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Abstract
In the class of unbiased estimators for the parameter functions, the
variance of estimator is one of the basic criteria to compare and eval-
uate the accuracy of the estimators. In many cases the variance has
complicated form and we can not compute it, so, by lower bounds, we
can approximate it. Many studies have been done on the lower bounds
for the variance of an unbiased estimator of the parameter. Another
common and popular method that is used in many statistical problems
such as variance estimation, is bootstrap method. This method has
some advantages and disadvantages that must be careful when using
them. In this paper, first we briefly introduce the two famous lower
bounds named "Kshirsagar" (one parameter case) and "Bhattacharyya"
(one and multi parameter case) bounds and then we extend the Kshir-
sagar bound in multi parameter case. Also, by giving some examples
in different distributions, we compare one and multi parameter Bhat-
tacharyya and Kshirsagar lower bounds with bootstrap method for ap-
proximating the variance of the unbiased estimators and show that the
mentioned bounds have a better performance than bootstrap method.
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1. Introduction
One of the main branches of statistical inference is estimation theory which in-

troduce different estimators of unknown parameters and verify various properties of es-
timators such as unbiasedness, consistency and efficiency. In estimation theory, one of
the fundamental things about accuracy of an estimator is finding a good lower bound for
the variance of the estimator. In many cases the variance has complicated form and we
can not compute it, and researchers are looking for ways to approximate its value. The
variance of unbiased estimators of the parameter functions, is one of the basic criteria to
compare and evaluate the accuracy of the estimators. In addition, the variance of unbi-
ased estimators is one of the main components of statistical inference such as hypothesis
testing and confidence intervals.

One of the most popular methods for approximating the variance of estimators which
is introduced by Efron (1979) is bootstrap method. This method has some advantages
and disadvantages that must be careful when using them. The other common method
for estimating the variance of the estimator, is using the lower bounds. The important
point of these bounds is that in many cases, they are too close to the actual value of the
variance of estimator and therefore they are considered as a good approximation for the
variance of the estimators. Some well-known and applicable lower bounds are Cramer-
Rao (by Rao, 1945 and Cramer, 1946), Bhattacharyya (by Bhattacharyya, 1946, 1947),
Hammersley-Chapman-Robbins (by Hammersley, 1950 and Chapman and Robbins, 1951)
and Kshirsagar (by Kshirsagar, 2000).

In this paper the extended version of Kshirsagar bound in multi parameter case is
proposed and it is proven that the new bound is increasing with respect to its order.
Also, by focusing on Bhattacharyya and Kshirsagar bounds, we compare these bounds in
one and multi parameter cases, with bootstrap method for approximating the variance
of unbiasd estimators via some examples. It should be noted that our comparisons show
that the Bhattacharyya and Kshirsagar bounds are much more better methods with
respect to bootstrap method for approximating the variance of the unbiased estimators.

2. One parameter Bhattacharyya and Kshirsagar bounds
In this section, we briefly introduce the structure of one parameter Bhattacharyya

and Kshirsagar lower bounds.

2.1. Bhattacharyya lower bound.
One of the most famous lower bounds for the variance of estimators which has many

applications in various fields, is Cramer-Rao bound. But this inequality states that under
certain conditions, the variance of estimators can not be less than a certain value and
the fact that how much the variance is greater than the quantity, is not considered. In
fact the Cramer-Rao lower bound is an insufficient amount for the actual amount of
the variance of estimator even for large samples. Thus we need a better Bound than
Cramer-Rao bound.

Bhattacharyya (1946, 1947) under some regularity conditions, obtained a series of
lower bounds for any unbiased estimator of parameter functions. If X has a probability
density function f(X|θ) and T (X) be an unbiased estimator of g(θ) then the Bhat-
tacharyya bounds are defined as follows,

(2.1) V arθ(T (X)) ≥ Jt
θW−1Jθ := Bk(θ),
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where t refers to the transpose, Jθ = (g(1)(θ), g(2)(θ), . . . , g(k)(θ))t, g(j)(θ) = ∂jg(θ)

∂θj
for

j = 1, 2, . . . , k and W−1 is the inverse of the Bhattacharyya matrix, where

W = (Wrs) =

(
Covθ

{
f (r)(X|θ)
f(X|θ) ,

f (s)(X|θ)
f(X|θ)

})
,(2.2)

such that Eθ(
f(r)(X|θ)
f(X|θ) ) = 0 for r, s = 1, 2, . . . , k.

