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Abstract

Adaptive kernel density estimator is an efficient estimator when the
density to be estimated has long tail or multi-mode. They use varying
bandwidths at each observation point by adapting a fixed bandwidth
for data. It is well-known that bandwidth selection is too important
for performance of kernel estimators. An efficient recent method is
the generalized least square cross-validation which improves the least
squares cross-validation. In this paper, performances of the adaptive
kernel estimators obtained based on the generalized least square cross-
validation are investigated. We performed a simulation study to inform
about performances of the modified adaptive kernel estimators. For
the simulation, we use also the bandwidth selection methods of normal
reference, least squares cross-validation, biased cross-validation, and
plug-in methods. Simulation study shows that the adaptive kernel es-
timators improve the performances of the kernel estimators with fixed
bandwidth selected based on generalized least square cross-validation.
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1. Introduction

The kernel density estimation (KDE) is the most popular non-parametric method to
estimate density function of a distribution. Let X1, X2, ..., X,, be randomly chosen
sample from a population with unknown probability density function f(z). The KDE for
density function for any estimation point z is given as

(11)  falo) = %j Ly ( ?f“’)
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where h is called as bandwidth or smoothing parameter which controls the smoothness
of function. The choice of h is crucial. In Equation (1.1), k(.) is the kernel function
which is assumed to satisfy following properties

/_o:o o(w)du = 1/_0; wh(u)du = 0, /oo W k(u)du = (k) < o

— o0
The selection of kernel function is not as important as the selection of bandwidth
and such selection is made by taking into consideration of the ease of calculation and
differentiability features. Some popular kernel functions are Gaussian, Epanechnikov,
Triangular, Quartic, and Triweight [9].
The mean squared error (MSE), the mean integrated squared error (MISE), and the
asymptotic MISE of KDE is follows as

T@BE) B (i) Y+ of(nh) ™) + ofh)

(1.2)  MSE(f(x)) = o 7

(1.3) MISE(f):/MSE (f(x)) dz = (nh) " R(k)

L) ) [ @ da o)) + o)

(14)  AMISE (F(@)) = (nh) " R(D) + ° () 1 [ 1 (@)

where R(k) = [ k*(u)du [9, 13, 20]. The optimal bandwidth value which minimizes the
AMISE is obtained as follows,

R(k) 1/5
np3 (k) R{f" ()}

To compute hop: approximately, there are the most widely-used methods such normal
reference (NR), least squares cross-validation (LSCV), biased cross validation (BCV),
and plug-in. Basic idea of these approaches is to use the estimations of unknowns. The
issue that which one is the best is still controversial. Generally, it is determined which
method works well heuristically and through experience in practice. In section 2, the
basic properties of the most common fixed bandwidth selection methods are given. In
section 3, the adaptive bandwidth selectors are introduced. We will give comparisons of
performances of the selectors based on Monte Carlo simulations in section 4. In section
5, a real-data example is presented. Section 6 gives the conclusions.

(1.5) hopt =

2. Fixed bandwidth selectors

The simplest method for selecting a bandwidth A is to use the normal reference band
(hyg). If f and k are assumed to be a normal distribution and a Gaussian kernel in
Equation (1.5) respectively, then hop: becomes hn g as follows

(21)  hygr = 1.060n""/?

or alternatively

(2.2)  hygr=0.79(IQR)n */?
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where o and IQR are the standard deviation and the interquartile range of X, respectively
[13, 16, 17]. By combining Equation (2.1) and Equation (2.2) and using the estimations
of o and IQR, a better normal reference bandwidth is obtained as

(2.3)  hyr = 1.06min(6, IQR/1.34)n""/®

It is well-known that Angr works well if f approaches to normal distribution. Oth-
erwise, it often obtains oversmooth estimations, specially in case of multi-modality [9,
16, 17, 20]. Recently, Zhang [21] proposed a robust simple and quick bandwidth selector
har(p) based on quantile for kernel density estimation. Even Zhang [21] states that
lAlNR(OA75) is a good choice of adaptive bandwidths by using the results of the simulation
studies, but it is controversial.

