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Robust estimation in canonical correlation
analysis for multivariate functional data

Mirosław Krzyśko∗ and Łukasz Smaga†‡

Abstract
In this paper, the canonical correlation analysis for multivariate func-
tional data is considered. The analysis is based on the basis functions
representation of the data. The use of non-orthogonal bases is available
in contrast to the approach given in the literature. The robust estima-
tion methods of the covariance matrix are also studied in the multi-
variate functional canonical correlation analysis. Simulation studies
and breakdown analysis suggest that the proposed methods may per-
form better than the classical estimator under non-normal models and
in the presence of outlying observations.
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1. Introduction
Nowadays, quick and accurate measurement procedures are developed caused by the

technological progress. This results in obtaining new types of (usually large) data. In
many areas, the observations of random variables are taken over a continuous interval
or in larger discretizations of such interval. In functional data analysis (FDA), such
data observed longitudinally are expressed as smooth functions or curves, and then the
information is drawn from the collection of functions or curves, called functional data.
FDA has received considerable attention in such fields of applications as chemometrics,
economics, environmental studies, image recognition, spectroscopy, and many others [30,
12, 2, 26].
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Comprehensive surveys about functional data analysis can be found in [31, 13, 19, 45].
Some new developments in FDA can be found, for instance, in [1, 4] and in recent special
issue on Econometrics and Statistics [23]. In the literature, the following problems of
analysis of univariate and multivariate functional data are of particular interest: analysis
of variance [16, 17], canonical correlation analysis [15], classification [21, 11], cluster
analysis [44], outlier detection [12], principal component analysis [3, 14], regression [6,
18, 34], repeated measurements analysis [28, 41], variable selection [29, 7].

This paper concerns the canonical correlation analysis for multivariate functional data
(MFCCA). The aim of this analysis is to identify and quantify the relations between a
p-dimensional stochastic process X(s) and a q-dimensional stochastic process Y(t). The
associations between X(s) and Y(t) are measured by the correlations between linear
combinations of both sets of processes. For the case p = q = 1, the so-called canonical
correlation analysis for (univariate) functional data was developed, for example, in the
monograph by Ramsay and Silverman [31]. Recently, Górecki et al. [15] extended this
analysis to multivariate functional data (p ≥ 1 and q ≥ 1). Their method is based
on orthonormal basis functions representation of the data and the sample covariance
matrix as estimator of unknown covariance matrix, which however may cause in poorer
results of the canonical correlation analysis. Namely, some non-orthogonal basis may be
more appropriate for particular type of data, and what is perhaps more important, the
classical estimator of covariance matrix may be sensitive to non-normal data and outlying
observations. In this paper, we extend the multivariate functional canonical correlation
analysis proposed by Górecki et al. [15] to be available for using non-orthogonal bases
and consider robust estimation of covariance matrix in this analysis. Simulation results
suggest that the proposed modifications of MFCCA perform promisingly and may be
alternatives to existing methods in practical applications.

The remainder of the paper is organized as follows. In Section 2, the canonical correla-
tion analysis for multivariate functional data based on the basis functions representation
of the data is considered. Section 3 raises the problem of estimation of unknown covari-
ance matrices in canonical correlation analysis. A brief review of robust estimators of
multivariate location and scatter is also given there. In Section 4, efficiency and robust-
ness of the covariance matrix estimation methods in MFCCA are investigated by means
of a simulation study and breakdown plots. Conclusions are provided in Section 5.

2. Canonical correlation analysis for multivariate functional data
In this Section, we formally present the canonical correlation analysis for multivariate

functional data and show how to deal with it by using the basis functions representation
of the data. The obtained results are more general than those of [15].

