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DE- and EDPM- compound optimality for the
information and probability-based criteria
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Abstract
Several optimality criteria have been considered in the literature as
information-based criteria. The probability- based criteria have been
recently proposed for maximizing the probability of a desired outcome.
However, designs that are optimal for the information- based criteria
may be inadequate for probability- based criteria. This paper intro-
duces the DE- and EDPM – optimum designs for multi aims of opti-
mality for Generalized Linear Models (GLMs). An equivalence theorem
is proved for both compound criteria. Finally, two numerical examples
are given to illustrate the potentiality of the proposed compound cri-
teria.
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1. Introduction
An optimality criterion is a criterion, which summarizes how good the design is, and

it is maximized or minimized by an optimal design. Information-based criteria is one of
the popular types of optimality criteria that related to the Fisher information matrix of
the design. This type included many common optimality criteria such as; D-, G-, I-, A-
and E-optimality.

The most important and popular design criterion for parameter estimation is D-
optimality. It has been central to work on optimum experimental designs. Several publi-
cations on D-optimality can be seen in Atkinson et al. [3]. D-optimal designs are mainly
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intended to obtain efficient parameter estimation by the way of minimizing the general-
ized variance of the estimated regression coefficients by maximizing the determinant of
the Fisher information matrix.

E-optimal design is devoted to minimize the maximum variance of all possible nor-
malized linear combinations of the parameter estimation via maximizing the smallest
eigenvalue of the information matrix.

Most of the literature concentrates on D-optimal designs but much less attention has
been paid to E-optimal designs in nonlinear regression models (see Dette and Haines [11];
Dette and Wong [13]. Dette et al. [12] established that in the exponential regression mod-
els the E-optimal designs are usually more efficient for estimating individual parameters
than D-optimal designs. Moreover, E-optimal designs usually behave substantially more
reliably with respect to minimize the variances of the parameter estimates than do D-
optimal designs. However, the problem of determining E-optimal designs is substantially
harder than the D-optimal design problem.

The probability-based optimality criterion was initially introduced by McGree and
Eccleeston [13] that maximizing a probability of a particular event that assess an im-
portance to the experimenter. Moreover, the DP- compound optimality criterion was
proposed and discussed.

Some designs could be adequate for optimality criterion but inadequate for others
hence, the motivation of constructing compound criteria is to satisfy multi objective aims
of optimality. Many authors have developed optimality criteria which are applicable to
the multiple objective problems (for example Clyde and Chaloner [6], McGree et al. [20],
Atkinson [2], Denman et al. [8], Kilany[17], Kilany et al.[18] and Mwan et al.[21]).

The main objective of this paper is to construct new compound criteria via E-,D-
, and PM - optimality criterion to achieve the multi optimality problem of efficient
parameter estimation, minimizing the maximum variance of all possible normalized linear
combinations of the parameter estimation and obtaining the maximum probability of a
desired outcome.

The paper is organized as follows; Section 2 is devoted to represent the optimum
design background. In Section 3, E-, D- PM - and DPM−optimum designs are recalled.
Section 4 is dedicated to propose the DE-optimality and EDPM - optimality criteria.
The equivalence theorem is stated and proved for both. Finally, Section 5 is devoted to
introduce the applications for the offered criteria.

2. Optimum Design Background
Throughout this paper, the generalized linear models (GLMs) are considered. GLMs

extend normal theory of regression to encompass non-normal response distributions be-
longing to the one-parameter exponential family. As well as the normal, this includes
gamma, Poisson, and binomial distributions, all of which are important in the analysis
of data. GLMs relate the random term (the independent response Y) to the systematic
term to the linear predictor (Xθ) via a link function g(.), see Agresti [1].

Consider the generalized linear model GLMs

g (E (y)) = Xθ

Three components are involved:
(1) Random component, which describes the response variable y and its probability

distribution. The observations of y = (y1, . . . .yn)
T are independent.