As an automatic method, LSCV which also is called as unbiased cross-validation
(UCYV) is a flexible and easy computable method. In LSCV, the optimal bandwidth

hrscy = arg m}}n LSCV(h)

which minimizes the following cross-validation function LSCV (h) over h is follows

24) LoV = [ e - 23 fuo(X)
=1
where

[ @ = 23S e (K2

i=1 j=1

In Equation (2.4),

N 1 ” X —X;
fh(i)(Xi)=(n_2)h§k( )

is a leave-one-out kernel estimator that is computed from the sample points by ignoring
Xi [2, 9, 14, 20]. LSCV bandwidth estimator is unbiased but highly variable depending
on selected sample and often produces undersmooth estimations [4, 8, 12].

Differently from LSCV, BCV method is based on AMISE. The BCV bandwidth

hpov = arg m}in BCV (h)

is the minimizer of

Bovny = T8 g )2 R()
where
é(f//) _ (n2)2 Z(k” N k//)(Xl ; XJ)

i#]

is a estimator of R(f") and &’ is the second derivative of k [9, 20]. Scott and Terrell [14]
showed that iLBcv is more stable than iLLSCV but a biased estimator. Chiu [4] stated
that szcv does not work for small sample sizes. Zhang [21]’s simulation studies showed
that the minima of LSCV and BCYV functions sometime occurs at extreme points of h,
especially for sharp and multiple peaks.

Basic idea of plug-in bandwidth selectors is plugging in estimates of the unknown
quantities in hop [20]. Sheather and Jones [15] proposed a bandwidth selector ks, which
is a plug-in approach. A version of hsyis ‘direct-plug-in’ method. Another version of hss
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is ‘solve-the-equation’ method. Chiu [4] stated that procedure SJ performs quite well for
densities close to normal distribution. Loader [11] expressed that “the much touted plug-
in approaches have fared rather poorly, being tuned largely by arbitrary specification of
pilot bandwidths and being heavily biased when this specification is wrong”. Zhang [21]
showed iLSJ performs well in all cases (unimodal and multimodal).

Recently, a generalized least squares cross-validation (GLSCV) method is proposed by
Zhang [22]. This method aims to improve the finite sample behavior of LSCV method.
Zhang [22] give the GLSCV function as

LSCV,(h) = %;Th(())

2 2 1 1

M= [zt = 0= (G4 1 ) vt )
where ®(.) is Gaussian kernel and ®;,(u)= ®(u/h)/h. Zhang [22] only discussed LSCV (h)
for Gaussian kernel. When g=1 then LSCV,(h) equals to LSCV(h). The generalized
LSCV bandwidth selector h LScvg is defined as the minimizer of LSCV, (h) over h. Zhang
[22] stated that “based on our simulation study, the poor finite sample behavior of hrscv
can be dramatically improved by ﬁLscvgwith 3 < g <4, where g=4 seems to be the best
choice for any sample size n”. Zhang [22] give a script for computing iLLscvg in R code
[5]. By using this code, LSCV, (h) is minimized over h within [0.01hos, hos]. Here,
hos = 1.144n71/58 is the oversmoothed bandwidth selector for Gaussian Kernel where
S is sample standard deviation [20]. In this study, we use also Zhang’s codes located in
our R codes for the simulation study.

3. Adaptive kernel density estimators

It is well known that all the classical bandwidth selection methods perform well if
true density is close to normal distribution. Otherwise, they are problematic, specially
for long-tailed or multi-moded densities. While a kernel density estimator with fixed
bandwidth has performance well about the peak of a distribution, but performs poorly
at the tails. It is not easy to find only one bandwidth which is satisfied adequately at
peaks and tails of a density. As an efficient solution for handling this issue, it is to use the
kernel estimator which has a different bandwidth for each data point. These type of kernel
estimators are commonly called as adaptive kernel density estimators (AKDE). Van Kerm
[19] states that it is commonly preferred for decreasing the oversmooth/undersmooth
effects of the fixed bandwidth to use AKDE. Firstly, Breiman et. al. [3] introduced
AKDE as