In k × k Bhattacharyya matrix (W), k is the order of it. It is clear that (1,1)th ele-
ment of the Bhattacharyya matrix is the Fisher information and if we substitute k = 1 in
(2.1), then it indeed reduces to the Cramer-Rao inequality. By using the properties of the
multiple correlation coefficient, it is easy to show that as the order of the Bhattacharyya
matrix (k) increases, the Bhattacharyya bound becomes sharper. For details and proper-
ties of Bhattacharyya bound one can see Shanbhag (1972,1979), Blight and Rao (1974),
Tanaka and Akahira (2003), Tanaka (2003, 2006), Mohtashami Borzadaran (2001, 2006),
Khorashadizadeh and Mohtashami Borzadaran (2007), Mohtashami Borzadaran et al.
(2010).

2.2. Kshirsagar lower bound.
Kshirsagar (2000) extended the Hammersley-Chapman-Robbins lower bound which

was introduced by Hammersley (1950) and Chapman and Robbins (1951) in the same
manner of the Bhattacharyya inequality. This bound does not need the regularity as-
sumptions and states that for any unbiased estimator T (X) of g(θ),

V arθ(T (X)) ≥ sup
ϕ
λt
θΣ

−1λθ := Kk(θ),(2.3)

where t refers to the transpose, λθ = (g(ϕ1) − g(θ), g(ϕ2) − g(θ), . . . , g(ϕk) − g(θ))t and
Σ−1 is the inverse of matrix with elements as follow,

Σrs = Covθ(ψr, ψs), r, s = 1, 2, . . . , k,

where, ψr = f(X|ϕr)−f(X|θ)
f(X|θ) and the supremum is taken over the set of all ϕi ∈ Θ, (i =

1, 2, . . . , k), satisfying,

S(ϕk) ⊂ S(ϕk−1) ⊂ . . . ⊂ S(ϕ1) ⊂ S(θ).

In case k = 1 the lower bound (2.3) is reduced to Hammersley-Chapman-Robbins lower
bound. Kshirsagar (2000) showed that his bound is sharper than the Bhattacharyya
bound with corresponding order. Although, computing the Kshirsagar bound and taking
the supremums are difficult, but, nowadays, using computers makes it a little easier.
Tsuda and Matsumoto (2005) by improving the Kshirsagar bound, expressed its appli-
cations in quantum theory. Qin and Nayak (2008) evaluated the Kshirsagar bound for
the mean square error of predictor variable and showed that these bounds are sharper
than their Bhattacharyya bounds. Nayeban et al. (2013, 2014) computed and compared
Kshirsagar bounds with Bhattacharyya bounds in some applicable distributions.

3. Comparing the Bhattacharyya and Kshirsagar bounds with
bootstrap method

In statistics literature, bootstrapping is a method for assigning measures of accuracy
to sample estimates which was first introduced by Efron (1979). This technique allows
estimation of the sampling distribution of almost any statistic using only very simple
methods. Generally, it falls in the broader class of resampling methods. Bootstrapping is
the practice of estimating properties of an estimator (such as its variance) by measuring
those properties when sampling from an approximating distribution.
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In the next three examples, we compute and compare the Bhattacharyya and Kshir-
sagar lower bounds with bootstrap method for approximating the variance of the unbiased
estimators.

3.1. Example. Suppose a random variable X has a negative binomial distribution with
unknown parameter p and known parameter r and the probability mass function as
follows,

P (X = x) =

(
x− 1
r − 1

)
prqx−r, x = r, r + 1, · · · , r ≥ 1.

It can be easily shown that the UMVUE of parameter p is,

p̂ =
r − 1

X − 1
, X > 1,

but a simple expression for the exact variance of this estimator is not proposed yet.
Blight and Rao (1974)and Haldan (1945) introduced the following expression which is
made by elements of Bhattacharyya matrix,

V ar(T (X)) = p2
∞∑
i=1

(
r + i− 1

i

)−1

qi.(3.1)

We estimate the variance of T (X) by bootstrap method with 2000, 10000 and 100000
replications. Also we compute the Eq. (3.1) by the third, fourth and tenth Bhattacharyya
bounds and present the results in the Table 1.

