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Abstract

The object of the present paper is to study invariant semiparallel and 2-semiparallel sub-
manifolds of a normal paracontact metric manifold. We see that parallel submanifolds of
a normal paracontact metric manifold are totally geodesic.
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1. Introduction

In the modern geometry, the geometry of submanifolds has become a subject of growing
interest for its significant applications in applied mathematics and physics. For instance,
the notion of invariant submanifold is used to discuss properties of non-linear autonomous
system. On the other hand, the notion of geodesics plays an important role in the theory
of relativity. For totally geodesic submanifolds, the geodesics of the ambient manifolds re-
main geodesics in the submanifolds. Therefore, totally geodesic submanifolds are also very
much important in physical sciences. The study of geometry of invariant submanifolds was
initiated by Bejancu and Papaghuic [4,5]. Later on the invariant submanifolds have been
studied by many geometers to different extent [13]. Invariant submanifolds inherit almost
all properties of the ambient manifolds.

Arslan K. and et al. [1,11] defined and studied 2-semiparallel surfaces in space forms.
Ishihara I. [7], Yano K. and Kon M. [16] studied anti-invariant submanifolds of a Sasakian
space form. In [3-5,8,9,14], authors studied semi-invariant and totally umbilical sub-
manifolds in Sasakian and cosymplectic manifolds. In [2], we discussed the properties of
semi-invariant submanifolds of a normal paracontact metric manifold.

Motivated by the above studies, the present paper deals with the study of invariant
submanifolds of a normal paracontact metric manifold.
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Let M be a (2n+ 1)-dimensional manifold and ¢, £ and n be a tensor field of type (1, 1),
a vector field and a 1-form on M, respectively. If ¢, & and 7 satisfy the conditions
¢*X = X +n(X)¢, n(E) =1, (1.1)

for any vector field X on M, then M is said to be an almost contact manifold. In addition,
it is called almost contact metric manifold if M has a Riemannian metric tensor such that

9(6X,0Y) = g(X,Y) = n(X)n(Y), n(X) = g(X,£), (1.2)
for any X,Y € x(M), where x(M) denotes set of the differentiable vector fields on M [15].

Furthermore, M is called a normal paracontact metric manifold if we have
(Vx9)Y = —g(X,Y)§ = n(Y)X + 2n(X)n(Y)§ (1.3)
and
Vx€=—0¢X, (1.4)
for any X,Y € x(M), where V denotes the Levi-Civita connection determined by g.

The concircular curvature tensor, conformal curvature tensor and quasi-conformal cur-
vature tensor of a normal paracontact metric manifold M?"*! are, respectively, defined
by

. T

2(X,Y)Z = R(X,Y)Z — m{g(}/, 2)X — g(X, 2)Y}, (1.5)

C(X,Y)Z =R(X,Y)Z — ﬁ{so@ 2)X - S(X,2)Y + g(Y. 2)QX

P
—g(X, Z)QY} + m

m{g(x 2)X —g(X,2)Y}, (1.6)

C(X,Y)Z =AR(X,Y)Z 4+ p{S(Y, 2)X — S(X,2)Y + g(Y, 2)QX — g(X, Z)QY}
o+ 1

for any X,Y,Z € x(M), where R denotes the Riemannian curvature tensor of M and @
is the Ricci operator given by g(QX,Y) = S(X,Y).

{50+ 2 HoY, 2)X = g(X, 2)Y) (1.7

Also, on a normal paracontact metric manifold M?"*! the following relations are sat-
isfied

R(&,Y)Z =g(Y, 2)§ —n(2)Y, (1.8)
and
REY)E=n(Y)§-Y (1.9)
for any X,Y,Z € x(M).

