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Abstract: The Rayleigh distribution is an important model in applicas such as noise theory, height of the sea waves and wave
length. In this paper, we provide Bayesian estimation foaemeter of the Rayleigh distribution based on simple randample
(SRS) and ranked set sampling (RSS) and maximum ranked reptisg procedure with unequal samples (MRSSU) in two cases,
one cycle and m-cycle. We also obtain the Bayes estimatorssing square-root inverted-gamma and Jeffreys prior usgeared
error loss function and general entropy loss function ariEX function. Finally, we compute the bias and mean squarest ef an
estimator under squared error and compare its with the soreling RSS and MRSSU through Monte Carlo simulations.
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1 Introduction

Mclintyre (1952) first proposed ranked set sampling (RSS)tonate the mean pasture yields and indicated that RSS
is a more efficient sampling method in comparison with sinmpledom sampling(SRS) in terms of the population mean
estimation. The one-cycle RSS involves an initial rankihg eamples of siza as follows:

1 Xt Xemt - Xnpr = Y11= X1
2 Xz Xzn2 - Xnmz = Y2 = Xzn)2

n: X(l:n)n X(2:n)n T X(n:n)n = Yn= X(n:n)n

whereX.,); denotes théth order statistic from thgth SRS of sizen. The resulting sample is called one-cycle RSS of
sizen and denoted by = (Y1, Y2, ..., Ys). Under the assumption of perfect judgment rankidas the same distribution
asXg which is theith order statistic in a set of sizeobtained from théth sample with pdf

n!

(-1 (n—i)

The cycle may be repeated times untilnm units have been quantified. Now, we assume that we have a RBSafr
Rayleigh distribution with probability density functiopdf) and the cumulative distribution function (cdf) areeivas

fiy (0 = FOOIF ()]~ F ()",

_ X —x?
f(x,o):?exp 252 ) x> 0,0 >0, Q)

* Corresponding author e-maihhmasebi@pgu.ac.ir © 2017 BISKA Bilisim Technology


 http://dx.doi.org/10.20852/ntmsci.2017.219

8 BISKA S.Tahmasebi, E. Haji Hosseini, A.A.Jafari: Bayesian estiion for Rayleigh distribution ...

and 5
F(x;a):l—exp(%), 2

respectively. To derive the Bayesian estimatiowoit is most common to use square error loss(SEL) functiofinee as
Ll(a-a G) = (6- - 0)27 (3)

whered is the estimate obr. It may be noted here that (3) defines a symmetric loss fumetibich may be suitable
for estimation ofo. In many practical situations it is more realistic to exgré®e loss in terms of rati§ . In this case,
Calabria and Pulcini (1996) proposed a loss function, timeg# entropy loss(GEL) function of the form:

L2(6,0) O1(2)P—pIn(Z)~ 1], p#0, @

Qlo

wherep is the loss parameter which reflects the departure from syrgniéhe loss parametqr allows different shapes
of this loss function. The LINEX loss function is one of the shpopular asymmetric loss function. It was first introduced
by Varian (1975) and was extensively discussed by Zelln@8§). The LINEX loss function is given by

L3(6,0) Oexp(c(6 —0))—c(6—0)—1, c#£0. (5)

The sign and magnitude ofrepresents the direction and degree of symmetry, respéctivorc close to zero, the LINEX
loss is approximately squared error loss and thereforestlsyanmetric. In this paper, we also consider the square-roo
inverted-gamma prior foo which has the form

@ —20-1 527
m(ola,b) = W(G) e 2%, (6)
wherea > 0 andb > 0. Whena= b =0, itis the non-informative Jefferys prior of. The square-rootinverted-gamma prior
was first proposed by Bernardo and Smith (1994) and has beereaslier by Fernandez (2000), Ragab and Madi (2002),
Wu et al. (2006) and Soliman and Al-Aboud (2008). Many awhtave used the RSS for Bayesian estimation of some
distributions. Al-Saleh and Muttlak (1998) investigatealyBsian estimators of the mean of the exponential distoibut
Kim and Arnold (1999) considered Bayesian estimation ugeeeralized RSS. The concept of Bayesian methods along
with RSS was studied by Al-Saleh et al.(2000), who found fbatexponential distribution with conjugate prior, the
RSS Bayes estimator has smaller Bayes risk than SRS Bayemtst Al-Saleh and Abu Hawwas(2002) considered
characterization of Bayesian estimation under RSS for abdistribution. Sadek et al.(2015) used the asymmetrig los
function to derive the Bayesian estimate based on RSS. Day(2016) provided Bayes estimator of the scale parameter
of Rayleigh distribution under the different sampling sties. The organization of this article is as follows: In Satti
2, we present the Bayes estimates of the parantetesed on both SRS and RSS. In Section 3, we develop Bayesian
estimation for the parameter using MRSSU. Finally, in Section 4, we compute the bias andmsgjuared error of an
estimator under squared error and compare its with thegmoraling RSS and MRSSU through Monte Carlo simulations.