Table 1. Comparing the variance estimation of the UMVUE of p in
negative binomial distribution by bootstrap method and Bhattacharyya
bounds.

r p B3 B4 B10 Bootstrap Bootstrap Bootstrap
Reps. 2000 Reps. 104 Reps. 105

10 0.5 0.013778 0.013800 0.013805 0.13634 0.013836 0.013911
5 0.25 0.012472 0.012754 0.012973 0.013703 0.013264 0.012753
4 0.1 0.003424 0.003611 0.003876 0.003967 0.003808 0.004005
20 0.9 0.004089 0.004089 0.004089 0.004179 0.004103 0.004076

In Figure 1 we compute the variance of the UMVUE of p for r = 5 by the 50th order
Bhattacharyya bound, which is so sharp. Also the variance estimation by bootstrap with
10000 replications for all values of p is shown in the Figure 1.
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Figure 1. The variance estimation of the UMVUE of p in negative bi-
nomial distribution by the 50th order Bhattacharyya bound (Solid line)
and bootstrap method (Dot-Dot line). (Example 3.1)

According to the simulation studies presented in the Table 1 and Figure 1, we can see
that the Bhattacharyya bounds adapt the actual amount of the variance better than the
bootstrap method. It should be noted that the Bhattacharyya bounds of order more than
ten, all were equal up to fifteen decimals, that indicates the precise and fast convergence
of Bhattacharyya bounds.

3.2. Example. Suppose X1, ..., Xn be a sample of exponential distribution with mean
θ. One of the important factors in this distribution which is more applicable in reliability
theory, is reliability function g(θ) = Rθ(t) = e−

t
θ .

Pugh (1962), Basu (1964) and Patil and Wani (1966) found an unbiased estimator of
this function as follows,

T (X) = (1− t∑n
i=1Xi

)n−1,

where t <
∑n

i=1Xi.
Zacks and Even (1966) calculated the variance of this estimator as below,

V arθ(T (X)) =
1

(n− 1)!

∫ ∞

λ

(
1− λ

u

)2n−2

e−uun−1du− e−2λ,

where λ = t
θ
. Computing the exact amount of this variance needs numerical methods

and is not easily calculated. We present the Bhattacharyya and Kshirsagar bounds and
also bootstrap approximations for the variance of the unbiased estimator of g(θ) for some
values of λ in Table 2.
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Figure 2. Comparing the exact variance (Solid line), Kshirsagar
bound (Dot-Dot line), Bhattacharyya bound (Dash-Dot line) and boot-
strap method (Dash-Dash line) with 50000 replications in exponential
distribution for variance of unbiased estimators of the reliability func-
tion (n = 4). (Example 3.2)

Table 2. Approximation of the variance of any unbiased estimator of
reliability function in exponential distribution with Bhattacharyya and
Kshirsagar bounds and bootstrap method for n = 4.

λ = t
θ

V arθ(T (X)) B1 B2 K1 K2 Bootstrap Bootstrap
(Reps.2000) (Reps. 104)

0.25 0.01974 0.00947 0.01237 0.01582 0.01889 0.01936 0.01903
0.5 0.03010 0.02299 0.02816 0.02828 0.02999 0.03308 0.03278
1 0.03854 0.03383 0.037218 0.03685 0.03784 0.03039 0.03055

1.5 0.03241 0.02800 0.02870 0.02780 0.03010 0.01901 0.01930
2 0.02030 0.01831 0.01831 0.01901 0.01987 0.01099 0.01094

2.5 0.01333 0.01052 0.01079 0.01091 0.01218 0.00619 0.00618
3 0.00685 0.00577 0.00613 0.00621 0.00665 0.00358 0.00351

Figure 2 shows the Bhattacharyya and Kshirsagar bounds and also bootstrap method
for approximating the variance of the unbiased estimator of reliability function in expo-
nential distribution.
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It is observed that the Bhattacharyya and Kshirsagar bounds offer more accurate
approximations than the bootstrap method. So an important point about the Bhat-
tacharyya and Kshirsagar bounds is approximating the variance of unbiased estimator
with their help.