Let X(s) = (X1(s), . . . , Xp(s))
⊤ and Y(t) = (Y1(t), . . . , Yq(t))

⊤ be random processes
belonging to spaces Lp

2(I1) and Lq
2(I2), where Lp

2(I) is a Hilbert space of p-dimensional
vectors of square integrable functions on the set I and I1 = [a, b] and I2 = [c, d], a, b, c, d ∈
R. Moreover, without loss of generality, we can assume that E(X(s)) = 0p for s ∈ I1 and
E(Y(t)) = 0q for t ∈ I2. By Górecki et al. [15], the functional canonical variables U and
V for processes X(s) and Y(t) are defined in the following way:

U =< u,X >=

∫
I1

u⊤(s)X(s)ds, V =< v,Y >=

∫
I2

v⊤(t)Y(t)dt,

where u ∈ Lp
2(I1) and v ∈ Lq

2(I2) are the vector weight functions chosen to maximize the
coefficient

ρU,V =
Cov(U, V )√

Var(U (N))Var(V (N))
,
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where Var(U (N)) = Var(U) + λPEN2(u), Var(V (N)) = Var(V ) + λPEN2(v), λ > 0 and

PEN2(u) =

∫
I1

(
∂2u(s)

∂s2

)⊤
∂2u(s)

∂s2
ds, PEN2(v) =

∫
I2

(
∂2v(t)

∂t2

)⊤
∂2v(t)

∂t2
dt,

subject to the constraint that

(2.1) Var(U (N)) = Var(V (N)) = 1.

Without adding roughness penalty terms in constraints, functional canonical correlation
analysis may not produce a meaningful result as described, for instance, in [15] and [31]
(Chapter 11). Further, we define the kth functional canonical correlation ρk and the
associated vector weight functions uk(s) and vk(t) as follows:

ρk = sup
u∈L

p
2(I1),v∈L

q
2(I2)

Cov(< u,X >,< v,Y >) = Cov(< uk,X >,< vk,Y >),

subject to the restrictions given in (2.1), and the kth pair of canonical variables (Uk, Vk) =
(< uk,X >,< vk,Y >) is uncorrelated with the first k−1 canonical variables. The above
analysis is called (smoothed) canonical correlation analysis for multivariate functional
data.

We deal with the canonical correlation analysis for multivariate functional data by
assuming that the random processes X(s) and Y(t) belong to finite dimensional subspaces
L

p
2(I1), L

q
2(I2) of Lp

2(I1), L
q
2(I2), respectively, and their components can be represented

by a finite number of basis functions {φil} and {ψjm}, i = 1, . . . , p, l = 1, . . . , j = 1, . . . , q,
m = 1, . . . , i.e.,

Xi(s) =

Ki∑
l=1

αilφil(s), Yj(t) =

Lj∑
m=1

βjmψjm(t)

where s ∈ I1, t ∈ I2, i = 1, . . . , p, j = 1, . . . , q and αil and βjm are random variables of
mean zero and finite variance. Let

α = (α11, . . . , α1K1 , . . . , αp1, . . . , αpKp)
⊤,

β = (β11, . . . , β1L1 , . . . , βq1, . . . , βqLq )
⊤,

Φ(s) =


φ⊤

1 (s) 0 . . . 0

0 φ⊤
2 (s) . . . 0

. . . . . . . . . . . .

0 0 . . . φ⊤
p (s)

 ,(2.2)

Ψ(t) =


ψ⊤

1 (t) 0 . . . 0

0 ψ⊤
2 (t) . . . 0

. . . . . . . . . . . .

0 0 . . . ψ⊤
q (t)

 ,(2.3)

where φ⊤
i (s) = (φi1(s), . . . , φiKi(s)) and ψ⊤

j (t) = (ψj1(t), . . . , ψjLj (t)). Moreover, we
assume that E(α) = 0, E(β) = 0, Cov(α) = Σ11 > 0, Cov(β) = Σ22 > 0 and
Cov(α,β) = Σ12, where the matrices Σ11, Σ22 and Σ12 are unknown parameters. There-
fore, in matrix notation, the processes can be expressed as follows:

(2.4) X(s) = Φ(s)α, Y(t) = Ψ(t)β.

