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Abstract: In this paper, we have introduced the concept-e€luster point of a filter on a topological space and studisdétrious
properties. We have proved the necessary condition forea fisthave an —cluster point. Most of the work in this paper is inspired
from [2] and [23].
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1 Introduction

The concept of convergence of a sequence of real numbersxeasled to statistical convergence independently by H.
Fast [4] and I. J. Schoenberg [22]. Kostyrko et. al. in [8]} §&neralized the notion of statistical convergence and
introduced the concept dfconvergence of real sequences which is based on the seuttire ideal of subsets of the

set of natural numbers. Mursaleen et. al. [14] defined ardiesfithe notion of ideal convergence in randorndrmed
spaces and construct some interesting examples. Seveila wol —convergence and statistical convergence have been
done in [1], [3[, [6], [7], [8], [9], [10], [13], [14], [15], [L6], [17], [21]. The idea of —convergence was extended from
real number space to metric space by Kostyrko et. al [8] aredriormed linear space I$alét et. al [20] in their recent
works. Later the idea df—convergence was extended to an arbitrary topological dpaée K. Lahiri and P. Das [11]. It
was observed that the basic properties remained presereempological space. Lahiri and Das [12] introduced thaide
of | —convergence of nets in a topological space and examinedérataffects the basic properties.

Taking the idea of and|*—convergence of nets by Lahiri and Das in [12], Jamwal et. bduced the concept of

| —convergence of filters and studied its various propertiesjnin [7], Jamwal et. al reintroduced the concept of
| —convergence of nets in a topological space and estabilitteeeiquivalence df—convergences of nets and filters on a
topological space.

We recall the following definitions:

Definition 1. Let X be a non-empty set. Then a faraflyc 2% is called afilter on X if
) 0¢ 7,
(i) A,Be .7 implies ANBe .# and
(i) Ae #,BD Aimplies Be .#.
Definition 2. Let X be a non-empty set. Then a famity PX is called anideal of X if
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(i) A,BelimpliesAUBe | and
(i) Ael,BcC AimpliesBel.

Definition 3. Let X be a non-empty set. Then a filt&ron X is said to beon-trivial if .# # {X}.

Definition 4. Let X be a non-empty set. Then an ideal | of X is said tadretrivial if | # {0} and X¢ I.

Note(i) If | is an ideal of a seX, then.# = % (1) = {AC X: X\ A€ |} is afilter onX, called thefilter associated with
the idealI.

(i) 1 =1(F)={ACX: X\ Ae Z}is anideal oX, called theideal associated with the filter.Z.

(iii) A non-trivial ideall of X is calledadmissibleif | contains all the singleton subsetsXaf

We now recall some of the results baconvergence of filters and nets in a topological space whielp@ved in [6], [7].

Throughout this papekX = (X, 1) will stand for a topological space amd= | (.%) will be the ideal associated with the
filter # on X.

Definition 5. A filter % on X is said to be4convergentto x € X if for eachnbd U of %, {ye X:y¢U} €l.
In this case, ¥ is called an limit of .# and is written as - lim.% = xg.

Notation In case more than one filters is involved, we use the notd{ioghn) to denote the ideal associated with the
corresponding filterZ .

Lemma 1.Let.# and¥ be two filters on XThen% C ¢ if and only if I(#) C 1(9).

Proposition 1. Let.Z be a filter on X such that+ lim % = xq. Then every filtet#’ finer than.# also I—converges to
X0, Where [=[(#).

Proposition 2. Let .# be a filter on X such that + lim.# = xg. Then every filter#’ on X coarser thanZ also
| —converges tox where |= | (7).

Proposition 3. Let % be a filter on X and4 be any other filter on X finer thas#. Then (%) — lim¥ = xp implies
[(¢4)—1Iim¥ = xo.

Proposition 4. Let 11 and 12 be two topologies on X such that is coarser thant,. Let.%# be a filter on X such that
| —lim.Z% =xp W.r.t To. Then |- lim.% = xg w.r.t 17.

Lemma 2.Let.# ={¥ : ¥ is a filter on X}. ThenZ = Nyc ¥ if and only if (%) = Ngec 41 (9).

Proposition 5.Let.# be a collection of all those filter on a space X which(#)—converges to the same pointx X.
Then the intersectio of all the filters in.# | (.%)—converges tox

Lemma 3.1f I is an ideal of X= []4cn Xa associated with a filter# on X, then k = mi”:lp;il(lxai ), where k, is an
ideal of the factor spacegXassociated with g(.%).