3.3. Example. Suppose we have a sample of size n from Burr XII distribution. Since
the cdf of Burr XII has closed forms, it is easy to see that its quantile xq of order q is as
follow,

xq =
[
(1− q)−

1
θ − 1

] 1
α
.

So, the median in Burr XII distribution is obtained for q = 1
2

as,

Median =
[
2

1
θ − 1

] 1
α
.

Table 3. Bhattacharyya and Kshirsagar bounds for the variance of
any unbiased estimator of the median in Burr XII.

θ α B1 B2 B3 B4 B5

0.7 0.2 11919.92 170386.1 981303.5 3035420 6024238
0.5 1 30.74899 45.52244 48.67708 49.05600 49.08512
2 0.5 0.164865 0.261329 0.269681 0.269988 0.269995
θ α K1 K2 K3 K4 K5

0.7 0.2 6619864.3 9130395.3 10992791 11601268.1 12158103
0.5 1 48.24566 49.068000 49.086412 49.11458 49.11589
2 0.5 0.258225 0.269968 0.2699949 0.2711145 0.2711245

In Table 3, we evaluate the first five Bhattacharyya and Kshirsagar bounds for the
variance of any unbiased estimator of the median in Burr XII distribution for some values
of θ and α.

Furthermore, in Figure 3 we compare the first order Bhattacharyya and first order
Kshirsagar lower bounds with the bootstrap approximation of the variance of the un-
biased estimator of the median in Burr XII, which indicates that, with respect to the
bootstrap approximation, the Bhattacharyya and Kshirsagar lower bounds are much
more nearer to the exact value of the variance. This comparison shows that the two
lower bounds are good approximations for the variance of the unbiased estimators.
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Figure 3. Comparing Bhattacharyya and Kshirsagar bounds of orders
1 and Bootstrap method (with 10000 replications) for the variance of
any unbiased estimator of median in Burr XII distribution with α = 1.
(Example 3.3)

4. Multi-parameter Bhattacharyya and Kshirsagar bounds
In this section, we first introduce the structure of multi-parameter Bhattacharyya

bound and then define the multi-parameter Kshirsagar lower bound. Also, we compare
the Bhattacharyya and Kshirsagar bounds with bootstrap method by two examples.

4.1. Multi-parameter Bhattacharyya lower bound. The multi-parameter version
of the Bhattacharyya bound is also defined by Bhattacharyya (1947) and more con-
sidered by Pommeret (1997), Bartoszewicz (1980), Alharbi (1994) and Tanaka (2006).
Bhattacharyya bounds have always been regarded as good approximations for the vari-
ance of unbiased estimators but in multi-parameter case, due to the complex structure
of the matrix and the difficulty of calculating the matrix inversion, has received less
attention.

One of important properties of multi-parameter Bhattacharyya bound is its conver-
gence which has been studied by Ghosh and Sathe (1987) and Tanaka (2006). They
showed that Bhattacharyya bounds converge to the variance of unbiased estimator.

Suppose X has density function f(x; θ) with an unknown parameter vector θ :=
(θ1, . . . , θr) ∈ Θ ⊂ Rr. Let following operators:

∂z :=

(
∂z

∂θi11 , . . . , ∂θ
ir
r

|0 ≤ i1, . . . , ir,

r∑
j=1

ij = z

)
; z ∈ N,

and
Dk := (∂1, . . . , ∂k)

t,

where ∂z is all possible partial derivatives of the form ∂z

∂θ
i1
1 ,...,∂θ

ir
r

, which i1 + . . .+ ir = z

and ij takes integer values {0, 1, 2, . . .} for j = 1, . . . , r.
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Considering the above definitions, the Bhattacharyya matrix of order k is the covari-
ance matrix of random vector,

Dkf(X; θ)

f(X; θ)
.

Also note that ∂z has mz =

 z + r − 1

r − 1

 members, so the multi-parameter Bhat-

tacharyya matrix of order k, is nk × nk where nk =
∑k

i=1mi.
Finally the multi-parameter Bhattacharyya inequality under suitable regularity con-

ditions, is defined as follows:
If T (X) be a real valued unbiased estimator of g(θ) ∈ R then,

V arθ(T (X)) ≥ ηθV
−1η′θ := Br.k(θ),(4.1)

where,
1- ′denotes the transpose and ηθ = Dkg(θ).
2- V −1 is the inverse of multi-parameter Bhattacharyya matrix.