31)  flx)= %Z h()lgi)dk(iz{Xi()i)

where h(X;) is the variable bandwidth for each data point X; and d is the number of
dimension. Breiman et. al. [3] suggested that h(X;) must be taken as being proportional
to the distance from X; to its kth nearest neighbor. Abramson [1] proposed that h(X;)
must be proportional to f —1/2 (X;),with f replaced by a pilot estimate,for all dimensions.
The mean squared error (MSE) of f(z) with Abramson’s approach is derived by Jones
[10] for d=1 as follows:

MSE(f(z)) = 57502h" 4% @) + (nh) ™' S(8) £/ (a)
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where,
d* [ 1
Alx) = — | ==
0= i |7t
Silverman [17] suggested that h(X;) must be proportional to (g/f(X:))!/? where g is
the geometric mean of f(X;) values. Silverman [17] suggested a three-stage algorithm to
compute adaptive kernel estimations.
(1) Compute a pilot estimation f(XL) by using KDE with a fixed bandwidth h for
all data points.
7 —a
(2) Compute the local bandwidth factors as A\; = {%} and

« is the sensivity parameter which is commonly preferred as 0.5 [1].
(3) Compute the adaptive bandwidths as h(X;) = h); and estimate the adaptive
kernel density as

} 6k = /x‘*k(x)dx,S(k) - %R(k) + iR(xk’).

(3:2) h Xi) ~ nh Z )\

Hall and Marron [7] and Terrell and Scott [18] showed that the AKDE have higher
convergence rate than KDE’s.

Cula et al. [6] investigated the finite sample performances of the modified adaptive
kernel density estimators f7 (), f %(z), and fr( ). The modified adaptive kernel densfoy
estimators f%(z) and f(z) use average, a = > f(X;)/n, and range ,r = max f(X;) —
min f(X;), instead of geometric mean g in Equation (3.2). Cula et al. [6] used the
only LSCV bandwidth selector as fixed bandwidth selector and showed that the modified
adaptive kernel density estimators based on LSCV outperform the classical kernel density
estimators.

Here, we define new modified adaptive kernel density estimators based on using the
the fixed bandwidth selectors NR, BCV, SJ, and LSCV4 as fyr,fscv,fss, and frscv,,
respectively.

(1) Let f%p floovs foov, fL,, and fLSCV denote the adaptive kernel density
estimators based on adaptive bandwidths obtained by using geometric mean.

(2) Let f&r, fisov, feov, f&;, and fLSCV4denote the adaptive kernel density
estimators based on adaptive bandwidths obtained by using arithmetic mean.

(3) Let fyr, frscvs feev, f5s, and fLSCV4denote the adaptive kernel density
estimators based on adaptive bandwidths obtained by using range values.

We performed a simulation study to inform about performances of the all above mod-
ified estimators.

4. Finite sample performances of the modified adaptive band-
width selectors

Because of theoretical difficulties of the kernel estimators, it is most common method
to use Monte Carlo simulations for comparing their performances. We generate 1000
Monte Carlo samples of size n (50, 250, 1000) from the normal mixture model as follows

f(x) = 0.5¢(2) + 0.5¢s (z — )

where 4 =0, 1, 5 and ¢ = 1, 0.5, 0.1 [22]. Following Zhang [22], we use the ‘direct-
plug-in’ (dpi) method for hs; and Gaussian kernel function for all estimations.
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By using generated samples, the root mean integrated square error (RMISE) values
of the fixed kernel estimations and the adaptive kernel estimations are computed. For
each case, the average values of RMISE’s over 1000 samples are given in Table 1, Table
2, and Table 3. Figure 1 shows the behavior of the RMISE values graphically. It can be
concluded the following comments.

As expected, the adaptive kernel density estimators significantly improve the classical
kernel density estimators for all cases.

The classical and the adaptive BCV kernel density estimators perform poorly if the
true density is sharp or two moded. Otherwise, they perform well. The adaptive BCV
estimators often improve the classical BCV estimator.