(2) A link function g (.) that is applied to each component of E (y) .

(3) Linear Predictor is Xθ for the parameter vector θ = (θ1, . . . .θp)
T and a n ×

p model matrix X involved p explanatory variables for n observations.
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GLMs are commonly used to model binary or count data. Some common link functions
are used such that the identity, logit, log and probit link to induce the traditional linear
regression, logistic regression, Poisson regression models.

An approximate (continuous) design is represented by the probability measure ξ over
δ. If the design has trials at n distinct points in δ , it can be written as

ξ =

{
x1 x2 . . . . . . xn
w1 w2 . . . . . . wn

}
A design ξ defines, for i = 1, . . . , n, the vector of experimental conditions xi ∈ χ

related to yi, where χ is a compact experimental domain and the experimental weights
wi corresponding to each xi, where

∑n
i=1 wi = 1. The design space can be then expressed

as

δ = {ξi ∈ Xn × [0, 1]n :

n∑
i=1

wi = 1}

The cornerstone in optimal design is the Fisher information matrix. The Fisher in-
formation matrix M (θ, ξ) is defined as

M (θ, ξ) = −E[
∂2l (θ; y)

∂θ∂θT
]

where l (θ; y) is the log-likelihood function. The inverse of M (θ, ξ) is the variance-
covariance matrix of the unbiased parameter θ. From this point, M (θ, ξ) is used to
measure the amount of information that y carries about the parameter θ.

Due to Atkinson et al. [3], for the continuous design ξ, the information matrix is

M(θ, ξ) =

∫
χ

f (x) fT (x) ξ (dx) =

n∑
i=1

wif(xi)f
T (xi)

where fT (xi) is the ith row of X.
Consider a Bernoulli random variable bi. The likelihood for it is L (θ; bi) = πbi

i (1− πi)
1−bi , bi =

0, 1. For logistic link function, log( πi
1−πi

) = xiθ where E (πi) = bi. In the case of logistic
model, the Fisher information matrix M (θ, ξ) is defined as

M (θ, ξ) = XTWX

where W is diag of (w1π1 (1− π1) . . . . . . ..wnπn (1− πn)).

3. E-,D-, PM - and DPM -Optimality
3.1. E-optimality. E-optimality was firstly introduced by Ehrenfeld [14]. Heiligers
[15] derived the E-optimal polynomial regression designs and presented several numeri-
cal examples for some efficiency functions. Pukelsheim and Studden [22] determined the
E-optimal design for the polynomial regression model on the interval [-1,1] where the
variances of different observations are assumed to be constant and also investigated the
relationship between E- and c-optimality. Dette [9] generalized the results of Pukelsheim
and Studden [22] for polynomial regression models with non-constant variances propor-
tional to specific functions. Dette and Studden [10] studied the geometry of E-optimality.
E-optimal designs for polynomial regression without intercept was introduced by Chang
and Heiligers [5], also E-optimal designs for polynomial spline regression were presented
by Heiligers [16].

The E-optimality criterion determines the design such that the minimal eigenvalue,
say λmin (M (θ, ξ)), of the information matrix M (θ, ξ) is maximal. This corresponds
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to the minimization of the worst variance of the least squares estimator for the linear
combination of parameter estimation. It can be expressed as the following form

ΦE (ξ) = maxλmin (M (θ, ξ))

Following Pukelsheim and Studden [22], the equivalence theorem for E-optimal design
is stated that ξ∗E is the E-optimum design if and only if there exists a nonnegative definite
matrix A∗ such that trA∗=1 and,

max
λmin(M(θ,ξ))

fT (x)A∗f (x) ≤ λmin (M (θ, ξ))

The matrix A∗ can be represented as A∗=
∑s

i=1 kip(i)p(i)
T , where s is the multiplicity of

the minimal eigenvalue, ki ≥ 0,
∑s

i=1 ki = 1, {p(i)}i=1,2, ...,s
is a system of orthonormal

eigenvectors corresponding to the minimal eigenvalue. The E- efficiency of a design ξ
relative to the optimum design ξ∗E is given by