4.1. Remark. We denote the multi-parameter Bhattacharyya bound of order k with
r unknown parameters with Br.k(θ), which B1.k is the one parameter Bhattacharyya
bound (Bk(θ)).

4.2. Multi-parameter Kshirsagar lower bound.
In this section we present our new bound in the next theorem, which is an extension

of Kshirsagar bounds.
Let Ω be a sample space and A be a σ-field of subsets of Ω, and assume that Θ be a

parameter space on open set of ℜr and θ = (θ1, . . . , θr). Suppose that {f(x|θ);θ ∈ Θ}
be a class of probability density functions or probability functions according as x is
continuous or discrete.

Let τ(θ) be a real-valued function defined on Θ and T (X) be an unbiased estimator
of τ(θ), i.e., T (X) is a real-valued measurable function defined on Ω with property that,

Eθ(T (X)) = τ(θ), ∀θ ∈ Θ.

For presenting lower bound for the variance of T (X), first we should define some notation
and symbols:

Let Φi(θ) be a set of subsets of parameter spaces which are defined on Θ such that
for i = 1, 2, . . . ,

Φi(θ) :=

(
Φi1(θ1), . . . ,Φir (θr) |

r∑
j=1

ij = i, ij ∈ {0, 1, . . .}

)
;(4.2)

where Φij (θj) is a function of θj such that Φ0(θj) = θj for all j = 1, . . . , r and
S(Φk(θ)) ⊂ . . . ⊂ S(Φ1(θ)) ⊂ S(θ),(4.3)

where S(θ) = {x|f(x|θ) > 0}. It is known that, for any i, there are mi =

(
i+ r − 1
r − 1

)
sets of non-negative (i1, . . . , ir) which satisfies

∑r
j=1 ij = i.

For an example of such Φi(θ), we can take for j = 1, . . . , r, Φij(θj) = θj + ijδj for
some proper values of δj satisfying (4.3). For instance,

Φ1(θ) = {(θ1 + δ1, θ2, . . . , θr), (θ1, θ2 + δ2, . . . , θr), . . . , (θ1, θ2, . . . , θr + δr)} ,
or

Φ2(θ) = {(θ1 + 2δ1, θ2, . . . , θr), (θ1, θ2 + 2δ2, . . . , θr), . . . , (θ1, θ2, . . . , θr + 2δr),

(θ1 + δ1, θ2 + δ2, θ3, . . . , θr), . . . , (θ1, θ2, . . . , θr−1 + δr−1, θr + δr)} .



573

Consider the row vector λk as follow,

λk = (h1, . . . ,hk),

where hi = (τ(Φi(θ)) − τ(θ)1) is a row vector of size mi and 1 is a row vector of ones

and therefore λk is a 1× nk row vector where nk =
∑k

i=1mi =
∑k

i=1

(
i+ r − 1
r − 1

)
.

Let Ψi, for i = 1, . . . , k be a vector of form below,

Ψi =
f(X|Φi(θ))− f(X|θ)

f(X|θ) , i = 1, . . . , k,

and let further, Σk be the covariance matrix of random vector:

(Ψ1, . . . ,Ψk) .

By defining the following operator,

Dkf(x|θ) := (f(x|Φ1(θ)), . . . , f(x|Φk(θ))) ,

Σk is a nk × nk covariance matrix of random row vector
Dkf(X|θ)
f(X|θ) − 1,

where 1 is a row vector of ones of convenient size.
Now we present our new bound in the next theorem, which is an extension of Barankin

and Kshirsagar bounds.

4.2. Theorem. If T (X) be any unbiased estimator of the parameter function τ(θ) then,

V arθ(T (X)) ≥ supλkΣ
−1
k λ′

k := Kr.k(θ) say,(4.4)

where, the supremum is with respect to all Φi(θ) satisfying (4.3).

Proof:
It is easy to see that for any i, Eθ(Ψi)=0 and therefore for any k,

Eθ

(
Dkf(X|θ)
f(X|θ) − 1

)
= 0, (where 0 is a row vector of zeros of size nk). We can partition

the matrix of Σk as follow:

Σk =

 Σ11 Σ12 . . . Σ1k

...
...