Table 1. Average RMISE for the case with =0

o=1 o=0.5 o=0.1

Estimator 50 250 1000 50 250 1000 50 250 1000
fNR 0.03334 | 0.01828 | 0.01079 | 0.04223 | 0.02311 | 0.01384 | 0.12366 | 0.07208 | 0.04478
fLscv 0.03883 | 0.02078 | 0.01184 | 0.04859 | 0.02618 | 0.01508 | 0.11118 | 0.05876 | 0.03396
fBCV 0.03200 | 0.01818 | 0.01081 | 0.04196 | 0.02349 | 0.01395 | 0.21076 | 0.06018 | 0.03289
fsg 0.03500 | 0.01879 | 0.01095 | 0.04428 | 0.02369 | 0.01400 | 0.10748 | 0.05650 | 0.03278
fLscvy 0.03248 | 0.01833 | 0.01089 | 0.04236 | 0.02367 | 0.01402 | 0.10986 | 0.05709 | 0.03297
fﬁ,R 0.03561 | 0.01957 | 0.01172 | 0.04308 | 0.02312 | 0.01389 | 0.09682 | 0.04624 | 0.02632
fzSCV 0.04194 | 0.02264 | 0.01297 | 0.04967 | 0.02672 | 0.01572 | 0.10707 | 0.05975 | 0.03582
f)gacv 0.03250 | 0.01866 | 0.01136 | 0.03721 | 0.02183 | 0.01381 | 0.18457 | 0.05455 | 0.03318

gJ 0.03751 | 0.02006 | 0.01184 | 0.04600 | 0.02453 | 0.01465 | 0.09598 | 0.05538 | 0.03432
fgscv4 0.03315 | 0.01890 | 0.01146 | 0.03938 | 0.02255 | 0.01404 | 0.09263 | 0.05420 | 0.03352
YR 0.03483 | 0.01912 | 0.01147 | 0.04160 | 0.02210 | 0.01326 | 0.09891 | 0.04564 | 0.02447
fiscv 0.04090 | 0.02209 | 0.01268 | 0.04803 | 0.02560 | 0.01501 | 0.10083 | 0.05349 | 0.03151
faov 0.03187 | 0.01831 | 0.01116 | 0.03636 | 0.02097 | 0.01319 | 0.19306 | 0.04955 | 0.02898
f&s 0.03669 | 0.01961 | 0.01159 | 0.04443 | 0.02345 | 0.01399 | 0.09132 | 0.04930 | 0.02996
fZSCV4 0.03251 | 0.01854 | 0.01125 | 0.03834 | 0.02162 | 0.01341 | 0.08992 | 0.04849 | 0.02932
INR 0.03347 | 0.01827 | 0.01107 | 0.03912 | 0.02028 | 0.01213 | 0.10947 | 0.05637 | 0.02860
fLscv 0.03853 | 0.02079 | 0.01211 | 0.04483 | 0.02336 | 0.01364 | 0.09559 | 0.04724 | 0.02707
fBov 0.03090 | 0.01769 | 0.01089 | 0.03563 | 0.01953 | 0.01210 | 0.20320 | 0.04672 | 0.02520
f&r 0.03509 | 0.01876 | 0.01117 | 0.04160 | 0.02148 | 0.01276 | 0.09127 | 0.04418 | 0.02576
fESCV4 0.03148 | 0.01788 | 0.01096 | 0.03698 | 0.02003 | 0.01226 | 0.09408 | 0.04426 | 0.02542

The classical generalized LSCV and adaptive generalized LSCV density estimators
perform well for all cases. The adaptive estimator f7scy,has generally very attractive
performance. Specially, it has increasing performance unless the sample size is large.
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Table 2. Average RMISE for the case with =1