(3.1) EffE (ξ) =
λmin(M(θ, ξ))

λmin(M(θ, ξ∗E))

3.2. D-optimality. D-optimality is the vital design criterion, introduced by Wald [23],
which interested of the efficient parameter estimates. The idea of D-optimality depends
on maximization of logarithm the determinant of the information matrixM(θ, ξ),log |M(θ, ξ)|,
or equivalently, minimizes logarithm determinant of the inverse of information matrix,
log|M−1(θ, ξ)|. Hence minimizes the generalized variance of θ̂, the BLUE of θ is ob-
tained.

A design ξ∗D is a D-optimum design iff d (x, ξ∗D) ≤ q, x∈χ, where

d (x, ξD) = fT (x)M−1(θ, ξ∗D)f(x)

and q is the number of parameters for each model. The D-efficiency of any design ξ is
given by

(3.2) EffD (ξ) =

(
|M(θ, ξ)|
|M(θ, ξ∗D)|

)1/q

3.3. PM -optimality. McGree and Eccleston [19] proposed two types of probability -
based optimality criteria that applied for GLMs. One of the forms of P-optimality criteria
is PM-optimality criterion that defined as a maximization of the minimum probability of
success. The form of this criterion is as follows:

ΦPM (ξ)=min {πi (θ, ξi)} , i = 1, 2, . . . ..n
where, πi (θ, ξi) is the i-th probability of success given by ξi.

Such a criterion seems useful in situations in which relatively high-expected number
of successes are desired across all observations. This means, avoiding design points with
a low to moderate probability of success.

A design ξ∗PM
is a PM -optimum design for high probability of success iff

ψPM

(
x, ξ∗PM

)
≤ 0 , x∈χ, where

ψPM

(
x, ξ∗PM

)
=
ΦPM (x)−ΦPM

(
ξ∗PM

)
ΦPM

(
ξ∗PM

)
is the directional derivative of ΦPM (ξ). The PM - efficiency of design ξ relative to the
optimum design ξ∗PM

is

(3.3) EffPM
(ξ)=

min{πi (θ, ξi)}
min{πi

(
θ, ξ∗PM

)
}
, i = 1, 2, . . . , n
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3.4. DPM -optimality. For the aim of obtaining efficient parameter estimation and
maximizing the minimum probability of success, McGree and Eccleston [19] have pro-
posed DPM -optimality criterion to combine D- and PM -optimality criteria. In order to
obtain design for both D- and PM -optimality, consider a maximization of a weighted
product of the efficiencies:

(3.4)
(

|M(θ, ξ)|
|M(θ, ξ∗D)|

)α/q
 min{πi (θ, ξi)}

min{πi

(
θ, ξ∗PM

)
}

1−α

where, the coefficients 0 ≤ α ≤ 1 .Taking the logarithm of (3.4) yields,

(3.5) ΦDPM (ξ) =
α

q
log |M(θ, ξ)|+ (1− α)log min{πi (θ, ξi)}

The terms containing ξ∗D and ξ∗PM
have been ignored, since they are constants when

a maximization is taken over ξ. A DPM -optimum design, ξ∗DPM
, maximizes ΦDPM (ξ).

The derivative function for ΦDPM (ξ) is given by

ψDPM

(
x, ξ∗DPM

)
=
α

q
fT(x)M−1 (θ, ξ∗DPM

)
f(x) + (1− α)×ΦPM (x)−ΦPM

(
ξ∗DPM

)
ΦPM

(
ξ∗DPM

)


4. DE- and EDPM - Compound Design Criteria
Several competing objectives may be relevant in the experimental design. The com-

pound design criterion, which defined as a geometric weighted mean of efficiencies is
contributed to achieve the possible requirement objectives.