We may assume that the vector weight functions u(s) and v(t) belong to the same spaces
as the processes X(s) and Y(t), respectively, i.e., u(s) = Φ(s)µ and v(t) = Ψ(t)υ, where

µ = (µ11, . . . , µ1K1 , . . . , µp1, . . . , µpKp)
⊤, υ = (υ11, . . . , υ1L1 , . . . , υq1, . . . , υqLq )

⊤.
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Then, we have

U =< u,X >=

∫
I1

u⊤(s)X(s)ds =

∫
I1

µ⊤Φ⊤(s)Φ(s)αds = µ⊤JΦα,

where
JΦ :=

∫
I1

Φ⊤(s)Φ(s)ds = diag
(
Jφ1

, . . . ,Jφp

)
is the block diagonal matrix of Ki ×Ki cross product matrices

Jφi
=

∫
I1

φi(s)φ
⊤
i (s)ds, i = 1, . . . , p.

Analogously, we obtain V = υ⊤JΨβ, where

JΨ :=

∫
I2

Ψ⊤(t)Ψ(t)dt = diag
(
Jψ1

, . . . ,Jψq

)
and Jψj

=
∫
I2
ψj(t)ψ

⊤
j (t)dt, j = 1, . . . , q. Therefore,

E(U) = µ⊤JΦE(α) = 0,

E(V ) = υ⊤JΨE(β) = 0,

Var(U) = µ⊤JΦCov(α)JΦµ = µ⊤JΦΣ11JΦµ,

Var(V ) = υ⊤JΨCov(β)JΨυ = υ⊤JΨΣ22JΨυ,

Cov(U, V ) = µ⊤JΦCov(α,β)JΨυ = µ⊤JΦΣ12JΨυ.

By Górecki et al. [15], we conclude that

Var(U (N)) = µ⊤(JΦΣ11JΦ + λRΦ)µ, Var(V (N)) = υ⊤(JΨΣ22JΨ + λRΨ)υ,

where

RΦ =



∫
I1

∂2φ1(s)

∂s2
∂2φ⊤

1 (s)

∂s2
ds 0 . . . 0

0
∫
I1

∂2φ2(s)

∂s2
∂2φ⊤

2 (s)

∂s2
ds . . . 0

. . . . . . . . . . . .

0 0 . . .
∫
I1

∂2φp(s)

∂s2

∂2φ⊤
p (s)

∂s2
ds


and

RΨ =



∫
I2

∂2ψ1(t)

∂t2
∂2ψ⊤

1 (t)

∂t2
dt 0 . . . 0

0
∫
I2

∂2ψ2(t)

∂t2
∂2ψ⊤

2 (t)

∂t2
dt . . . 0

. . . . . . . . . . . .

0 0 . . .
∫
I2

∂2ψq(t)

∂t2

∂2ψ⊤
q (t)

∂t2
dt


.

We have thus proved the following theorem.

2.1. Theorem. Under the above assumptions and notation, we have

Uk = µ⊤
k JΦα, Vk = υ⊤

k JΨβ, uk(s) = Φ(s)µk, vk(t) = Ψ(t)υk,

s ∈ I1, t ∈ I2, and

ρk = sup
µ∈RK ,υ∈RL

µ⊤JΦΣ12JΨυ = µ⊤
k JΦΣ12JΨυk, k = 1, . . . ,min{K,L},
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where K = K1 + · · ·+Kp, L = L1 + · · ·+ Lq, subject to the restrictions

µ⊤
k (JΦΣ11JΦ + λRΦ)µk = 1

and
υ⊤

k (JΨΣ22JΨ + λRΨ)υk = 1.

By Theorem 2.1, MFCCA reduces to the canonical correlation analysis forK-dimensional
random vector α∗ and L-dimensional random vector β∗ with E(α∗) = 0K , E(β∗) = 0L,
Cov(α∗) = JΦΣ11JΦ + λRΦ, Cov(β∗) = JΨΣ22JΨ + λRΨ and Cov(α∗,β∗) =
JΦΣ12JΨ. It is well known that the CCA optimization problem has a fairly simple
solution. Namely, the vectors µk and υk are the eigenvectors corresponding to the eigen-
values ρ21 ≥ · · · ≥ ρ2min{K,L} > 0 of the matrices