oc=1 o =0.5 o =0.1

Estimator 50 250 1000 50 250 1000 50 250 1000

fNR 0.03104 | 0.01688 | 0.01021 | 0.04144 | 0.02409 | 0.01491 | 0.20907 | 0.19080 | 0.16391
FE R 0.03366 | 0.01828 | 0.01107 | 0.03967 | 0.02109 | 0.01238 | 0.18231 | 0.14865 | 0.10855
fNR 0.03294 | 0.01789 | 0.01085 | 0.03920 | 0.02085 | 0.01223 | 0.19146 | 0.16530 | 0.13065
fNR 0.03164 | 0.01714 | 0.01048 | 0.03881 | 0.02118 | 0.01251 | 0.20373 | 0.18781 | 0.16099
fLscv 0.03560 | 0.01915 | 0.01113 | 0.04701 | 0.02574 | 0.01499 | 0.10935 | 0.05853 | 0.03399
fzscv 0.03859 | 0.02098 | 0.01217 | 0.04881 | 0.02655 | 0.01545 | 0.10560 | 0.05907 | 0.03582
fiscv 0.03770 | 0.02051 | 0.01192 | 0.04770 | 0.02588 | 0.01499 | 0.09919 | 0.05307 | 0.03157
fLscv 0.03568 | 0.01939 | 0.01142 | 0.04520 | 0.02448 | 0.01412 | 0.09413 | 0.04708 | 0.02704
fBCvV 0.02974 | 0.01675 | 0.01023 | 0.04298 | 0.02364 | 0.01391 | 0.23091 | 0.08348 | 0.03302
fjgscv 0.03081 | 0.01746 | 0.01074 | 0.03831 | 0.02226 | 0.01358 | 0.21255 | 0.07332 | 0.03321
fhov 0.03021 | 0.01715 | 0.01056 | 0.03840 | 0.02190 | 0.01323 | 0.21854 | 0.07086 | 0.02906
fBCV 0.02926 | 0.01662 | 0.01033 | 0.03912 | 0.02160 | 0.01277 | 0.22622 | 0.07135 | 0.02527
fsg 0.03263 | 0.01736 | 0.01036 | 0.04196 | 0.02333 | 0.01386 | 0.14875 | 0.08236 | 0.04154
ng 0.03542 | 0.01865 | 0.01114 | 0.04305 | 0.02364 | 0.01398 | 0.10898 | 0.04508 | 0.02708
f&s 0.03465 | 0.01828 | 0.01092 | 0.04208 | 0.02303 | 0.01357 | 0.11947 | 0.04854 | 0.02462
f&r 0.03316 | 0.01756 | 0.01057 | 0.04034 | 0.02197 | 0.01291 | 0.14019 | 0.06991 | 0.02704
fLscvy 0.03022 | 0.01688 | 0.01029 | 0.04260 | 0.02377 | 0.01399 | 0.10928 | 0.05710 | 0.03308
fgSCV4 0.03138 | 0.01763 | 0.01082 | 0.04031 | 0.02301 | 0.01379 | 0.09258 | 0.05416 | 0.03358
fZSCV4 0.03078 | 0.01732 | 0.01063 | 0.03994 | 0.02257 | 0.01342 | 0.08957 | 0.04861 | 0.02942
fESCV4 0.02978 | 0.01677 | 0.01039 | 0.03959 | 0.02200 | 0.01289 | 0.09452 | 0.04450 | 0.02549

Classical LSCV and the adaptive-LSCV kernel density estimators perform well if the
true density is far from normal. Otherwise, the LSCV-type estimators perform poorly.
The adaptive f7scyestimator improves the classical LSCV estimator.