In this section, we will introduce two new compound criteria; namely DE- and EDPM -
optimality. DE-optimality criterion aimed to obtain the dual goal of efficient parameter
estimation and minimum variance. On the other hand, the EDPM - optimality criterion
can satisfy the triple objectives of DE-optimality criterion in addition to maximum prob-
ability. An approach to these design problems is to weight each criterion and find the
design that optimizes the weighted average of the criteria.

4.1. DE-optimality. To combine D- and E-optimality, we need a common scale of
comparison, as they are different completely in the behavior. In this case, the efficiencies
of both criteria can be used. In other words, the weighted product of the efficiencies are
maximized as

(4.1)
(

|M(θ, ξ)|
|M(θ, ξ∗D)|

)α/q(
λmin(M(θ, ξ))

λmin(M(θ, ξ∗E))

)1−α

where, the coefficients 0 ≤ α ≤ 1 . Taking logarithm of (4.1),
α

q
log |M(θ, ξ)| − α

q
log |M (θ, ξ∗D)|+ (1− α) logλmin (M (θ, ξ)) −

(1− α) logλmin (M (θ, ξ∗E))

which can be reduced to

(4.2) ΦDE (ξ) =
α

q
log |M(θ, ξ)|+ (1− α) logλmin (M (θ, ξ))

As the terms involving ξ∗D and ξ∗E are constants when a maximum is taken over ξ.
Design maximized ΦDE (ξ) are called DE-optimum and denoted by ξ∗DE . The equivalence
theorem for DE-criterion can be stated as follows:
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4.1. Theorem. A design ξ∗DE is DE-optimal if and only if it satisfy the following in-
equality,

ψDE (x, ξ∗DE) ≤ 1, x ∈ χ

where the derivative function

(4.3) ψDE (x, ξ∗DE) =
α

q
fT (x)M−1 (θ, ξ∗DE) f (x) + (1− α)

fT (x)A∗f (x)

λmin (M (θ, ξ∗DE))

Moreover, the upper bound of ψDE (x, ξ∗DE) is attained at the support points of the DE-
optimum design.

Proof. Since 0 ≤ α ≤ 1, the criterion in (4.2) is a convex combination of two functions.
The first one is D-optimality criterion which is concave optimality criterion. The second
term is the logarithm of minimum eigenvalue of information matrix M. Since the infor-
mation matrix M = XTX is real symmetric matrix, then its minimal eigenvalues can be
written as follows:

λmin(M) = min
∥ν∥=1

< Mν, ν >

where, ν is a fixed vector and < Mν, ν > is a linear function of M. From the fact that the
minimum of any family of linear functions is concave, thus λmin(M) is concave function.
Moreover, since M is symmetric matrix with positive diagonal elements, then M is pos-
itive definite matrix and therefore all its eigenvalues are positive. From convex analysis
(see Boyd and Vandenberghe [4]), we can conclude that, logλmin (M (θ, ξ)) is concave
function of concave design criterion. Thus, the ED-criterion is a convex combination of
two concave functions and therefore satisfies the conditions of convex optimum design
theory and the proof is done. �

4.2. EDPM -Optimum Designs. The formula of EDPM - optimality can be derived
using the weighted geometric mean of efficiencies design for E- , D- and PM - optimum
design as follows:

(4.4) {EffE (ξ)}α(1−α){EffD (ξ)}(α−1)2{EffPM
(ξ)

}α

Without loss of generality, powers can be taken to sum to one. The form of equation
(4.4) is not unique; the powers can be changed to obtain different designs. We obtain
the criterion by taking the logarithm of (4.4):

(4.5)
ΦEDPM (ξ) =α (1− α) logλmin (M (θ, ξ)) +

(α− 1)2log |M(θ, ξ)|+ αlog(min{πi (θ, ξi)})

The terms containing ξ∗E , ξ∗D and ξ∗PM
have been ignored, since they are constants

when a maximum is taken over ξ. Design maximizing ΦEDPM (ξ) is called EDPM -
optimum design and denoted by ξ∗EDPM