. . .
...

Σk1 Σk2 . . . Σkk

 ,(4.5)

where the ml ×ms block matrix Σls is of the form,

Σls = Eθ(Ψl.Ψs), l, s = 1, . . . , k.

Hence, the covariance between T (X) and every elements of the set Ψi is as follow,

Covθ(T (X),Ψi) = Eθ(T (X).Ψi)

=

∫
T (x).f(x|Φi(θ))dµ(x)−

∫
T (x).f(x|θ)dµ(x)

= τ(Φi(θ))− τ(θ)1

= hi.

Finally, it is easy to see that the multiple correlation coefficient (ρk) between T (X) and
(Ψ1, . . . ,Ψk) is given by,

ρ2
k =

λkΣ
−1
k λ′

k

V arθ(T (X))
,(4.6)

which yields the required result. △
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4.3. Remark. It is well known that Kr.1(θ) is identical to the Barankin bound and
K1.k(θ) is identical to the Kshirsagar bound (Kk(θ)) and finally K1.1(θ) leads to the
Hammersley-Chapman-Robbins lower bound.

In the next theorem we try to show that as the order of the matrix Σk increases the
bound get sharper and sharper.

4.4. Theorem. The lower bound for the variance of T (X) in Theorem 4.2, is increasing
with respect to k, i.e.

Kr.k(θ) ≤ Kr.k+1(θ).(4.7)

Proof:
Using the partition (4.5) it is straightforward that,

Σk+1 =

 Σk

... A
. . . . . . . . .

A′
... B

 ,(4.8)

where A =

 Σ1(k+1)

...
Σk(k+1)

 is a nk ×mk+1 matrix and B = Σ(k+1)(k+1) is a mk+1 ×mk+1

matrix.
Then, the block inverse of the matrix Σk+1 is,

Σ−1
k+1 =

(
C11 C12

C21 C22

)
,(4.9)

where
C11 = (Σk −AB−1A′)−1,

C12 = −Σ−1
k A(B −A′Σ−1

k A)−1,

C21 = −B−1A′(Σk −AB−1A′)−1,

C22 = (B −A′Σ−1
k A)−1.

Therefor the lower bound of order k + 1 is expressed as,

Kr.k+1(θ) = sup[λk hk+1]Σ
−1
k+1

[
λ′

k

h′
k+1

]
,(4.10)

where hk+1 = (τ(Φk+1(θ))− τ(θ)1) is a row vector of size mk+1. Now substituting (4.9)
in to (4.10) leads to,

Kr.k+1(θ) = sup
[
λkC11λ

′
k + hk+1C21λ

′
k + λkC12h

′
k+1 + hk+1C22h

′
k+1

]
.

Using the lemma presented by Miller (1981) we can write C11 as follow,

C11 = Σ−1
k + (I −Σ−1

k AB−1A′)−1Σ−1
k AB−1A′Σ−1

k ,

hence by substitution we have,
Kr.k+1(θ) = Kr.k(θ)+ sup

[
λk(I −Σ−1

k AB−1A′)−1Σ−1
k AB−1A′Σ−1

k λ′
k

+ hk+1C21λ
′
k + λkC12h

′
k+1 + hk+1C22h

′
k+1

]
,

where the second term in right hand side is positive and the inequality is satisfied.△

4.5. Example. Suppose X1, ..., Xn and Y1, ..., Ym be random samples of exponential
distributions with means θ1 and θ2. Tong (1974, 1975) found the UMVUE of P (X <

Y ) = θ2
θ1+θ2

for the first time which is as follow,
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R̂ =


Q1(n,m,

∑n
i=1Xi,

∑m
j=1 Yj);

∑m
j=1 Yj ≤

∑n
i=1Xi,

Q2(n,m,
∑n

i=1Xi,
∑m

j=1 Yj);
∑m

j=1 Yj >
∑n

i=1Xi,

where,

Q1(a, b, u, v) =

a−2∑
i=0

(−1)i
Γ(a)Γ(b)

Γ(a− i− 1)Γ(b+ i+ 1)

( v
u

)i+1

,

Q2(a, b, u, v) =

b−1∑
i=0

(−1)i
Γ(a)Γ(b)

Γ(a+ i)Γ(b− i)

(u
v

)i
.