Now let M be a submanifold of a normal paracontact metric manifold M with induced

metric tensor g. We also denote the induced connections on the tangent bundle Xx(M) and
the normal bundle x (M) by V and V*, respectively. Then the Gauss and Weingarten
formulas are given by

VxY =VxY +h(X,Y) (1.10)
and

VxV =—-AyX + V%V, (1.11)
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for any X,Y € x(M) and V € x*(M), where h and Ay are second fundamental form
and shape operator, respectively, for the immersion of M into M [12]. M is called totally
geodesic submanifold if h = 0. h and Ay are related by

G(AvX,Y) = g(h(X,Y), V), (1.12)
The covariant derivation of h is defined by
(Vxh) (Y, Z) = Vi%h(Y,Z) - h(VxY,Z) — h(Y,VxZ), (1.13)
for any X,Y,Z € x(M). h is said to be parallel if (Vxh)(Y, Z) = 0.
For a submanifold M of a normal paracontact metric manifold M, if for any X € x (M),
then we can write
X = fX +wX, (1.14)

where fX and wX are the tangent and normal components of X, respectively. M is said
to be an invariant submanifold if w = 0 [6]. Throughout this paper, we assume that M
is an invariant submanifold of a normal paracontact metric manifold M. In this case, we

have ¢(x(M)) € x(M) and ¢(x*(M)) € x*(M) [10].

2. Preliminaries

Let (M,g) be a Riemannian manifold and M be a submanifold of M. We denote
the Levi-Civita connection of g and the second fundamental form of M by V and h,
respectively. The submanifold M said to be semiparallel if

R(X,Y) - h=0, (2.1)

for any X,Y € x(M), where R denotes the Riemannian curvature tensor of M and
R(X,Y)-h =0 is defined by

(R(X,Y)-h)(Z,U) = R~(X,Y)h(Z,U) — h(R(X,Y)Z,U) — h(Z, R(X,Y)U),
for any X,Y, Z, U € x(M).
In [1] Arslan et al. defined and studied 2-semiparallel submanifolds. Such submanifolds

are defined as, a Riemannian submanifold M is said to be 2-semiparallel if the following
relation holds

R(X,Y) - Vh =0, (2.2)
for any X,Y € x(M), where
(RX.Y) - VR)(Z,U.W) =R (X, Y )(V2h)(U, W) — (V iy 2h) (U, W)
— (Vzh)(R(X, Y)U W) — (Vzh)(U,R(X,Y)W), (2.3)
for any X,Y, Z,U, W € x(M).

Now, let us assume that normal paracontact metric manifold M?"*+! is conformal flat.
Then from (1.6) we have

R(X, V)6 =5 {S(V,X ~ S(X.OY +n(¥)QX — n(X)QV}

- m{ﬁ(y)X —n(X)Y}, (2.4)
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which implies that

M)X —n(X)Y =2 (V)X —n(X)V}+ 5 (V)X —n(X)QY)
= S =y VIOX = u(X)Y (2.5)

This is equivalent to
n(Y)QX ~n(X)QY = {n(¥)X —n(X)YH ~1}. (2:6)

For Y = £, we obtain
QX = (;n - 1) X+ <2n +1- 27;1) n(X)E, (2.7)

that is, conformally flat normal paracontact metric manifold is an Einstein manifold and
the Ricci tensor is given by

T T
XY)=|—-1)g(X,Y 2 1—— ) n(X)nY). 2.
SEY) = (5 = 1) 90 Y) + (2041 = ) n(X0n(y) 23
The scalar curvature 7 of M?"*! is obtained by
T T
=|—=1)(2 1 2 1——. 2.
T (2n )(n+ )+(n+ 2n> (2.9)

Thus we have the following theorem for later use.

Theorem 2.1. Conformally flat a normal paracontact metric manifold is always an n-
FEinstein manifold.

Now, let us suppose that normal paracontact metric manifold be Quasi-Conformally
flat. Then from (1.7), we have

R(X,Y)Z =— %{S(Y, X —-S(X,2)Y +9(Y,Z2)QX — g(X,Z2)QY }

+ LA ey, 2)X — g(X, 2)Y),

for any X,Y,Z € x(M). By the direct calculations, we obtain

_ 2n(n— { A+ p(2n — 1)}
= R =" (2.10)

provided that 2\ + 3u(n — 1) # 0.