. This optimum design satisfies the following
general equivalence theorem:

4.2. Theorem. For EDPM -optimal design,ξ∗EDPM
, the following three statements are

equivalent:
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(1) A necessary and sufficient condition for a design ξ∗EDPM
to be EDPM -optimum

is fulfillment of the inequality, ψEDPM

(
x, ξ∗EDPM

)
≤ 1, x ∈ χ, where,

(4.6)

ψEDPM

(
x, ξ∗EDPM

)
=α (1− α)

fT (x)A∗f (x)

λmin

(
M

(
θ, ξ∗EDPM

)) +

(α− 1)2

q
fT (x)M−1 (θ, ξ∗EDPM

)
f (x)+

α

ΦPM (x)−ΦPM

(
ξ∗EDPM

)
ΦPM

(
ξ∗EDPM

)


is the directional derivative of the criterion function (4.5).
(2) The upper bound of ψEDPM

(
x, ξ∗EDPM

)
is attained at the points of the optimum

design.
(3) For any non-optimum design ξ, that is a design for which ΦEDPM (ξ) < ΦEDPM (ξ∗EDPM

),
supx∈χ ψEDPM

(
x, ξ∗EDPM

)
> 1

Proof. Since 0 ≤ α ≤ 1 and the sum of coefficients α (1− α), (α− 1)2 and α equals
one, the criterion in (4.5) is a convex combination of three functions. The first and
the second one for E- and D- criterion, respectively, are concave function (see proof of
Theorem 1). Since, the third function of the convex combination (4.5) is the logarithm
of minimum probability of success and πi (θ, ξi) ≥ 0, so that, log(min{πi (θ, ξi)}) is
concave function. Thus, the EDPM - criterion is a convex combination of three concave
functions and therefore satisfies the conditions of convex optimum design theory. In
addition, the upper bound of ψEDPM

(
x, ξ∗EDPM

)
over x ∈ χ is one achieved at the points

of the optimum design because the terms in (4.6) have been scaled. Thus, the theorem
has been proved. �

5. Applications
In the following sections two separate illustrative examples are considered for logistic

GLMs.

5.1. Application of the DE-Optimum Design. In this section, the DE - optimality
criterion is applied to Logistic GLMs for binary data. By using the simulated designs
(given in Corana et al. [7]), the DE - compound criterion can achieve the dual goal of
obtaining efficient parameter estimation and minimizing the maximum variance of all
possible normalized linear combinations of the parameter estimation.

The considering model has two main factor effects besides the interaction with initial
parameter estimates θ = [1,−2, 1,−1]T as follows.

Consider the Logistic GLM;

(5.1) log

(
π

1− π

)
= 1− 2x1 + x2 − x1x2

DE-optimal designs and their D- and E-efficiencies for α= 0.25, 0.5, 0.75 , 1 are obtained
and presented in Table 1.

Table 1 shows the design that maximize the DE-criterion. It can be noticed that
there is little changes in the design points with high variation in design weights. Figure
1 illustrates the E- and D-efficiencies for α = 0.25, 0.5, 0.75 and 1. The dot-dashed line
represents the D-efficiency of the designs, and the solid line shows their E-efficiencies. The
E-optimal design has a D-efficiency of 0.6383 and the D-optimal design has E-efficiency
of 0.691145. By using the compound DE-criterion and compute ΦDE(ξ) corresponding
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Table 1. DE-optimum design and their E-and D- efficiencies for dif-
ferent values of α.