Computation of the variance of this estimator has been considered by many researchers.
Kotz et al. (2003) computed the following expression for the UMVUE of V̂ ar(R̂),

V̂ ar(R̂) = (R̂)2 − (n− 1)(n− 2)(m− 1)(m− 2)

n2m2X
n−1

Y
m−1 H(n,m,X, Y ),

where, H(n,m,X, Y ) is obtained by,

H(n,m,X, Y ) =

∫ ∫ ∫ ∫
B

(
X − x1 + x2

n

)n−3 (
Y − y1 + y2

m

)m−3

dx1dx2dy1dy2,

and space B is expressed as,

B = {(x1, x2, y1, y2) : x1 + x2 < nX, y1 + y2 < mY ,

0 < x1 < y1, 0 < x2 < y2}.

Computing above integrals, is very difficult and should be computed by numerical meth-
ods.

In Table 4 we approximate the variance of UMVUE of P (X < Y ) with Bhattacharyya
bounds and bootstrap method.

Table 4. Approximating the variance of UMVUE of P (X < Y ) with
Bhattacharyya bounds (with orders k = 3, 4) and bootstrap method

n m ρ = θ1
θ2

k = 3 k = 4 Bootstrap Bootstrap
(2000 Replications) (10000 Replications)

5 5 0.25 0.01213 0.01224 0.009615 0.00954
5 10 0.75 0.01924 0.01926 0.020078 0.019865
10 10 1 0.01312 0.01312 0.013587 0.013492
10 10 0.5 0.01049 0.01050 0.007453 0.007357
5 10 0.25 0.00830 0.00832 0.008243 0.008291

It can be seen in Figure 4 that although the Cramer-Rao bound is weaker than Bhat-
tacharyya bounds, but it still acts better than bootstrap approximations.
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Figure 4. Approximating the variance of UMVUE of P (X < Y )
with Cramer-Rao and Bhattacharyya bounds and Bootstrap method in
exponential distribution (n=m=5).

4.6. Example. Suppose X1, ..., Xn be a sample of Pareto distribution with unknown
parameters α and β. Asrabadi (1990) showed that the UMVUE of mean function in
Pareto distribution is,

T (X) =
(n− 1)!β̂

(ln t− n ln β̂)1−n

(
t

β̂n
− 1−

n−2∑
i=1

(ln t− n ln β̂)i

i!

)
,

where, β̂ = min{Xi} and t =
∏n

i=1Xi.
Unfortunately, calculating the variance of this estimator has not been discussed yet and

here we try to give the best approximation of it by comparing the Kshirsagar bounds with
bootstrap method. In Table 5 we present the variance approximation for the UMVUE of
the mean function in Pareto distribution by Kshirsagar bounds and bootstrap method.

Table 5. Multi-parameter Kshirsagar bounds (with orders k = 1, 2)
and bootstrap approximation for the variance of unbiased estimator of
mean function in Pareto distribution with unknown α and β

n α β K2·1 K2·2 Bootstrap Bootstrap
2000 Replications 10000 Replications

2 3 1 3.58847 4.52821 1.512415 3.79487
5 10 2 4.00102 10.21191 7.85186 8.36154
5 20 3 0.00009 0.00089 0.00012 0.00054
10 25 5 0.00301 0.02891 0.00652 0.00541
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Figure 5 shows the importance of Kshirsagar bounds against the bootstrap method in
approximating the variance of unbiased estimator of the mean in Pareto distribution. It
can be seen that the bootstrap approximations are usually less than the actual amount
of the variance, because they are less than the second order Kshirsagar bound.

Figure 5. Approximating the variance of UMVUE of P (X < Y )
with Cramer-Rao and Bhattacharyya bounds and Bootstrap method in
exponential distribution (n=m=5).

5. Conclusion
In this paper, we define the Bhattacharyya and Kshirsagar bounds in both one and

multi parameter cases and compute these bounds for the variance of any unbiased esti-
mator of the parameter function in some applicable distributions. Also, we compare the
Bhattacharyya and Kshirsagar lower bounds with bootstrap method in some examples.
We see that the Bhattacharyya and Kshirsagar bounds are closer to the exact amount of
the variance of unbiased estimators than bootstrap method.
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