(JΦΣ11JΦ + λRΦ)−1(JΦΣ12JΨ)(JΨΣ22JΨ + λRΨ)−1(JΨΣ⊤
12JΦ),

(JΨΣ22JΨ + λRΨ)−1(JΨΣ⊤
12JΦ)(JΦΣ11JΦ + λRΦ)−1(JΦΣ12JΨ),

respectively. In practice, we have to estimate the unknown parameters, i.e., the matrices
Σ11, Σ22 and Σ12. This problem is discussed in the next Section. The smoothing
parameter λ can be chosen subjectively or by using an automatic procedure as, for
example, cross-validation one analogous to that considered by Ramsay and Silverman
[31] (Chapter 11) in the canonical correlation analysis for univariate functional data.

3. Robust estimation in MFCCA
In this Section, we consider the estimation problem of the unknown matrices Σ11, Σ22

and Σ12 to make the theory of Section 2 applicable. Robust estimators are discussed as
competitors to the classical estimator.

Assume that we have n independent realizations x1(s), . . . ,xn(s) and y1(t), . . . , yn(t)
of random processes X(s) and Y(t), s ∈ I1, t ∈ I2. They are represented as in (2.4),
i.e., xr(s) = Φ(s)αr and yr(t) = Ψ(t)βr, r = 1, . . . , n. The vectors αr and βr can
be estimated by the least squares method or by the roughness penalty approach (see
[31] Chapter 5). Let α̂r and β̂r denote the estimates of αr and βr, respectively. The
optimum numbers of basis functions Ki and Lj (i = 1, . . . , p, j = 1, . . . , q) can be selected
by using Akaike or Bayesian information criterion (see, for example, [15]). The Bayesian
information criterion is usually preferred, since it measures goodness of fit better than
Akaike information criterion [40].

The unknown matrices Σ11, Σ22 and Σ12 are estimated based on the vectors α̂r and
β̂r, r = 1, . . . , n. More precisely, we estimate the joint covariance matrix

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
of (α⊤,β⊤)⊤ by using the vectors (α̂⊤

r , β̂
⊤
r )

⊤, r = 1, . . . , n as observations. Górecki et
al. [15] used the sample covariance matrix to estimate Σ. However, it is known that this
classical estimator is sensitive to non-normal data and outlying observations. The poor
behavior of this estimator may result in worse performance of MFCCA based on it. For
this reason, we propose to use robust estimators of the matrix Σ, which seems to result
in better performance of MFCCA than using classical one, as we will see in Section 4.
In that Section, we compare the sample covariance matrix with commonly used robust
estimates of covariance matrix, which are briefly reviewed in the remainder of the present
Section. Other estimation methods of Σ can also be applied (see, for example, [42, 46]).

Let {z1, . . . , zn} be the data set in Rd. Hence n stands for the number of objects and
d for the number of variables. First, we consider the minimum covariance determinant
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(MCD) estimator, which is very popular in the literature. It was introduced by Rousseeuw
[35]. The MCD estimates for multivariate location and scatter are the mean and a
multiple of the sample covariance matrix of h observations zi1 , . . . , zih , for which the
determinant of the covariance matrix is minimum, i.e.,

LMCD =
1

h

h∑
j=1

zij , SMCD =
c1c2
h− 1

h∑
j=1

(zij − LMCD)(zij − LMCD)
⊤.

The consistency correction factor c1 and the small sample correction factor c2 are selected
for consistency at the multivariate normal model and unbiasedness at small samples of
SMCD. With h = ⌊(n + d + 1)/2⌋, the breakdown point of the MCD estimator is high,
and hence such a choice of h is recommended. The computation of the MCD estimate by
the naive algorithm is possible in sensible time only for very small data sets. However,
fact computing algorithms of the estimators are available as that by Rousseeuw and Van
Driessen [36], which is usually used in practice. Let (L1,S1) be an approximation of
the MCD estimator and let d1, . . . , dn denote the distances of the observations z1, . . . , zn
related to this approximation, i.e.,

dr =

√
(zr − L1)⊤S

−1
1 (zr − L1), r = 1, . . . , n.

