ON THE FACTOR RINGS OF EISENSTEIN INTEGERS

EISENSTEIN TAMSAYILARI HALKASININ BÖLÜM HALKALARI ÜZERİNE

Rukiye ÖZTÜRK¹, Ali AYDOĞDU ${ }^{1}$ and Engin ÖZKAN2*

${ }^{1}$ Atatürk Üniversitesi, Fen Fakültesi, Matematik Bölümü, Erzurum
${ }^{2}$ Erzincan Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü, Erzincan
Geliş Tarihi: 16 Nisan 2013 Kabul Tarihi: 12 Kasım 2013

Abstract

In this study, we will answer the question "What can we say about the factor rings of Eisenstein integers which arise naturally when we consider the factor rings of the ring of integers which is the funda mental concept of abstract algebra. In other words, we will characterize the structure of factor rings for the ring of Eisenstein integers. Keywords : Factor rings; The ring of Eisenstein Integers; Euclidean rings and their generalizations; Principal ideal rings.

ÖZET

Bu çalışmada, soyut cebirin temel kavramlarından biri olan tamsayılar halkasının bölüm halkaları düşünüldüğünde doğal olarak ortaya çıkan "Eisenstein tamsayıları halkasının bölüm halkaları hakkında ne söyleyebiliriz?" sorusu cevaplanacaktır. Başka bir deyişle, Eisenstein tamsayıları halkası için bölüm halkalarının yapısı karakterize edilecektir.
Anahtar Kelimeler: Bölüm Halkaları, Eisenstein tamsayılar halkası, Euclidean halkaları ve genelleştirmeleri, Esas ideal halkaları

1. INTRODUCTION

In [1], it is generalized the idea of factor rings from the integers to the Gaussian integers and at the conclusion part of this work, the writer states that generalization can be done in $\mathbb{Z}[w]$ where $w=\frac{-1+i \sqrt{3}}{2}$. So, in this study, we characterize the factor rings of $\mathbb{Z}[w]$ by assuming $[1]$ as a basis.

[^0]Whichever ring including \mathbb{Z} is applied, each work has a certain value because it gives the general theory of the factor rings of the related ring [1].(for example, in [2], [1] is applied to $\mathbb{Z}[\sqrt{-2}]$).

In summary, in this study we obtain the rings isomorphic to factor rings of Eisenstein integers, prove some properties about the factor rings of Eisenstein integers and find the factors of them.

2. THE CHARACTERIZATION OF FACTOR RINGS OF EISENSTEIN INTEGERS

Throughout this section, Ω_{n} shall denote the set $\mathbb{Z}_{n}[w]=\left\{a+b w: a, b \in \mathbb{Z}_{n}\right\}$. We start by stating a remark on the ring of Eisenstein integers.

2.1. Remark

$$
\begin{aligned}
& \mathbb{Z}[w] /\langle a+b w\rangle \cong \mathbb{Z}[w] /\langle-a-b w\rangle \cong \mathbb{Z}[w] /\langle b-a-b w\rangle \cong \mathbb{Z}[w] /\langle a-b+a w\rangle \\
& \cong \mathbb{Z}[w] /\langle-b+w(a-b)\rangle \cong \mathbb{Z}[w] /\langle b-w(a-b)\rangle \\
& \quad \text { for } a, b \in \mathbb{Z} .
\end{aligned}
$$

Now, we give our first main theorem characterizing the factor rings of $\mathbb{Z}[w]$.

2.2. Theorem

$$
\mathbb{Z}[w] /\langle a\rangle \cong \Omega_{a}
$$

where $a>1$ is an integer.
Proof. Let $\varphi: \mathbb{Z}[w] \rightarrow \Omega_{a}$ be given by $\varphi(p+r w)=\bar{p}+\bar{r} w$ where \bar{x} is a residue class modulo a for any $x \in \mathbb{Z}$. Then, this is an epimorphism with the kernel $\langle a\rangle$. Indeed, since $\varphi(a)=\bar{a}=\overline{0}, a$ is in $\operatorname{Ker} \varphi$ and conversely, if $p+r w \in \operatorname{Ker} \varphi$, then, $a \mid p$ and $a \mid r$ implying that $p+r w \in\langle a\rangle$. The result follows by First Isomorphism Theorem,

It is recalled from elementary abstract algebra when a factor ring of a commutative ring with unity is an integral domain or a field.