Theorem 1.A filter # on X |—converges toxe X if and only if every derived nét of .# converges tox

Theorem 2.A filter % on X |—converges toxe X if and only if.# converges tox
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2 | —Cluster Points of Filters

We begin this section with the definition bf-cluster point of a filter with some examples.

Definition 6. A point x € X is called an Fcluster point of a filter.# on X if for each nbd U ofx {ye X:yeU} ¢ 1.
In other words, ¥ € X is called an Fcluster point of% if U ¢ |, for each nbd U of

Equivalently, ¥ is an I—cluster point of 7 if for each nbd U of g, {V € #(X):U cV} £ 1.

Example 1.Let X = {1,2,3} andt be the discrete topology ox.
Let.7 = {{1},{1,2},{1,3},X} be afilter onX. Thenl = {0,{2},{3},{2,3}} is the ideal associated witf .
It is easy to see that 1 is the orllycluster point of#.

Example 2. Let %, be the nbd filter at a pointy in X. Then clearly for each nbd of xo, {y e X:yec U} ¢ 1, as
| = 1(%,)- Thusxg is thel —cluster point 0f%,.

Example 3.Let.# be a filter on an indiscrete spake Then clearly, eaclkg € X is anl —cluster point of# asX is the
only nbd ofxg € X and{ye X:ye X} =X ¢ 1.

Notation Let | (C4) andl (L&) respectively denote the set of &l cluster points and the set of &l-limits of a filter .7
onX.

We have the following theorem estabilishing the relatiop&ietween —limits andl —cluster points of a filter# on X.
Theorem 3.With usual notations,(Lz) C 1(Cz).

Proof. Letxy € 1(L#). Then for each nbl of xg, {ye X:y¢ U} €l. Thatis,X\U € 1---(x). We have to show that
Xo € 1(C#). For this, letU be a nbd ofy. We claim thatly e X :ye U} ¢ I. Thatis,U ¢ |. Suppos&J € |. From (x),
X\U €. Sincel is an ideal, we have U(X\U) € |. Thatis,X € |, which contradicts the fact thais non-trivial ideal
of X. Thus our supposition is wrong. Hende¢ | and saxg € | (C#). This proves that(L ) C I1(Cz).

Note The converse of the above theorem is however not true. Fantla have the following example.

Example 4.Let X = {1,2,3} andt = {0,{3},{2,3},X}.Let.# = {{1,2},X} be afilter onX. Thenl = {0,{3}} is the
ideal associated with filte#. Then it is easy to see thitL») = {1} andl (C#) = {1,2}. So,I(Cz) Z | (L#).

We now give the necessary condition for a filt8ron X to have arl —cluster point.

Theorem 4.Let.# be a filter on X If xg is an I-cluster point of#, then for each nbd U ofx{V € Z(X):UNV #

0} 71

Proof. Suppose# hasxg as anl—cluster point. This means that for each ibdf xp, {ye X :ye U} ¢ |. That is,
U¢l---(x). LetU be a nbd ofk,. We have to show thatv € 22(X) :UNV # 0} Z |. We observe thdt) € 22(X) such
thatU NU # 0 and also by(x), U ¢ I. Thus it follows that{V € 22(X) :UNV #0} ¢ I.

RemarkThe condition, for each nbd of xg, {V € 22(X) :UNV # 0} ¢ | is not the sufficient condition for a filte?
to have arl —cluster point. Consider the following example.

ExampleLet X = {1,2,3} andt = {0,{2},{2,3},X} be a topology oriX. Let % = {{1},{1,2},{1,3},X} be afilter on
X.

Thenl =1(.#) = {0,{2},{3},{2,3}} is an ideal oiX.

We see that nbds of 2 af@},{1,2},{2,3} andX. We observe that for each ntlof 2, {V € 2(X):UNV #0} Z I.
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But 2 is not arl —cluster point of#. This is becausé2} is a nbd of 2 and2} € 1.

This shows that the condition, for each nbidof xo, {V € Z2(X) : U NV # 0} ¢ | is not the sufficient condition for a
filter # to have ar —cluster point.

Proposition 6.Let.% be a filter on a non-discrete space Rhen.# has x as an |.%)—cluster point if and only if there
is a filter# on X finer than# such that (¢) —lim ¥ = Xo.