Then, the C-step of this algorithm moves from (L1,S1) to the next approximation
(L2,S2) by computing it for those h data points, which have smallest distances. By
this step, lower determinant det(S2) may be obtained. Here, “C” stands for “concentra-
tion”, because we look for the h observations with smallest distances, and S2 is more
concentrated and has possibly lower determinant than S1. The estimators LMCD and
SMCD are not very efficient at normal models. This is especially evident, when h is
chosen to achieve maximal breakdown point. This low efficiency drawback may be over-
come by using reweighted MCD estimators (see, for instance, [8]). Weight wr assigned
to observation zr is defined as

wr = I(−∞,χ2
d,0.975

] ((zr − LMCD)
⊤S−1

MCD(zr − LMCD)
)

related to the raw estimators LMCD and SMCD, where IA stands for the usual indicator
function on the set A. Then, the reweighted MCD estimators are as follows:

LR
MCD =

1

w

n∑
r=1

wrzr, SR
MCD =

cR1 c
R
2

w − 1

n∑
r=1

wr(zr − LR
MCD)(zr − LR

MCD)
⊤,

where w = w1 + · · ·+ wn.
Now, we describe the S-estimators introduced by Davies [9] and further investigated

by Lopuhaä [24]. In fact, Davies [9] extended an idea of S-estimators by Rousseeuw and
Yohai [37] in regression. The S-estimators of location and scatter are the vector L and
the positive definite symmetric matrix S minimizing the determinant det(S), subject to

1

n

n∑
r=1

ρ(dr) ≤ b0,

where the function ρ is non-negative, symmetric and continuously differentiable and
strictly increasing on [0, c0] with ρ(0) = 0 and constant on [c0,∞) for some c0 > 0, and

(3.1) dr =
√

(zr − L)⊤S−1(zr − L), r = 1, . . . , n

and b0 < sup ρ. The S-estimators are asymptotically normal and
√
n-consistent. More-

over, these estimates can have a very high breakdown point ⌊(n − d + 1)/2⌋/n and be
highly efficient at normal models. However, a high breakdown point and a high efficiency
at the normal models may be not simultaneously attained by the S-estimators. Lopuhaä
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[25] and Davies [10] proposed some modifications of the S-estimators, which can over-
come this drawback. The S-estimates may be computed, for example, by a fast algorithm
of [38] and that similar to the one proposed by Salibian-Barrera and Yohai [39] for the
regression setting (see [42]).

Finally, we consider multivariate M-estimators defined by Maronna [27], who extended
the idea of the univariate M-estimators by Huber [20]. The M-estimators are defined as
the vector L and the positive definite symmetric matrix S, which are solutions of the
following equations:

1

n

n∑
r=1

u1(dr)(zr − L) = 0,
1

n

n∑
r=1

u2(d
2
r)(zr − L)(zr − L)⊤ = S,

where u1 and u2 are weight functions satisfying certain conditions and dr are given
in (3.1). Unfortunately, the M-estimators may have relatively low breakdown points.
However, they can be quite efficient at normal and other models. Modified M-estimators,
which perform better than the standars ones, are proposed by Tyler [43] and Kent and
Tyler [22]. Lopuhaä [24] shows that M-estimators have a close connection to S-estimators.

In the next Section, the performance of considered estimators of the covariance matrix
in the canonical correlation analysis for multivariate functional data is studied under finite
samples.

4. Simulation study
In this Section, the methods of estimation of covariance matrix Σ for MFCCA con-

sidered in Section 3 are compared by means of a simulation study.