The following theorem and corallary state the situation that Ω_{a} is an integral domain or a field.

2.3. Theorem

Let $a>1$ be an integer. Then, Ω_{a} is a field iff a is a rational prime congruent to 2 modulo 3 .
Proof. Suppose Ω_{a} is a field. It follows that a must be a prime. Since $\mathbb{Z}_{2}[w]$ is a field, a can be 2 and if $a>2$, then, a is a rational prime and $a \equiv 2(\bmod 3)$ by [4]. Conversely, let a be a rational prime congruent to 2 modulo 3 . If $a=2$, the claim is true. Let $a>2$ and consider the ring homomorphism $\phi: \mathbb{Z}_{a}[x] \rightarrow \Omega_{a}$ given by $\phi(x)=w$. Since a is odd, $\operatorname{Ker} \phi=\left\langle x^{2}+x+1\right\rangle$. By First Isomorphism Theorem, $\Omega_{a} \cong \mathbb{Z}_{a}[x] /\left\langle x^{2}+x+1\right\rangle$. Suppose that $x^{2}+x+1 \equiv 0(a)$ has a solution, say u. Thus, $u^{2}+u+1 \equiv 0(a)$ i.e $a \mid\left(u^{2}+u+1\right)=(u-w)\left(u-w^{2}\right)$ and a does not divide both $u-w$ and $u-w^{2}$ but a is a prime in $\mathbb{Z}[w]$. Contradiction. Then, $x^{2}+x+1$ is irreducible in $\mathbb{Z}_{a}[x]$ implyig that Ω_{a} is a field.

2.4. Corallary

Let $a>1$ be an integer. Then, Ω_{a} is an integral domain iff a is a rational prime congruent to 2 modulo 3 .

We know give a lemma which we use later. It is a direct consequence of the equation

$$
\frac{c+d w}{a+b w}=\frac{a c+b d-b c}{a^{2}-a b+b^{2}}+w\left(\frac{a d-b c}{a^{2}-a b+b^{2}}\right)
$$

where $a, b, c, d \in \mathbb{Z}$.

2.5. Lemma

Let $\quad a, b, c, d \in \mathbb{Z}$. Then, $\quad c+d w \in\langle a k+b k w\rangle \quad$ iff $k\left(a^{2}-a b+b^{2}\right) \mid(a c+b d-b c)$ and $k\left(a^{2}-a b+b^{2}\right) \mid(a d-b c)$.

We now state our second main theorem characterizing the factor rings of $\mathbb{Z}[w]$.
2.6. Theorem Let $a, b \in \mathbb{Z}$ and $(a, b)=1$. Then, $\mathbb{Z}[w] /\langle a+b w\rangle \cong \mathbb{Z}_{a^{2}-a b+b^{2}}$

Proof. Before all else, Remark 2.1. allows us to assume without lost of generality that a and b are both positive. Now, we can prove the theorem: Since $(a, b)=1,\left(b, a^{2}-a b+b^{2}\right)=1$ so a has an inverse, say a^{-1}, in $\mathbb{Z}_{a^{2}-a b+b^{2}}$ and also note that since $a^{2}-a b+b^{2} \equiv 0\left(a^{2}-a b+b^{2}\right),\left(a b^{-1}\right)^{2} \equiv a b^{-1}-1\left(a^{2}-a b+b^{2}\right)$. Let us define $\quad \psi: \mathbb{Z}[w] \rightarrow \mathbb{Z}_{a^{2}-a b+b^{2}} \quad$ by $\quad \psi(x+y w)=x-a b^{-1} y \quad$ modulo $a^{2}-a b+b^{2}$. It is easy to see that ψ is onto and preserves addition. We use the congruence $\left(a b^{-1}\right)^{2} \equiv a b^{-1}-1\left(a^{2}-a b+b^{2}\right)$ to see that ψ preserves multiplication:

Let $\gamma=x_{1}+y_{1} w$ and $\delta=x_{2}+y_{2} w$. Then, we have

$$
\begin{aligned}
\psi(\gamma) \psi(\delta) & =\psi\left(x_{1}+y_{1} w\right) \psi\left(x_{2}+y_{2} w\right) \\
& =\left(x_{1}-a b^{-1} y_{1}\right)\left(x_{2}-a b^{-1} y_{2}\right) \\
& =x_{1} x_{2}-a b^{-1} x_{1} y_{2}-a b^{-1} y_{1} x_{2}+\left(a b^{-1}\right)^{2} y_{1} y_{2} \\
& =x_{1} x_{2}-y_{1} y_{2}-a b^{-1}\left(x_{1} y_{2}+y_{1} x_{2}-y_{1} y_{2}\right) \\
& =\psi\left(x_{1} x_{2}-y_{1} y_{2}+\left(x_{1} y_{2}+y_{1} x_{2}-y_{1} y_{2}\right) w\right) \\
& =\psi\left(\left(x_{1}+y_{1} w\right)\left(x_{2}+y_{2} w\right)\right) \\
& =\psi(\gamma \delta)
\end{aligned}
$$

Furthermore, the kernel of ψ is $\langle a+b w\rangle$. Indeed, because $\psi(a+b w)=a-a b^{-1} b \equiv 0\left(a^{2}-a b+b^{2}\right) \quad, \quad\langle a+b w\rangle \subseteq \operatorname{Ker} \psi \quad$. Conversely, let $c+d w \in \operatorname{Ker} \psi$ and $c+d w=(a+b w)(x+y w)$ where $x, y \in \mathbb{Q}$. Since $\psi(c+d w)=c-a b^{-1} d \equiv 0$ modulo $a^{2}-a b+b^{2}$, $b c-a d \equiv 0\left(a^{2}-a b+b^{2}\right)$ implying that y is an integer and also

$$
\begin{aligned}
b c-a d \equiv 0\left(a^{2}-a b+b^{2}\right) & \Rightarrow a b^{2} c-a^{2} b d \equiv 0\left(a^{2}-a b+b^{2}\right) \\
& \Rightarrow a c-\left(a b^{-1}\right)^{2} b d \equiv 0\left(a^{2}-a b+b^{2}\right) \\
& \Rightarrow a c-a d+b d \equiv 0\left(a^{2}-a b+b^{2}\right)
\end{aligned}
$$

Thus, $a^{2}-a b+b^{2} \mid a d-b c$ and $a^{2}-a b+b^{2} \mid a c-a d+b d$ imply that $a^{2}-a b+b^{2} \mid a c+b d-b c$ which makes x an integer. Since x, y in \mathbb{Z}, we have Ker $\psi \subseteq\langle a+b w\rangle$.
The required result follows by First Isomorphism Theorem.
The following corallaries are about when $\mathbb{Z}[w] /\langle a+b w\rangle$ is a field or an integral domain:

2.7. Corallary

Let $a, b \in \mathbb{Z}$ and $(a, b)=1$. Then, $\mathbb{Z}[w] /\langle a+b w\rangle$ is a field iff $a^{2}-a b+b^{2}$ is a rational prime.

2.8. Corallary

Let $a, b \in \mathbb{Z}$ and $(a, b)=1$. Then, $\mathbb{Z}[w] /\langle a+b w\rangle$ is an integral domain iff $a^{2}-a b+b^{2}$ is a rational prime.
Thanks to Corallary 2.8 we get the following corallary:

2.9. Corallary

Let $a, b \in \mathbb{Z}$ and $(a, b)=1$. Then, $a+b w$ is a prime in $\mathbb{Z}[w]$ iff $a^{2}-a b+b^{2}$ is a rational prime congruent to 1 modulo 3 .

We know prove our third main theorem about the elements of any factor ring of $\mathbb{Z}[w]$:

2.10. Theorem

Let $a, b, t \in \mathbb{Z}^{+}$and $(a, b)=1$. Then,

$$
\mathbb{Z}[w] /\langle a t+b t w\rangle=\left\{[x+y w]: 0 \leq x<t\left(a^{2}-a b+b^{2}\right), 0 \leq y<t\right\}
$$

where $[x+y w]=x+y w+\langle a t+b t w\rangle$.