Proof. Suppose is anl (.#)—cluster point of%#. Then for each nbt) of xg, {V € 2(X) :UNV # 0} ¢ I (). Since
X\Fel(#), VF € #, wefind thatU NF #0,YU € %, andF € Z. LetZ ={UNF :U € %, and Fe .#}. Then
clearly, % is a non-empty family of non-empty subsetsXfvhich is closed under finite intersection and so a filter base
for some filter, say on X. If G € %, thenG D U NG and soG € 4. This implies that# C 4. Therefore? is finer than
Z.By Lemmal, | (%) C 1(¥¢). We shall show thalt(¥) —lim¥ = xo. For this, we need to prove that for each nhaf
X0, {V € Z(X):UNV =0} C1(¥). So, letU be a nbd of andV € #(X) such that) "V =0. NowU NV =0
=UcCX\V

=UN(X\V)#0.

Also,UNU cUN(X\V). Thatis,U cUN(X\V). Now,UNF cU,forall F € . andU Cc UN(X\V) implies that
UNF cUn((X\V),forallF € .. Also,Un(X\V) C X\V. Thus we havé&) NF C X\V, forall F € .#. SinceZ is a
base forg, X \V € ¢4. This implies tha¥ € |(¥). Therefore{V € (X)) :UNV =0} C 1(¥9).

Conversely, suppose there is a filiéron X finer than.# such that (¢) — lim¥ = xg. We have to show that is the
| (% )—cluster point of%. For this, letU be a nbd ofxg. We claim that{y e X:ye U} ¢ I(#). That is,U ¢ | (%).
SupposaJ € | (F). Sincel (%) C 1(¢), we find thatU € | (¥¢). Sincel (¢) —lim¥ =X, U € 1(¢) impliesU NU = 0,
which is not possible. Thereford, ¢ | (%). Thus{ye X :ye U} ¢ | (%). Thereforexg is anl (%) —cluster point of#.

Remark(a) The above Propositidhneed not be true iX has the discrete topology. Consider the example:

Let X = {1,2,3} and 1 be the discrete topology oX. Let .# = {{1,2},X} be a filter onX. Thenl (%) = {¢,{3}}.
Let¥ = {{1},{1,2},{1,3},X} be afilter onX finer than.#. Thenl(¢) = {@,{2},{3},{2,3}}. We can easily see that

| (.%)—cluster points of# = 1,2.

[ (.7)—limit of ¢ = nil.

[(Z)—limit of ¥ =1 and

[ (¢)—cluster points of# = 1.

We observe that 1 and 2 are%)—cluster points of# but 2 is not thd (¢)—limit of ¥.

(b) The above Propositiofiis again not true if we take both the ideals tolj&” ). From the above example, we can see
that 1 and 2 aré(.%#)—cluster points of# but there is nd (.#)—limit of ¢.

The above RemarR motivated us to have the following proposition:

Proposition 7. Let.Z be a filter on X such tha# has % € X as an cluster point. Then every filte#’ finer than.s
also has ¥ as an -cluster point, where & | (%#).

Proof. SupposeZ is a filter onX such thatxg is anl —cluster point of%. Then for each nbt) of xo, U ¢ | ---(x). Let
Z' be an arbitrary filter oiX such that#’ > .7. We shall show that—cluster point of#’ = xo, wherel = I (.%). For
this, letU be a nbd okg. Then clearly by(x), U ¢ I. Hence the proof.

Remark.Let .# be a filter onX and.#’ be a filter onX finer than.%. Thenl|(.%)—cluster point of# = Xy need not
imply thatl (#”)—cluster point of#’ = xo. Consider the example in Remazk

We can see that 1 and 2 dig# ) —cluster points of#. But 2 is not anl (.#’)—cluster point of#’.

(© 2017 BISKA Bilisim Technology



=
NTMSCI 5, No. 4, 195-202 (2017)Www.ntmsci.com BISKA 19

Proposition 8.Let.# be a filter on X such tha# has » € X as an F-cluster point. Then every filte#’ coarser thanZ
also has ¥ as an I-cluster point, where & 1 (.%).

Proof. Suppose¥ is a filter onX such thatxg is anl—cluster point of%. Then for each nbd) of xo, {ye X :y e
U}l ¢l--(x). Let.#' be an arbitrary filter oiX such that#’ ¢ .%. We shall show thait—cluster point of#’ = xg, where
| =1(.%). For this, letU be a nbd oky. We claim that{y € X :y e U} ¢ |. But it follows clearly by(x). Hence the proof.

Proposition 9.Let 11 and 1, be two topologies on X such thatis coarser thart,. Let.# be afilter on X such thatpds
an |—cluster point of# w.r.t 2. Then ¥ is also an I-cluster point of%# w.r.t 1;.