2 Bayes estimates

In this section, we obtain the Bayes estimates of the paemaebased on both SRS and RSS. In each case, we use
both conjugate prior and the non-informative prior and edtsl Jeffreys prior foo. Also, we consider the squared error
loss function and general entropy loss function and LINEKcfion to derive the corresponding Bayesian estimates.
Throughout the paper, let(g|x) and7(cly) denote the posterior densitiesaf given SR$x) and RS$y), respectively.
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2.1 Bayes estimation based on SRS

Let Xy, Xz, ..., X be iid random variables from a Rayleigh distribution witmgraetero in (1), andr(o) be the conjugate
prior in (6). Then, the posterior density based on SRS carbtared as

n n
21*”*b(a+_z Xi2)h+b 7(a+iglxi2)

i=1
m(alx) = I (n+ b)gZn+2bi1 e 2 . (7)

Hence, the Bayesian estimateafinder SEL function is given by

o 2
rin+b—1),| 252

i=1
(n+b) 2 ®)

OseL(X) = E(0]x) =

Similarly, the Bayesian estimates @fbased on GEL function is obtained as

GeeL(X) = [E(0Px)| P =

,1 [Lm;;)r W ©

For p= —1, equation (9) provides the Bayes estimator under SEofélso, the Bayes estimator af under the LINEX
loss function is given by

- 1 B
OLINEX (X) = —c In(E[e™*?]), (10)
where
n
w2 b(a+lzlx2)”+b —(a+ 3 %)
E —CO :/ = —
e o T (nybjgzra &P 252 co | do

1-n—b 2\n+b 2.2
2 (a+ z X7) “@ i) g

o e i=1 > (_CU)
*/o Finsborn © * x12 g ldo
k
n 2 5
_5 (_C)k (04%) = (n+b 5) 2t
2K Z k' rFntb) 2

2.2 Bayes estimate based on RSS

LetY1,Ys,...,Y, be a one-cycle RSS from the Rayleigh distribution in (1), Hreprior density ofo be as in (6). The
density of the jth order statistl is known to be

ayilo) = j (T) (v 10)[F(yi o)) {1~ F(yj|o)™

_ 2 2\ 101 2\
(ee(zd) [oool=)] ool
_1 .7 ) \2 n—j+k+1
% < >< ) 0% lewe( %)
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n J 1 y2 n—j+k+1
wherety(j) = j (J) ( K >( 1)% andhy(yj|o) = [exp< ﬂ . Then, the joint density of the RSS in this

case is given by

n n j-1
glylo) =[] 9lyjlo) = te(I)e(yjlo)
[109) =1 2 Wty
n
0o 1 n—1 n *jzlyjz(n*JlejJrl)
yiti; ( =
|1ZO|ZZO |nZ I_Il i 202