Proof. We first show that the equivalence classes given in the theorem are distinct: Let $\left[x_{1}+y_{1} w\right]=\left[x_{2}+y_{2} w\right]$ with $0 \leq x_{1}, x_{2}<t\left(a^{2}-a b+b^{2}\right)$ and $0 \leq y_{1}, y_{2}<k$. It means that $x_{2}-x_{1}+\left(y_{2}-y_{1}\right) w \in\langle a t+b t w\rangle$. Appealing Lemma 2.5., we get

$$
t\left(a^{2}-a b+b^{2}\right) \mid a\left(x_{2}-x_{1}\right)+b\left(y_{2}-y_{1}\right)-b\left(x_{2}-x_{1}\right)
$$

(1)
and

$$
t\left(a^{2}-a b+b^{2}\right) \mid a\left(y_{2}-y_{1}\right)-b\left(x_{2}-x_{1}\right)
$$

(2)

Using (1) and (2) , we have the followings:

$$
\begin{equation*}
t\left(a^{2}-a b+b^{2}\right) \mid a^{2} y_{2}-a^{2} y_{1}-a^{2} x_{2}+a^{2} x_{1}-a b y_{2}+a b y_{1} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
t\left(a^{2}-a b+b^{2}\right) \mid-a^{2} x_{1}+a^{2} x_{2}+b^{2} y_{2}-b^{2} y_{1}+a b y_{2}-a b y_{1}-b^{2} x_{2}+b^{2} x_{1} \tag{4}
\end{equation*}
$$

$$
t\left(a^{2}-a b+b^{2}\right) \mid-a b y_{2}+a b y_{1}+b^{2} x_{2}-b^{2} x_{1}
$$

(5)

By (4) and (5), we get

$$
\begin{equation*}
t\left(a^{2}-a b+b^{2}\right) \mid a^{2} x_{2}-a^{2} x_{1}+b^{2} y_{2}-b^{2} y_{1} \tag{6}
\end{equation*}
$$

and by (3) and (6), we get
$t\left(a^{2}-a b+b^{2}\right) \mid a^{2} y_{2}-a b y_{2}+b^{2} y_{2}-a^{2} y_{1}+a b y_{1}-b^{2} y_{1}=\left(y_{2}-y_{1}\right)\left(a^{2}-a b+b^{2}\right)$
which simplifies to the statement that $t \mid y_{2}-y_{1}$ and so this requires

$$
\begin{gathered}
y_{1}=y_{2} . \text { Thus, } t\left(a^{2}-a b+b^{2}\right) \mid a\left(x_{2}-x_{1}\right)-b\left(x_{2}-x_{1}\right) \text { and } \\
t\left(a^{2}-a b+b^{2}\right) \mid b\left(x_{2}-x_{1}\right) \text { imply that } x_{1}=x_{2} .
\end{gathered}
$$

On The Factor Rings of Eisenstein Integers
We now show that any $x+y w$ is in one of the equivalence classes given in the theorem: There exists integers s_{1} and s_{2} such that $a t s_{1}+b t s_{2}=t$ because $(a, b)=1$. Using this, we see that $t w-(a t+b t w) w s_{1}-(a t+b t w) s_{2}-(a t+b t w) s_{1}$ is a real number. This means that tw is congruent to a real number modulo $a t+b t w$ so that $[x+y w]=\left[x^{\prime}+y^{\prime} w\right]$ for some $0 \leq y^{\prime}<t$ and also it is clear that $t\left(a^{2}-a b+b^{2}\right) \in\langle a t+b t w\rangle$ imply that $[x+y w]=\left[x^{\prime \prime}+y^{\prime \prime} w\right]$ for some $0 \leq x^{\prime \prime}<t\left(a^{2}-a b+b^{2}\right)$. Thus, we have the required result.
2.10 Theorem gives us the following nice result:

2.11. Corallary

For any $a, b \in \mathbb{Z}$ with $(a, b)=1$, the characteristic of the factor ring $\mathbb{Z}[w] /\langle a t+b t w\rangle$ is $|t|\left(a^{2}-a b+b^{2}\right)$.
This corallary produces the following corallary:

2.12. Corallary

For any $a, b, t \in \mathbb{Z}$ with $(a, b)=1$ and $t>1, \mathbb{Z}[w] /\langle a t+b t w\rangle$ is a commutative ring with identiy but not an integral domain and so certainly not a field.