Table 3. Average RMISE for the case with =5

o=1 o=0.5 o=0.1

Estimator 50 250 1000 50 250 1000 50 250 1000

fNR 0.04556 | 0.03095 | 0.02052 | 0.07925 | 0.06201 | 0.04745 | 0.23664 | 0.22785 | 0.21856
f}%R 0.04344 | 0.02487 | 0.01322 | 0.07660 | 0.05529 | 0.03725 | 0.23479 | 0.22311 | 0.20974
YR 0.04391 | 0.02561 | 0.01393 | 0.07732 | 0.05661 | 0.03918 | 0.23530 | 0.22433 | 0.21235
fNR 0.03902 | 0.02750 | 0.01708 | 0.07012 | 0.05992 | 0.04756 | 0.23185 | 0.22658 | 0.21856
fLscv 0.03192 | 0.01712 | 0.00976 | 0.04175 | 0.02229 | 0.01294 | 0.09393 | 0.04994 | 0.02922
fz cv 0.03316 | 0.01784 | 0.01027 | 0.04244 | 0.02280 | 0.01347 | 0.09063 | 0.05066 | 0.03087
fiscv 0.03274 | 0.01754 | 0.01009 | 0.04163 | 0.02218 | 0.01306 | 0.08490 | 0.04536 | 0.02720
flLscv 0.03159 | 0.01675 | 0.00967 | 0.04002 | 0.02080 | 0.01219 | 0.08131 | 0.04092 | 0.02407
fBCV 0.03680 | 0.01591 | 0.00930 | 0.05825 | 0.02136 | 0.01246 | 0.23849 | 0.23005 | 0.22129
f%CV 0.03562 | 0.01574 | 0.00953 | 0.05408 | 0.02027 | 0.01241 | 0.23700 | 0.22608 | 0.21377
fhov 0.03579 | 0.01556 | 0.00939 | 0.05468 | 0.01985 | 0.01207 | 0.23742 | 0.22705 | 0.21590
fBCv 0.03381 | 0.01522 | 0.00912 | 0.05273 | 0.01943 | 0.01155 | 0.23311 | 0.22848 | 0.22120
fsg 0.02973 | 0.01594 | 0.00929 | 0.04555 | 0.02361 | 0.01311 | 0.20725 | 0.16330 | 0.10727
fg,J 0.02849 | 0.01559 | 0.00946 | 0.03898 | 0.01881 | 0.01153 | 0.19354 | 0.12307 | 0.05013
f& 0.02851 | 0.01542 | 0.00932 | 0.04005 | 0.01881 | 0.01133 | 0.19834 | 0.13972 | 0.07162
f&r 0.02858 | 0.01510 | 0.00907 | 0.04336 | 0.02090 | 0.01145 | 0.20521 | 0.16407 | 0.10827
fLscvy 0.03023 | 0.01600 | 0.00933 | 0.03993 | 0.02138 | 0.01248 | 0.09400 | 0.04891 | 0.02853
fLSOV4 0.02977 | 0.01602 | 0.00961 | 0.03763 | 0.02073 | 0.01254 | 0.07982 | 0.04673 | 0.02913
fZSCV4 0.02967 | 0.01582 | 0.00946 | 0.03741 | 0.02027 | 0.01219 | 0.07689 | 0.04187 | 0.02556
fESCV4 0.02932 | 0.01540 | 0.00917 | 0.03789 | 0.01958 | 0.01160 | 0.08301 | 0.03941 | 0.02309
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size * 1000 4 250 ® 50

Figure 1. The averaged RMISE values of the considered kernel den-
sity estimators.

The classical and the adaptive NR kernel density estimators perform generally poorly
if true density is far from normal. Specially, they behave very poorly for two moded
densities. The adaptive NR estimators improves the classical NR estimator for the most
of such abnormal situations.

The classical and the adaptive SJ kernel density estimators perform well except for
sharp densities. Again, the adaptive SJ estimators often improves the classical SJ esti-
mator.

5. An Example

We realize an application for the all estimators with Gaussian kernel function. The
application data is the durations (in minutes) of 272 eruptions of the Old Faithful geyser
in Yellowstone National Park [9]. Fixed bandwidths for the kernel estimates are computed
as ilNR = 0.394, ilLscv = 0.103, ichv = 0.157,ilsJ = 0.165, and iLLscv4 = 0.128.
Figure 2 shows the data points and the considered all kernel estimates in this study.
Figure 3 shows only the kernel estimates obtained based on selector GLSCVy4.

All the estimates show clearly that the duration of eruption has a bimodal density.

The adaptive kernel estimates behave similar to their classical kernel estimates tend
to get better slightly. Specially, they lead to improve the estimates about the peaks and
valley between the two peaks.
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Figure 2. Classical and adaptive kernel density estimates.
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Figure 3. Adaptive kernel density estimates based on the bandwidth
selector LSCVj}.

6. Conclusions

The adaptive kernel density estimators are often used for the estimation of densities
far from normal distribution. The classical kernel density estimators are based on using
the fixed bandwidths. The generalized LSCV estimator is a new efficient kernel density
estimator which uses fixed bandwidth. It improves the finite sample behavior of the

classical LSCV estimator.
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The adaptive estimators use the different bandwidth for each observation point. There-
fore, they are more robust to the existence of outliers or extremes. Here, we focused the
adaptive variates of the generalized LSCV estimator. We also compared the perfor-
mances of the other adaptive estimates. The results show that the adaptive estimators
often significantly improves the classical estimators.
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