4.1. Experimental setup. The numbers of observations are n = 100, 500, 1000 and the
number of simulations within each setup was nr = 500. The dimensions of the processes
X(s) and Y(t) are p = 2 and q = 2, 4. The functional observations corresponding to
these processes are represented by their values in an equally spaced grid of 50 points
s1 = t1, . . . , s50 = t50 in I1 = I2 = [0, 1], which are generated in the following way:[

xr(su)
yr(tu)

]
=

[
Φ(su) 0

0 Ψ(tu)

] [
αr

βr

]
+ εru,

where r = 1, . . . , n, u = 1, . . . , 50, the matrices Φ(s) and Ψ(t) are given in (2.2)-(2.3) and
contain the Fourier basis functions only and Ki = 5, i = 1, . . . , p, Lj = 5, j = 1, . . . , q,
(α⊤

r ,β
⊤
r )

⊤ are 5(p + q)-dimensional random vectors, and ε⊤ru = (εru1, . . . , εru,p+q) are
the measurement errors such that εruv ∼ N(0, 0.025arv) and arv is the range of the v-th
row of the following matrix:[

Φ(s1)αr . . . Φ(s50)αr

Ψ(t1)βr . . . Ψ(t50)βr

]
.

We consider the covariance matrices Σ with Σ11 = I5p, Σ22 = I5q, and

Σ12 =

{
diag(0.9, 0.8, 0.7, 0.6, 0.55, 0.5, 0.4, 0.3, 0.2, 0.1), for q = 2,

(diag(0.9, 0.8, 0.7, 0.6, 0.55, 0.5, 0.4, 0.3, 0.2, 0.1),05p×5p), for q = 4.

Similarly to Branco et al. [5], we consider the following four cases of generating random
vectors (α⊤

r ,β
⊤
r )

⊤, r = 1, . . . , n:
NOR – normal distribution: (α⊤

r ,β
⊤
r )

⊤ ∼ N5(p+q)(05(p+q),Σ),
T3 – multivariate t3-distribution with scatter parameter Σ: (α⊤

r ,β
⊤
r )

⊤ = Tr/
√
Cr/3,

where Tr ∼ N5(p+q)(05(p+q),Σ) and Cr ∼ χ2
3,

SCN – symmetric contamination: (α⊤
r ,β

⊤
r )

⊤ ∼ N5(p+q)(05(p+q),Σ) for r = 1, . . . , 0.95n,
and (α⊤

r ,β
⊤
r )

⊤ ∼ N5(p+q)(05(p+q), 9Σ) for r = 0.96n, . . . , n,
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Figure 1. Mean squared error for canonical correlations in NOR case
(p = 2, q = 4, nr = 500, SCM – sample covariance matrix).

ACN – asymmetric contamination: (α⊤
r ,β

⊤
r )

⊤ ∼ N5(p+q)(05(p+q),Σ) for
r = 1, . . . , 0.95n, while for r = 0.96n, . . . , n, (α⊤

r ,β
⊤
r )

⊤ = 515(p+q), 7.515(p+q)

when q = 2, 4, respectively.
Therefore, we consider the classical (NOR) and non-normal (T3) models as well as the
models with different outlying observations (SCN, ACN).

We set λ = 0. Then, Theorem 2.1 shows that the canonical correlations for the
random processes X(s) and Y(t) generated as above are determined by the matrix Σ,
i.e., they are equal to 0.9, 0.8, 0.7, 0.6, 0.55, 0.5, 0.4, 0.3, 0.2, 0.1. Since the Fourier basis
is used to generate the data, the MFCCA is performed with the B-spline basis with
Ki = 5, i = 1, . . . , p, Lj = 5, j = 1, . . . , q (Other basis does not change the canonical
correlations.). To compare the true canonical correlations with their estimators ρ̂kl,
k = 1, . . . , 5p, l = 1, . . . , nr, obtained in simulation replications, we compute the following
measure of mean squared error (MSE) as in [5]:

(4.1) MSE(ρ̂k) =
1

nr

nr∑
l=1

(ϕ(ρ̂kl)− ϕ(ρk))
2 ,

where ϕ(x) = tanh−1(x) is the Fisher transformation.
To conduct simulation experiments, the R program was used [33]. The cross prod-

uct matrices in JΦ and JΨ and the roughness penalty matrices in RΦ and RΨ can
be approximated by using the functions inprod() and getbasispenalty() from the
fda package [32]. The functions create.fourier.basis() and eval. basis() (resp.
create.bspline.basis() and Data2fd()) available in this package were used to com-
pute the values of the Fourier basis functions (resp. estimate the coefficients of the basis
functions representation of the data). To estimate the covariance matrix Σ by the MCD,
S- and M-estimators, the functions CovMcd(), CovSest() and CovMest() from the rrcov
package [42] were applied. The default values of these functions were used.
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Figure 2. Mean squared error for canonical correlations in T3 case
(p = 2, q = 4, nr = 500, SCM – sample covariance matrix).
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Figure 3. Mean squared error for canonical correlations in SCN case
(p = 2, q = 4, nr = 500, SCM – sample covariance matrix).