3. Invariant submanifolds of a normal paracontact metric manifold

In this section, we study of invariant submanifolds of a normal paracontact metric
manifold satisfying the Z(X,Y)-h =0 and Z(X,Y) - Vh = 0. Finally we see that these
conditions are satisfied if and only if invariant submanifold is totally geodesic.

Proposition 3.1. Let M be an invariant submanifold of a normal paracontact metric
manifold M. Then the following relations holds:

1) Vx§=—-fX, h(ng) =0

2) ph(X,Y) = h(X, [Y)

3) (Vx )Y = —g(X,Y)§ —n(Y)X + 2n(Y)n(X)E,

for any X, Y € x(M).
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Proof. By using (1.4) and taking into account of M being invariant submanifold, 1)
statement is obvious. On the other hand, making use of (1.3) and (1.10), we have

(Vxd)Y = VxoY — ¢VxY
=h(X,fY)+Vx[Y — ¢h(X,Y) — fVxY
= —9(X,Y)€ = n(Y)X + 2n(X)n(Y)E,
for any X,Y € x(M), which proves 2) and 3) statements. O

Thus we have the following conclusion.

Corollary 3.2. Every invariant submanifold of a normal paracontact metric manifold has
a normal paracontact metric structure.

Theorem 3.3. Let M be an invariant submanifold of a normal paracontact metric man-
ifold M. Then the second fundamental form of M is parallel if and only if M is a totally
geodesic submanifold.

Proof. If the second fundamental form h of M is parallel, then we have

Vxh(Y,Z) - hVxY,Z)—h(Y,VxZ) =0, (3.1)

for any XY, Z € x(M). Setting Z = £ in (3.1) and taking into account that Proposition
3.1, we get h(Y,Vx&) = —h(X, fY) = 0, which implies that M is a totally geodesic
submanifold. The converse statement is obvious. O

Theorem 3.4. Let M be an invariant submanifold of a normal paracontact metric man-
ifold M. Then M is semiparallel if and only if M is a totally geodesic submanifold.

Proof. If M is semiparallel, then R -h = 0. This implies that
(R(X,Y)-h)(Z,U) =R*(X,Y)h(Z,U) — h(R(X,Y)Z,U)

—h(Z,R(X,Y)U), (3.2)
for any XY, Z, U € x(M). Putting X = U = £ in (3.2), we obtain
R*(&,Y)h(Z,€) = h(R(&,Y)Z,€) — h(Z, R(€,Y)€) = 0. (3.3)
Here taking into account of (1.8) and (1.9), we reach at
n(Z)h(Y, &) = g(Y, Z)h(E, &) + MY, Z) —n(Y)h(Z,§) = 0. (3.4)
Here, from (3.4) we conclude h(Y,Z) = 0, that is, the submanifold is a totally geodesic.
Conversely, if h = 0, then M is semiparallel. O

Theorem 3.5. Let M be an invariant submanifold of a normal paracontact metric man-
ifold M. Then M is 2-semiparallel if and only if M is a totally geodesic submanifold.

Proof. Let us suppose M be 2-semiparallel. This implies that
(R(X,Y) - Vh)(Z,U,W) =R*(X,Y)(Vzh)(U,W) — (Vr(x,yv)zh) (U, W)
— (VZh)(R(X,Y)U.W) = (V2h)(U, R(X,Y)W),  (3.5)

for all X, Y, Z,U,W € x(M). Here taking X = U = £ and we calculate each expression as
follows