Given a nonzero Eisenstein integer $a+b w$, we know that we can factor it in the manner

$$
a+b w=\mp w^{d} \cdot \prod \sigma_{m}^{u_{m}} \cdot \prod \sigma_{m}^{\prime v_{m}} \cdot \prod p_{m}^{e_{m}} \cdot(1-w)
$$

where $N\left(\sigma_{m}\right)$ and $N\left(\sigma_{m}^{\prime}\right)$ are rational primes congruent to 1 modulo $3, p_{m}$ is a rational prime congruent to 2 modulo 3 and $d, u_{m}, v_{m}, e_{m}, n \in \mathbb{Z}^{+}$. Also we can assume that $u_{m} \leq v_{m}$ without lost of generality. (Here note that $N(a+b w)=(a+b w)\left(a+b w^{2}\right)$ for any $a+b w \in \mathbb{Z}[w])$.

Let $s_{1}=\prod\left[N\left(\sigma_{m}\right)\right]^{u_{m}}, s_{2}=\prod\left[N\left(\sigma_{m}^{\prime}\right)\right]^{p_{m}}$ and $t=\prod p_{m}{ }^{e_{m}}$. (Note that $s_{1} \mid s_{2}$)

We now give our forth main theorem about the factors of any factor ring of $\mathbb{Z}[w]$:
2.13. Theorem Let $a, b \in \mathbb{Z}$ not both zero. Then, with the notation above and with $\theta_{n}=\mathbb{Z}[w] /\left\langle(1-w)^{n}\right\rangle$, the following hold:

$$
\mathbb{Z}[w] /\langle a+b w\rangle \cong \mathbb{Z}_{s_{1}} \oplus \mathbb{Z}_{s_{2}} \oplus \Omega_{t} \oplus \Omega_{3^{u / 2}}
$$

for even n and

$$
\mathbb{Z}[w] /\langle a+b w\rangle \cong \mathbb{Z}_{s_{1}} \oplus \mathbb{Z}_{s_{2}} \oplus \Omega_{t} \oplus \theta_{n}
$$

for odd n.
Proof. We can write

$$
\begin{equation*}
a+b w=\mp w^{d} \cdot \prod \sigma_{m}^{{ }^{u_{m}}} \cdot \prod \sigma_{m}^{\prime v_{m}} \cdot \prod p_{m}{ }^{e_{m}} \cdot(1-w) \tag{7}
\end{equation*}
$$

Since $\mathbb{Z}[w]$ is an Euclidean domain, we can apply the Euclidean algorithm to any two relatively prime elements $x, y \in \mathbb{Z}[w]$ to find s and t such that $s x+t y=1$. It follows that $\langle x\rangle+\langle y\rangle=\mathbb{Z}[w]$. We can also say that $\langle x\rangle \cap\langle y\rangle=\langle x y\rangle$ and thus, we can use the Chinese Remainder Theorem for rings (see [4, p.331] to have

$$
\mathbb{Z}[w] /\langle x y\rangle \cong \mathbb{Z}[w] /\langle x\rangle \oplus \mathbb{Z}[w] /\langle y\rangle
$$

Applying this to (7), we get

$$
\left.\left.\begin{array}{rl}
\mathbb{Z}[w] /\langle a+b w\rangle & \cong \mathbb{Z}[w] /\left\langle\prod \sigma_{m}^{u_{m}}\right\rangle \oplus \mathbb{Z}[w] /\left\langle\prod \sigma_{m}^{\prime u_{m}}\right\rangle \\
& \oplus \mathbb{Z}[w] /\left\langle\prod p_{m}^{{ }^{{ }_{m}}}\right. \tag{8}
\end{array}\right\rangle \oplus \mathbb{Z}[w] /\left\langle(1-w)^{n}\right\rangle\right)
$$

We now show that (8) implies the result given in the theorem: Write $\prod \sigma_{m}^{u_{m}}=c+d w$. Any rational prime q with $q \equiv 2(\bmod 3)$ is a prime in $\mathbb{Z}[w]$ and so does not divide $c+d w$. For any rational prime
prime with $q \equiv 1(\bmod 3)$ we have $q=\sigma_{m} \sigma_{m}^{\prime}$ for some m whence q can not divide $c+d w$. Thus, $(c, d)=1$. By Theorem 2.6 we get

$$
\begin{aligned}
\mathbb{Z}[w] /\left\langle\prod \sigma_{m}^{u_{m}}\right\rangle & =\mathbb{Z}[w] /\langle c+d w\rangle \\
& \cong \mathbb{Z}_{c^{2}-c d+d^{2}} \\
& \cong \mathbb{Z}_{s_{1}}
\end{aligned}
$$

Likewise we get

$$
\mathbb{Z}[w] /\left\langle\prod \sigma_{m}^{\prime u_{m}}\right\rangle \cong \mathbb{Z}_{s_{2}}
$$

Thanks to Therem 2.2. the third term is isomorphic to Ω_{t} and clearly the fourth term is θ_{n}.