α x1 x2 wi π Eeff Deff

0.25 1.0000 -1.000 0.0835 0.2689 1 0.6383
0.8020 1.000 0.0999 0.3999
-1.000 -1.000 0.1983 0.7311
-0.3980 1.000 0.6182 0.9596

0.5 1.000 -1.000 0.1570 0.2689 0.953696 0.9054
1.000 1.000 0.1600 0.2889
-1.000 -1.000 0.2802 0.7311

-0.1059 1.000 0.4028 0.9103

0.75 1.000 1.000 0.2121 0.2689 0.802473 0.9864
1.000 -1.000 0.2121 0.2689
-1.000 -1.000 0.2740 0.7311
0.0148 1.000 0.3017 0.8761

1 1.000 -1.000 0.2500 0.2689 0.691145 1
1.000 1.000 0.2500 0.2689
-1.000 -1.000 0.2500 0.7311
0.0680 1.000 0.2500 0.8577

to those values of α, we will prefer the optimality criterion with the largest common
efficiency for the dual aim, i.e. choosing α = 0.5, the E-efficiency is increased to 0.953696
and achieving a D-efficiency of 0.9054. The DE-optimal design is then

ξ∗DE =


1.000
0.9669
−1.000
−0.1059

−1.000
1.000

−1.000
1.000

0.1570
0.1600
0.2802
0.4028



Figure 1. E- and D-efficiencies of DE-optimal designs for different
values of α
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5.2. Application of EDPM - Optimum Design. In this section, the EDPM -optimality
criterion is applied to Logistic GLMs for binary data. The EDPM -compound criterion
can provide triple goals of obtaining efficient parameter estimation plus maximizing the
minimum eigenvalue of the information matrix and maximizing the minimum probability
of a desired outcome. For the GLM which considered in (5.1). Let us consider another
simulated designs given in Corana et al. [7], the EDPM -optimal designs and their D- ,
E- and PM - efficiencies is obtained for α = 0.25, 0.5, 0.75 , 1. The results are shown in
Table 2.
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Table 2. EDPM -optimum designs and their E- D- and PM -efficiencies
for different values of α

α x1 x2 wi π Eeff Deff PM eff

0.25 0.3333 1.000 0.2469 0.7311 0.335688 0.3441 0.7360
-0.1555 -0.2691 0.2500 0.7311
-1.000 -1.000 0.2469 0.7311
-0.3605 1.000 0.1281 0.9561
-1.0000 0.0408 0.1281 0.9561

0.5 0.2369 -0.8374 0.2500 0.4718 0.712605 0.7155 0.6507
0.7043 1.000 0.2500 0.4718
-0.1074 1.000 0.2500 0.9107
-1.0000 -1.000 0.2500 0.7311

0.75 0.0509 1.000 0.2500 0.8638 0.97064 0.9790 0.5467
0.9672 1.000 0.2500 0.2887
0.9016 -1.000 0.2500 0.2887
-1.0000 -1.000 0.2500 0.7311

1 1.000 -1.000 0.2500 0.2689 1 1 0.2707
1.000 1.000 0.2500 0.2689
-1.000 -1.000 0.2500 0.7311
0.0680 1.000 0.2500 0.8577

Searching for the most higher common efficiencies for the three criteria, it is found
that at α = 0.5, where the E-efficiency is 0.7126, D-efficiency is 0.7155 and PM -efficiency
is 0.6507 as illustrated in Figure 2. Hence, the EDPM optimal design is then

ξ∗EDPM
=


0.2369
0.7043
−0.1074
−1.000

−0.8374
1.000

1.000
−1.000

0.2500
0.2500
0.2500
0.2500

0.4718
0.4718
0.9107
0.7311



Figure 2. E- and D- and PM efficiencies of EDPM -optimal designs
for different values of α



590

6. Conclusion
Most experimenters are interested in designing the experiments, which satisfy different

goals. This requires developments of the field of constructing the compound optimality
criteria. Hence, in this paper, two compound criteria named by DE and EDPM are pro-
posed. They offered multi-objective optimality properties of having efficient parameter
estimation, minimizing the maximum variance of all possible normalized linear combina-
tions of the parameter estimation and obtaining the maximum probability of a desired
outcome. By applying these designs on logistic GLM, the largest common efficiency
for the multi aim described above is achieved which indicated the benefits of using the
proposed compound criteria.
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