RHEY)(VZh) (&, W) = RH(&Y){VZh(EW) = h(V2E, W) — h(¢, V2 W)}
= RYE,Y)R(fZ, W), (3.6)
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(VaeyzZW(EW) = Viey)zh(E W) = MV rey) 28 W) = MV pey)zW, €)
= —h(V_y2)y 49,2066, W)
=n(Z)W(Vy& W) — g(Y, Z)h(VeE, W)
= —n(Z)h(fY, W), (3.7)

(Vzh)(R(£,Y)E, W) =VZh(R(E,Y)E, W) — h(VZR(E,Y)E, W)
—h(R(§,Y)E, VW)
= —VEh(Y, W)+ Vh(n(Y)E, W) + h(VzY, W)
— h(n(Y)e, W) + h(Y,VzW) — h(VzW,n(Y)¢€)
= — (Vzh)(Y, W), (3.8)
and
(Vzh)(&, R(&,Y)W) =VZh(&, R(E,Y)W) — h(V &, R(E,Y)W)
— h(VZR(&, Y)W, ¢)
=—h(VzE (W)Y +g(Y,W)E)
= —n(W)h(fZ,Y). (3.9)
Thus, by combining (3.6),(3.7),(3.8) and (3.9), we derive
(R(&,Y) - VR)(Z,&, W) =R (&, Y)W Z, W) + n(Z)h(fY, W)
+ (Vzh) (Y, W) +n(W)h(fZ,Y). (3.10)

Since M is 2-semiparallel and for W = £, we obtain h(fY,W) = 0. This proves our
assertion. The converse is obvious. (|

Theorem 3.6. Let M be an invariant submanifold of a paracontact metric manifold M
with 7 # 2n(2n+1). Then Z(X,Y)-h = 0 if and only if M is totally geodesic submanifold.

Proof. Z(X,Y) - h =0 implies that
(Z(X,Y)-h)(Z,U) =R(X,Y)WZ,U) — h(Z(X,Y)Z,U)
—h(Z,Z(X,Y)U), (3.11)

for any XY, Z, U € x(M). By using (1), we have

267 = (1= gogiry ) 60720 = n(2)Y). (312
Thus
0=RYEYIMZ,E) — h(Z(E,Y)Z,€) — MZ, Z(£,Y)E)
= (1 goy ) (D) + oY 2)6.€) = WZ =Y +0(¥)9)
— (1 ~ @ T D 1)) hY, Z). (3.13)
This proves our assertion. ]

Theorem 3.7. Let M be an invariant submanifold of a paracontact metric manifold M
with T # 2n(2n+1). Then Z(X,Y)-Vh = 0 if and only if M is totally geodesic subman-
ifold.
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Proof. Z(X,Y) - Vh =0 means that
REXY)(VZR)(UW) = (V) MU W) = (V2h) (Z(X,Y)U, W)
—(Vzh)(U, Z(X,Y )W) = 0, (3.14)
for any X,Y,Z, U W € x(M). Here,

R(&,Y)(VZh)(§&, W) = RHEY){VZh(&, W) — h(VzE W) — h(VZW,€)}
= RY(E,Y)R(fZ, W), (3.15)

(Vg(gjy)zh) (53 W) VL(é Y)Z (f W) - h(vg(g Y) Zg’ ) - h(vg(g Y)ZVVa g)

h(V 2y +g(v,2)e6: W)

- < 2n—|—1>
- ( 2n+1 )n (Y. W), (3.16)

(Vzh)(Z(E,Y)E, W) =V h(Z(E,Y)E,W) — h(V2Z(£,Y)E, W)
— h(VZW, Z(£,Y)E)

= (1 - 2”(2’”+1)> {VZh(=Y +n(Y)¢, W)

—h(Vz =Y +nY)§,W) = h(VzW, =Y +n(Y)E)}
= (1 - 2n(2n+1)> {=VZh(Y, W)+ VZ(n(Y)h(¢,W))
RV Y, W) = n(Y)h(E, W) + h(V 2 W, Y)
—n(Y)h(V2zW,§)}

