
need to show that for all proximity spaces (A, δ′), π2 : (B, δ)×(A, δ′) → (A, δ′) is (strongly)
closed. Suppose M ⊂ B×A is (strongly) closed. To show that π2M is (strongly) closed, we
assume the contrary and apply Theorem 3.5 (2) (3.5 (3)). Thus for some point a ∈ A with
a ̸∈ π2M whenever {a}δ′π2M . Since M ⊂ B ×A is (strongly) closed, (b, a) ∈ M whenever
{(b, a)}δ′′M for all (b, a) ∈ B × A, where δ′′ is the product proximity structure on B × A.
Hence π2{(b, a)}δ′π2M = {a}δ′π2M , by definition of product proximity structure. Since
(b, a) ∈ M , π2(b, a) = a ∈ π2M . This is a contradiction since M is (strongly) closed, by
Theorem 3.5 (2) (3.5 (3)). Hence, by Theorem 3.5 (2) (3.5 (3)), π2M must be (strongly)
closed and consequently, by Definition 4.1 (3) (4.1 (4)), (B, δ) is (strongly) compact. �
Theorem 4.4. Let f : X → Y be a p-map in Prox. If (X, δ) is (strongly) compact, then
(f(X), δ′) is (strongly) compact.

Proof. It follows from Lemma 4.3. �
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We now give the characterization of ∂-connected object in the category of (Efremovich)
proximity spaces and investigate the relationships between ∂-connected object and (strongly)
connected object in this category.

Definition 4.5. Let E be a topological category over Set and X be an object in E.
(1) X is connected iff the only subsets of X both strongly open and strongly closed

are X and ∅, [15].
(2) X is strongly connected iff the only subsets of X both open and closed are X and

∅, [15].
(3) X is ∂-connected iff the boundary of any non-empty proper subsets of X is non-

empty set, i.e., ∂F \ F̊ ̸= ∅, [23].
(4) X is D-connected iff any morphism from X to any discrete object is constant, (cf.

[15, 34]).

Note that for the category T op of topological spaces, the notion of strongly connected-
ness, ∂-connected and D-connectedness coincides with the usual notion of connectedness.
If a topological space X is T1, then, by 4.5, the notions of connectedness, strong connect-
edness and ∂-connected coincide, [15].

Theorem 4.6. A (Efremovich) proximity space (X, δ) is ∂-connected iff for any non-
empty proper subset F of X, either the condition (1) or (2) holds.

(1) x /∈ F whenever {x}δF for some x ∈ X.
(2) x /∈ F c whenever {x}δF c for some x ∈ X.

Proof. Suppose that (X, δ) is ∂-connected but conditions (1) and (2) do not hold for
some non-empty proper subset F of X. Since the condition (1) does not hold, we get
x ∈ F whenever {x}δF for all x ∈ X which means that subset F is (strongly) closed by
3.5 (2) or 3.5 (3). Since the condition (2) does not hold, we get x ∈ F c for all x ∈ X,
whenever {x}δF c. This means that F c is (strongly) closed. So F is (strongly) open by
3.7. Hence F is (strongly) open and (strongly) closed, i.e., ∂F \ F̊ = F \ F = ∅. But this
is a contradiction since (X, δ) is ∂-connected.

Conversely, suppose that the condition (1) holds. Then x /∈ F whenever {x}δF for
some x ∈ X and F is not (strongly) closed 3.5 (2) or 3.5 (3). Suppose that the condition
(2) holds. Then for some x ∈ X, x /∈ F c whenever {x}δF c. This means that F c is not
(strongly) closed. So F is not (strongly) open by 3.7. Hence the only subsets of X both
(strongly) open and (strongly) closed are X and ∅. Hence ∂F \ F̊ ̸= ∅. From here (X, δ)
is ∂-connected. �

Example 4.7. Let X = {a, b} and δ = {(X, X), ({a}, {a}), ({b}, {b}), (X, {a}),
({a}, X), (X, {b}), ({b}, X), ({a}, {b}), ({b}, {a})}. Then (X, δ) is ∂-connected since non-
empty proper subset F = {a} of X, b /∈ F whenever {b}δF for some b ∈ X. The case
F = {b} of X can be handled similarly.

Theorem 4.8. A (Efremovich) proximity space (X, δ) is (strongly) connected iff for any
non-empty proper subset F of X, either the condition (1) or (2) holds.

(1) x /∈ F whenever {x}δF for some x ∈ X.
(2) x /∈ F c whenever {x}δF c for some x ∈ X, [26].

Remark 4.9. Let (X, δ) be in Prox. By Theorem 4.6 and Theorem 4.8, (X, δ) is
(strongly) connected iff (X, δ) is ∂-connected.