Hence, the posterior density can be derived as

0 1 nin . - 3 Bln-itiprD)-a
Z z : Z “—l tl]( )]02n+2b+1 exp = 202

i1:Oi2:O in= OJ 1

g(o-|¥): 0 1 n-1 n n I (11)
DI NIy f(n—j+ij+1)+a "o (n+4b)2ntb-t
1200520 in=0 j=1 =1
and the Bayesian estimate @fbased on the SEL function is obtained from (11) as
0 1 n-1 n n o 1 3
3oy e SIS Y= j+ij+1) +a Pl (nb—3)270 2
~ i1=0i2=0 in=0 j=1 =1
O-SEL(X): 0o 1 n-1 n n
Y Y o S [NtMIY y3(n—j+ij+1)+a b (ntb)2nb-?
i1=0ir= O in=0 j=1 =1
Also, the Bayesian estimate afunder GEL function is obtained from (11) as
. 0o 1 n-1 n n nebil n+b7—
) F(2n2ip)] P ilémzéo .mZO[Jlj ti; (] )][Jg Ya(n—j+ij+1)+a] "Pr22
OceL(y) = [7F(n+b) R E—— . .
2z 2 INGWILE Y, f(n—j+ij+1)+a)-nbnib-t
i1=0i,=0 in=0 j=1 =1
The Bayesian estimate of based on the LINEX loss function is given by
~ 1 _
OLINEX (Y) = —Eln(E[e “I), (12)
whereE[e 9] is obtained as follows
5 SRS R iy ez
oo & (—o)f I 220k i1§Oi2§0 InZO JI_I1 i le 41
e ]*kZo K T(ntb) | 0 1 nin n
- 2 3 2 N6 Y] f(n—j+ij+1+a)-nbntb-l
i1=0i,=0 in=0 j=1 =1
2.3 Bayes estimate based on non-informative Jeffreys prior
Let o be a non-informative Jefferys prior as
1
(o) O 5 (13)

Then, we obtain the Bayesian estimategrah cases SRS and RSS as follows
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1.SRS
[(2n=1 2 X2
e (X) = E(0x ,(_(rz])) —o— (14)
and
ree] | 28
GeeL(X) = [E(0PIX)] P = I'(r21) ] '*2 , (15)
n 5
_ 2
; L] ok [rn-9] (&
O'|_|NEx()_():7€|n k; " F(n)2‘| 12 (16)
2.RSS
0o 1 n-1 n n L. 1
305 TG DI -+ DI (- 52
6$L()—/): = 2(; ln nil n : !
DD ISR IR A )][Z yj(n—J+'J+1)] r(m2n-1
i1=0i,=0 in=0 j=1
and
0 1 n-1 n n 1 3
F () = iémzo...iz [|'| t.J( )H,Zl y2(n—j+ij+ 1)) "rz2n2
O-GEL(X) l I_(rz]) ] 1 02 T nn _— . B
303 N6 OIS - )2
0 1 n-1 n n 1 3 k
) © (—g)k (2K i1§0i2§0 IHZO[JI'Iltu( )Hél yi(n—j+ij+ 1)) 22
Ounex(y) =—=In Z Kl ,-(rz]) X 0 1 n-1n n
= 203 TGOS V= iy 1) n2n 2
2.4 Bayes estimate based on extended Jeffreys prior
If we consider the extended Jeffreys prior as
1
T[(O-)Dﬁa (17)
then, we obtain the Bayesian estimategah cases SRS and RSS as follows
1.SRS
5 %
_Fn+c—-1),|i51
6. = E(01) = Fr = \ 18)
and
-1 n 2
rn+e+2h] 7 &
OcEL (X) Finre—1) 5 (19)
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k
2

OLINEX (X :——In Z k'

r<n+ckil>] 2 o0

r n+c—2)

Note that by replacing = % in (20), the Bayes estimator is obtained as in (16) corredimgnto the Jeffreys prior.

Replacingc = % in (20), the Bayes estimator becomes the estimator undeigidas prior (Hartigan (1964)).
2.RSS

0 1 n—-1 n

DRI RI IR

V2= j+ij+1)] " (nc— )22
i1=0i,=0 in=0 j=1

n
4
GEL(X) 0 1 n—-1 n n L 1 1 3’
> ¥ o SN tMIE Yn—j+ij+ 1)) "2 (n+c—3)2Me 2
i1:0i2:0 in=0 j=1 j=1
and
P35 S RGOS - ez
. Frin+c+24 7% 0% o1 i) :

OGeL(Y) =

0o 1 n—-1 n

3 3 3 [Nt (DI

i1=0i,=0 in=0 j=1 j

_1
I'(n+c 2) yJZ(n_j+ij+1)]fn7c+%2n+07%’