4.2. Simulation results. The simulation results are depicted in Figures 1-4. They
show the mean squared error for canonical correlations (4.1) obtained by using the sample
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Figure 4. Mean squared error for canonical correlations in ACN case
(p = 2, q = 4, nr = 500, SCM – sample covariance matrix).

covariance matrix (SCM) and the MCD, M-, S-estimators for estimating the covariance
matrix, when p = 2 and q = 4. For the dimensions p = q = 2, similar results were
obtained, and therefore they are not presented. We only mention that the mean squared
errors for p = q = 2 are usually smaller than those for p = 2 and q = 4.

In general, the mean squared errors obtained in ACN case are greater than those
for T3 case, which are greater than the MSEs for SCN case. As expected, the smallest
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Figure 5. Breakdown plot: Mean squared error for canonical correla-
tions and for the percentage of contamination, ranging from 1 to 10%,
in ACN case (p = q = 2, n = 500, nr = 500, SCM – sample covariance
matrix).
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Figure 6. Breakdown plot: Mean squared error for canonical correla-
tions and for the percentage of contamination, ranging from 11 to 20%,
in ACN case (p = q = 2, n = 500, nr = 500, SCM – sample covariance
matrix).



533

mean squared errors are obtained in the normal model (NOR). We also observe that the
MSEs for all estimation methods decrease as the number of observations increases. In
cases T3 and ACN, the estimates of lower order canonical correlations lead usually to
the largest MSEs. In the other cases, the largest MSE’s may be also obtained for higher
order canonical correlations.

In the normal model (NOR), the sample covariance matrix is the most precise. How-
ever, the S-estimator gives only slightly worse results than the SCM. The other robust
estimators perform very similarly. When deviating from the normal model (the cases
T3, SCN, ACN), the sample covariance matrix is overcome by at least one of the robust
methods. For n = 100, the smallest mean squared errors are obtained by using the
S-estimator, and the classical method works similarly to or better than the MCD and
M-estimates. For greater number of observations (n = 500, 1000), all robust estimators
significantly outperform the sample covariance matrix. The robust methods give similar
results, but the S-estimator seems to perform slightly better than the other ones.

Finally, we study the robustness of the covariance matrix estimators in MFCCA by
breakdown analysis. Namely, we investigate the sensitivity of considered estimators to
increasing amounts of contamination (proportion of atypical points) in the data. For
this purpose, we carried out additional simulation study in ACN case, when p = q = 2,
n = 500 and the percentage of contamination ranges from 1 to 20%. The resulting mean
squared errors for all methods are presented in Figures 5-6. We observe that the MSEs of
the sample covariance matrix rapidly increase in presence of contamination. The classical
method performs poorly even when the percentage of contamination is very small. The
S- and MCD estimators are more stable. Their MSEs remain small up to 6% and 7% of
contamination, respectively, but then they also go up, especially for the first canonical
correlation. In general, the M-estimator performs best and seems to be very stable up to
about 16% of contamination.

5. Conclusions
We have considered the canonical correlation analysis for multivariate functional data

based on the basis functions representation of the data. In contrast to Górecki et al. [15],
we have developed this analysis in such a way to be available also for using non-orthogonal
bases. Moreover, the robust estimation methods of the covariance structure were inves-
tigated to increase the performance of the multivariate functional canonical correlation
analysis under non-normal models and in the presence of outlying observations. This
performance was studied in simulations and breakdown analysis. Their results have indi-
cated that the new estimation methods perform usually better in the presence of outliers
and are more robust to deviations from the normal model than the sample covariance
matrix, which is the classical estimator.
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