Lemma 4.10. Let f : (X, δ) → (Y, δ′) be a p-map in Prox. If (X, δ) is (strongly)
connected, ∂-connected or D-connected, then f(X) is (strongly) connected, ∂-connected or
D-connected, respectively.
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Proof. Let (X, δ), (Y, δ′) be in Prox and M is any non-empty proper subset of f(X).
Since f−1(M) ⊂ X and (X, δ) is (strongly) connected, either conditions (I) or (II) in
Theorem 4.8 holds. Suppose condition (I) in Theorem 4.8 holds. Then, x /∈ f−1(M)
whenever {x}δf−1(M) for some x ∈ X. Hence, f(x) /∈ f(f−1(M)) ⊂ M ⇒ f(x) /∈ M
whenever {f(x)}δ′f(f−1(M)) for some f(x) ∈ f(X). Similarly, if the condition (II) of
Theorem 4.8 holds, f(X) is strongly connected.

The proof for ∂-connected and D-connectedness is similar. �

5. Tychonoff objects
In this section, the characterization of Tychonoff objects in this category is given. Fur-

thermore, we investigate the relationships between Tychonoff objects and ST2, ∆T2, ST3,
∆T3, generalized separation properties and separation properties at a point p in this cat-
egory.

Definition 5.1. (cf. [7, 8, 14]). Let U : E −→ Set be a topological functor and X an
object in E with U(X) = B.

(1) X is C∆T3 1
2

iff X is a subspace of a compact ∆T2.
(2) X is CST3 1

2
iff X is a subspace of a compact ST2.

(3) X is LT3 1
2

iff X is a subspace of a compact T ′
2.

(4) X is S∆T3 1
2

iff X is a subspace of a strongly compact ∆T2.
(5) X is SST3 1

2
iff X is a subspace of a strongly compact ST2.

(6) X is SLT3 1
2

iff X is a subspace of a strongly compact T ′
2.

Remark 5.2. For the category T op of topological spaces, all six of the properties defined
in Definition 5.1 are equivalent and reduce to the usual T3 1

2
= Tychonoff, i.e, completely

regular T1, spaces ([31, Remark 5.2, and Remark 6.2]).

Theorem 5.3. Let (X, δ) be a (Efremovich) proximity space. Then the followings are
equivalent:

(1) (X, δ) is C∆T3 1
2
.

(2) (X, δ) is CST3 1
2
.

(3) (X, δ) is LT3 1
2
.

(4) (X, δ) is S∆T3 1
2
.

(5) (X, δ) is SST3 1
2
.

(6) (X, δ) is SLT3 1
2
.

(7) (X, δ) is separated (Hausdorff) (Efremovich) proximity i.e., if {a}δ{b}, then a = b.

Proof. It follows from Theorem 3.10, Lemma 4.3 and Definition 5.1. �
Example 5.4. Let X = {a, b}, δ = {(X, X), ({a}, {a}), ({b}, {b}), (X, {a}), ({a}, X),
(X, {b}), ({b}, X)} and δ1 = {(X, X), ({a}, {a}), ({b}, {b}), (X, {a}), ({a}, X), (X, {b}),
({b}, X), ({a}, {b}), ({b}, {a})}. Then (X, δ) is C∆T3 1

2
, but (X, δ1) is not C∆T3 1

2
, since

({a}, {b}) ∈ δ with a ̸= b.

By Remark 3.16 and Theorem 5.3, we need only to give explicit relationships among
C∆T3 1

2
,

−
T0 at p, T ′

0 at p, T 0, T0, T ′
0 and PreT 2 in the topological category of (Efremovich)

proximity spaces.

Remark 5.5. Let (X, δ) be a (Efremovich) proximity space and p ∈ A.
1. By Remark 3.16 and Theorem 5.3, then the followings are equivalent:
(i) (X, δ) is

−
T0 at p for all p ∈ A.
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(ii) (X, δ) is C∆T3 1
2
.

(iii) For each a ̸= p, ({a}, {p}) /∈ δ.
2. By Theorem 3.13 (3) and Theorem 5.3, if (X, δ) is C∆T3 1

2
, then (X, δ) is T ′

0 at p for
all p ∈ A. But the converse of implication is not true. For example, take (X, δ) to be the
proximity space in Remark 3.16 (ii). Then (X, δ) is T ′

0 at a but it is not C∆T3 1
2

at a.
3. By Remark 3.16, Theorem 5.3 and Definition 3.14, then the followings are equivalent:
(i) (X, δ) is T 0.
(ii) (X, δ) is T0.
(iii) (X, δ) is C∆T3 1

2
.

(iv) For each distinct pair of points a and b in X, ({a}, {b}) /∈ δ.
4. By Theorem 3.13 (5), Theorem 3.13 (7) and Theorem 5.3, if (X, δ) is C∆T3 1

2
, then

(X, δ) is T ′
0 or PreT 2. But the converse implication is not true. For example, take (X, δ)

to be the proximity space in Remark 3.16 (ii). Then (X, δ) is T ′
0 or PreT 2 but it is not

C∆T3 1
2
.
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