M >
[y

0 1 n—-1 n

n k
2 2(n—j+ij —n—ct+lon+c—2
~ 1 o (7c)kl' (n+c— k;1> iEOigéO |nzO[J|-|lt|J (j )][ngyj (n—j+ ij+ 1)] 2
O-LINEX(X) =" Z ] _1 0 1 n-1n n
c KIF (n+c—3) — - .
& 2 _ ZO. ZO . ZO[ |'|lt.J( i) [jzlyjz(n i+ 1)) eraoe
i1=0i=0 in = =

2.5 Bayes estimate based on m-cycle RSS

LetYj, j=12,..,n 1 =12 .mbe m-cycle RSS from Rayleigh distribution with parametein (1) and the prior
densny ofo be the Jeffreys pnor Then, the joint density function iis ttase is given by

n
m O 1 n 1 n . 1 7J_§lyi?j(n7]+llj+1)
|0 :l_!z HYIjtilj(J)]ﬁeXp

20?2
|'1:0|'2:0 ih=0 =1

0 1 n-1 0 1 n-1 1 n-1 ] ) =N
Z Z rZ .. ti ())njo Mexp FZJ ,
it=0if=0 if=0| |i#=0i{=0 i4=0 =oif=o if=o| I=1)=1"

3
S

Wherem = Z Z yIJ n—J+| +1).
Hence, the postenor density can be expressed as

m 0 1 n—1 W| i
B335 (o)
m)) =1ii=0i5=0 =0

g(aly'
m 0 1 n—
ll_l 2 2 2
I=1ii=0i,=0 i}

=

: (21)

l] 201, )~ ()
0 ]
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t

i (J). From (21), the Bayesian estimateabased on the SEL function is given

m 0 1 n-1 3 1
nsy > ...% |W2"™3(n) "2 (nm—0.5)
I=1il —oi,k=0 ih=0] !

5SE|_(¥(m)) = [ )
|

m O 1 n—-1
Y o Y |Wi20m=1(pn, ) =™ (nm)
=1jl=oi,=0 ik=0| ' ]

while the Bayesian estimates afbased on the GEL and LINEX function are derived as

and
m 0 1 n-1 3 1 K
ok M3 5 3 [Wh2m 2 () "™
— ®© (_ [ (&m—XK 1=1il —pjl = iL=0
5'L|NEX(¥(m)):—1|n Zo( (':) (5 )>< h=05%=0 | 7
c & kb M(nm) m 0 1 n-1
Ny 53 |W2min) ™
=1jl=oi,=0 ik=0| '
respectively.

3 Bayesian estimation based on MRSSU

Biradar and Santosha (2014) proposed maximum ranked setlisgnprocedure with unequal samples (MRSSU) to
estimate the mean of the exponential distribution and atditt that MRSSU is better than those of the estimator based on
SRS. The one-cycle MRSSU involves an initial rankingigamples of siza as follows:

1: X1 — Z1= X111

21 X122 X2:22 — Za = X2:2)2

NI Xwnn X2mn = Xnn = Zn = Xnnpn

The resulting sample is called one-cycle MRSSU of sized denoted by = (21,25, ...,Z,). Under the assumption of
perfect judgment ranking; has the same distribution X§); which is theith order statistic in a set of size@btained from
theith sample with pdf

The cycle may be repeatedtimes untilnm units have been quantified. LE{, 2y, ...,Z, be a one-cycle MRSSU from
the Rayleigh distribution with parameterin (1), and the prior density of be as in (6). The density of the jth order
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statistic(maximum) of an SRS of sigdrom (1), i.e.,Z; is

9(zj|0) = if(z]o)[F(zlo))

= 'iex _ZZ 1—exp ZJZ -
— 152\ 252 20

-1 - ) 722 k-+1
(i1 k4 -4
5 oo

-1
= (i) fk(zlo),

=~

- k+1
whereqy(j) = | (J K 1) (~1)kandfy(zj|o) = [exp(zdz)} . Then, the joint density of the MRSSU in this case is
given by

n n j-1

9(go) = J]:[IQ(ZJ o) = DK;QK(j)fk(ZJ 0)

0 1 n-1n ZJZ(J+1)