_ (1 - 2n(2n+1)> (Vh) (Y, W) (3.17)

and

(Vzh)(& Z(&,Y )W) =Vzh(§, Z(§, V)W) = h(V 2€, Z(£,Y)WV)
—~hW(V2Z(E,Y)W,E)
= <1 2”(2n+1)) {n(W)h(VzE£,Y)
—g(Y,W)h(VzE,€)}
_ (1 - T 1)) WV Z,Y). (3.18)

Thus we obtain
RHEYIIZIW) + (1= gosTs ) MY I7)

(2
+ (Vzh) (Y, W) +n(W)h(fZ,Y)} = 0. (3.19)

Here choosing W = £, we conclude

(14 graryy) (U Y) -~ (Tamive) = (14

The converse is obvious. This proves our assertion. ]

.
2n(2n + 1)

> W(fZ,W).



508 M. Atceken, U. Yaldirsm, S. Dirik

Example 3.8. Let M be a submanifold of R7 is given by the equation
d(x1,y1,8) =(coszq sinhy, siny; sinh 2y, cos 1 sinh yy,
sin x1 cosh y1, cos y; cosh x1, sin x1 cosh yq, s) .

Then tangent space of M is spanned by the vectors

e1 = — sin z sinh ylﬁ + siny; cosh 1 — B2y — sinx; sinh y; — B3
0 0 0
+ cos x1 cosh yl@ + cosy sinh xla—m + cosxy coshy; — s’
e9 = cos x1 cosh y187 + cosyy sinh 1 — 92, + cosxq coshy; — 925
. . . 0
+ sin x1 sinh yla—yl — siny; coshx; — E + sin z1 sinh y; — 5’
0
pu— 5 prm— 87‘
s

We define the almost paracontact structure of R7 by
P(x1, T2, 3, Y1, Y2, Y3, 5) = (—y1, —Y2, —¥3, ¥1, T2, 23, 0),
then we have ¢?X = —X + n(X)¢ for any X € x(R"). By direct calculations,
peq :( — cosx cosh yp, — cosyy sinh x1, — cos z1 cosh y1,
— sinz; sinh yy, siny; cosh 1, — sin x; sinh y1, 0)

= — €2,

pe2 :( — sin 1 sinh 1, sin y; cosh z1, — sin x1 sinh 1,
cos 1 cosh y1, cos yp sinh 21, cos x1 cosh yy, 0)
—=e€1.

Thus M is 3—dimensional an invariant submanifold of R”. On the other hand, Lie-
bracket the vector fields of e; and es is

. o) , 0
le1,e2] = smh(2yl)a—x1 + Sln(2x1)(,q)—y1

— (2 sin x1 cos yp sinh y; cosh x1 + 2 cos x1 sin y1 sinh z1 cosh yl) 25
1)

+ (2 sin x1 sin y1 sinh z1 sinh ;3 — 2 cos x1 cos y; cosh 1 cosh yl) —_—

Oy2
+ sinh(2y1)i ++ sin(2x1)i.
Oxs 0y3
By using Kozsul-formulae, we obtain

Ve, €2 =[ — cos zy sinh(2z1) cosh y; — sin(2y1) sin 21 sinh y

— sin x; sinh y; sinh(2y;) + cos x; cosh y; sin 2x;
1 1
+ 3 cos 1 cosh y; sinh(2z1) + 3 sin z1 sinh y; sin(2y1)]e;
1
+ [sin; sinh y; sin(221) — B sin 1 sinh y; sinh(2x1)

1
+ cos x cosh y; sinh(2y;) + 5 cos x1 cosh y sin(2y1)] ez
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Since M is a totally-geodesic submanifold, M is a semiparallel and 2-semiparallel subman-
ifold of R”. This verifies the statements of Theorem 3.4 and Theorem 3.5.

Acknowledgment. The authors would like to thank the referee for many helpful sug-
gestions and editors for their patience.
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