Now, let n be even. Since $(1-w)^{2}=-3 w$,

$$
\left\langle(1-w)^{n}\right\rangle=\left\langle\left[(1-w)^{2}\right]^{n / 2}\right\rangle=\left\langle(-3 w)^{n / 2}\right\rangle=\left\langle 3^{n / 2}\right\rangle
$$

Thus, $\mathbb{Z}[w] /\left\langle(1-w)^{n}\right\rangle \cong \mathbb{Z}[w] /\left\langle 3^{n / 2}\right\rangle \cong \Omega_{3^{n / 2}}$
For odd values of n, we have the following theorem for θ_{n} :
2.14. Theorem Let $k \geq 0$ be an integer. Then,

$$
\theta_{2 k+1} \cong \mathbb{Z}[x] /\left\langle 3^{k} x, 3^{k+1}, x^{2}-3 x+3\right\rangle
$$

Proof. Since

$$
(1-w)^{2 k+1}=(1-w)(1-w)^{2 k}=(1-w)(-3 w)^{k}
$$

we have $\left\langle(1-w)^{2 k+1}\right\rangle=\left\langle 3^{k}(1-w)\right\rangle$. By (8), the elements of $\theta_{2 k+1}$ are the equivalence classes $[a+b w]$ with $0 \leq a<3^{k+1}$ and $0 \leq b<3^{k}$ whence $\theta_{2 k+1}$ has $3^{2 k+1}$ elements.

Let $I=\left\langle 3^{k} x, 3^{k+1}, x^{2}-3 x+3\right\rangle$. Then,

$$
\mathbb{Z}[x] / I=\left\{[c+d x]: 0 \leq c<3^{k+1}, 0 \leq d<3^{k}\right\}
$$

i.e it has the same number elements as $\theta_{2 k+1}$

Let $\psi: \mathbb{Z}[x] \rightarrow \theta_{2 k+1}$ be defined by $\psi(p(x))=[p(1-w)]$. Clearly it is an epimorphism. Since $\psi\left(3^{k} x\right)=\left[3^{k}(1-w)\right]=[0], 3^{k} x \in \operatorname{Ker} \psi$. Also since both 3^{k+1} and $x^{2}-3 x+3$ in $\operatorname{Ker} \psi$, we see that $I \subseteq \operatorname{Ker} \psi$. On the other hand let $p(x) \in \operatorname{Ker} \psi$. Since $x^{2}-3 x+3$ is monic, we can write $p(x)=\left(x^{2}-3 x+3\right) q(x)+r(x)$ where $q(x), r(x) \in \mathbb{Z}[x]$ and $r(x)=r_{0}+r_{1}(1-x)$. Since $r(x) \in \operatorname{Ker} \psi$, $r_{0}+r_{1} w \in\left\langle 3^{k}(1-w)\right\rangle$ say $r_{0}+r_{1} w=3^{k}(1-w)\left(\gamma_{1}+\gamma_{2} w\right)$. Thus, we get $r(x)=3^{k+1} \gamma_{2}+3^{k}\left(\gamma_{1}-2 \gamma_{2}\right) x \in I$. Therefore $p(x) \in I$ and so $\operatorname{Ker} \psi=I$. Then, it is followed the required result.

Acknowledgements

We would like to thank Prof. Dr. Greg Dresden for his helpful discussions.

REFERENCES

Dresden G. and Dymacek W.M. (2005). Finding factors of factor rings over the Gaussian integers, The American Mathematical Monthly, 112(7), 602-611.

Gallian J. A. (1990). Contemporary Abstract Algebra., Houghton Mi- in.
Misaghian M, (2009). Factor rings and their decompositionsof an imaginary extension of the ring of integers, International Mathematical Forum, 4 (42), 2075-2086.

Alkam O, Osba E. A., (2010). On Eisenstein integers modulo n, International Mathematical Forum, 5(22), 1075-1082.

[^0]: *Sorumlu Yazar: eozkan@erzincan.edu.tr