=2 22 [[aw0 pJT

I1= OI2 0 in= 0=

HM:
R

Hence, the posterior density can be derived as

0 1 n—-1 n 1 *élzjz(ﬁrl)
Z Z : Z [I_l q' ( )]0—2n+2b+1 exp 202

i1:Oi2:O in=0 Jf

90012 = 5171 ; : 22)
¥ 3 3 [0 eIy 2,2(1+1> a "B (n+b)2n+b-1
i1=0i=0 in=0 j j=1
and the Bayesian estimate @fbased on the SEL function is obtained from (22) as
0 1 n-1 n n
3 33 [I'I ai; (DI ij(ij+1)+a]*”*b+%r(n+b_%)2n+bf%
~ i1=0i,=0 in=0 i1
GSEL(Z): . 2O 1 n-1 n n
2 22 [N eI Z?<ij+1)+a]*“*br(n+b)2n+bfl
i1:0i2:0 In 0 j* J,
Also, the Bayesian estimate ofunder GEL function is obtained from (22) as
0 1 n-1 n n ) 1 3
(22t PSP IS ZO[JI_I i (] )][JZ Z(ij+1)+a " Pra2ntbes
) — 2 1=Vl2= n = =1
aGEL(Z)[ FnsD) e T . _
22 Z[ﬂ QI()][22(14‘1)4—3)]*””2”*“1
i1=0i,=0 in=0 j=1 =1
The Bayesian estimate of based on the LINEX loss function is given by
~ 1 .
OLinex (2) = fEIn(E[e D, (23)
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whereE[e ] is obtained as follows:

» ”*1[ T4 (DI 5 Z(i +1)+a]*n*b+§l2n+bfg “
i(c)kr(%) o i1§0i2§omin§0 lequ ] ng j\j
k! r b 0 1 n-1 n . n .
= (n+b) DDA qij(J)][jzlzJZ(lj+1+a)]*nfb2n+bfl

i1=0i,=0 in=0 j=1

Ele ] =

4 Numerical results

We carry out Mont Carlo simulations using the following step

(1) Generate SRS and RSS and MRSSU samples ofisiz8(1)6 from the Rayleigh distribution witlr = @ when
m=1.

(2) Calculate the Bayesian estimates under SEL functiargusie SRS and RSS and MRSSU samples.

(3) Repeat steps 1 and 2 for 1000 runs.

(4) Then calculate the bias and mean square error (MSE)|festanates.

In Table(1), the values of bias and MSEm#ére obtained based on Jefferys priorries 3(1)6 ando = @ From Table(1),
we first of all observe that the Bayesian estimates based o83lRare considerably less biased than the corresponding
Bayesian estimates on RSS and SRS. Also, we observe thaajlesiBn estimates based on MRSSU have much smaller
MSE than the corresponding Bayesian estimates based onRISERS in all cases considered. In Table (2), we obtained
the values of bias and MSE of based on the square-root inverted-gamma prior wher8(1)6, 0 = ‘/7—2 anda=b=2.

From Table (2), we first note that the MSE of all estimates el@se whem increases. Next, we can see that MSE of
Bayesian estimates using MRSSU are smaller than MSE of Bayestimates based on RSS and SRS in all cases. Next,
we observe that the estimates based on the square-rodeidvgamma prior are less biased than the correspondings/alu
for estimates based on Jefferys non-informative prior.

Table 1: The values of bias and MSE based on Jefferys prionfer3(1)6 ando = ‘/7—2

Bias MSE

n SRS RSS | MRSU SRS RSS | MRSU
3 0.0755| 0.0333| 0.0266 0.0059| 0.0018| 0.0007
4 0.0567| 0.0221| 0.0104 0.0042| 0.0005| 0.0002
5 0.0528| 0.0167| 0.0153 0.0033| 0.0004| 0.0001
6 0.0300| 0.0123| 0.0073 0.0019| 0.0002| 0.00006

Table 2: Bias and MSE of the Bayesian estimate based on SRS and RSSR&8Wwhera=b = 2 forn= 3(1)6 and
— 2
0=~

Bias MSE

n SRS RSS | MRSU SRS RSS | MRSU
3 0.0500| 0.0308| 0.0279 0.0022| 0.0009| 0.0008
4 0.0311| 0.0180| 0.0170 0.0011| 0.0004| 0.0003
5 0.0309| 0.0118| 0.0108 0.0009| 0.0002| 0.0001
6 0.0255| 0.0062| 0.0047 0.0008| 0.0001| 0.00004
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