Proof. LetU be a nbd ok w.r.t T1. Sincer; C 12, U is also a nbd okg w.r.t To. But Xg is anl —cluster point of# w.r.t
T,. Thus for above nbtdl of xp, U ¢ |. Hencexg is also arl —cluster point of# w.r.t 1y.

Remark.The converse of above proposition need not be true. Thdtisandt, are two topologies oX such thatr; is
coarser tharm, andxg is anl —cluster point of# w.r.t 11, thenxg need not be ah—cluster point of%# w.r.t 7,. Consider
the following example:

Let X = {1,2,3}. Supposet, is the discrete topology orX and 11 = {0,{2},X}. Then 11 C T». Let
F ={{1},{1,2},{1,3},X} be afilter onX. Thenl (%) = {9, {2}, {3},{2,3}} is the ideal associated witf¥ . It is easy
to see that 1 and 3 are thecluster points of# w.r.t 1;. But 3 is not anl —cluster point of# w.r.t 7.

Proposition 10.Let.# be a collection of all those filter¥ on a space X which have x X as an [¥¢)—cluster point.
Then the intersectio of all the filters in.# also has ¥ as an [.%)—cluster point.

Proof. Here.# = {¥ : ¢ is a filter on X such that(¢) — cluster point of4 = xo}. Let. # =N{¥¢ : ¢ € .4 }. We shall
show thatxg is anl (%#)—cluster point of.%. For this, letU be a nbd ofxg(w.r.t .%#). ThenU is a nbd ofxp(w.r.t all
¢ € A). Sincexg is anl (¢)—cluster point of¢, V¢4 € ., it follows that{ye X :yeU} ¢ 1(¥), V¥ € .# and so
{yeX:yeU} ¢ nNgecy(¥). By Lemmal, {ye X:yeU} ¢ 1(F). Hencexg is also arl (% )—cluster point of%.

In view of Remark2, we have the following proposition:

Proposition 11.Let.# be a filter on X and/ be a filter on X finer tha#?. Then.Z has ¥ as an (¢)—cluster point if
andonly if (¢) — lim¥ = xo.

Proof. Let.Z be afilter onX and¥ be a filter onX finer than.# such thatg is anl (¢)—cluster point of%#. Let % be
a base fo7. Then¥ = {G C X : B C G, for someB € #}. We shall show that(¥) —lim¥% = Xo. For this, letU be a
nbd ofxp. We shall show thafV € Z(X) :UNV =0} C 1(¥). So, letV € £(X) such that) NV =0. Now,UNV =0
impliesU X\ V which further implies thal NnU c U N(X\ V). Thatis,U c UN(X\V). Also,UNG c U, for all
Ge¥.ThusUNnGcUN((X\V),forall Ge¥.ButUnN(X\V)C X\V.ThusUnGc X\V,forall Ge ¢. Since# is
abase fot7,UNG e $Band soX \V € 4. HenceV € [(¥¢). This proves thak(¥) — lim¥ = xo.

Conversely, suppodé?) — lim¥ = xp. By using Theoren3, we find that is also anl (¢)—cluster point of¢. Since
F is coarser tha®, by Propositiors, it follows thatxg is alsol (¢)—cluster point of%.

Theorem 5.Let f: X — Y be a surjective map. L% be afilter on X Then f: X — Y is continuous atge X if and only
if whenever  is an Ik —cluster point of#, then f(xo) is an k—cluster point of {.%), where k = Ix(.%#) is the ideal
associated withZ and k = Iv(f(.%)) is the ideal associated with the filte{.#) on Y.

Proof. First suppose that the surjectién X — Y is continuous axg in X. Let Xp be anlx —cluster point of# in X. We
have to show thaf (o) is anly—cluster point off (.%#).

For this, letV be a nbd off (Xp) in Y. Sincef is continuous akg, for above nbd/ of f(xp) inY, there is a nbd) of xg in
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X such thatf (U) C V. Sincexg is anlx —cluster point of%, for above nbdJ of Xp in X, U ¢ Ix and soX\U ¢ .% --- (1).
We claim thaV ¢ Iy. ThenY \V € f(%)---(2).
Now f(U) C V impliesY\V Cc Y\ f(U)---(3).

Since f(.%) is a filter onY, from (2) and (3), we getY \ f(U) € f(ﬁ)--~(4). From (1), X\U ¢ .# implies
f(X\U) ¢ f(F).But f(X\U)D f(X)\ f(U)=Y\ f(U). Thatis,Y\ f(U) C f(X\U). Now f(X\U) ¢ f(#) and
Y\ f(U) C f(X\U) implies thaty \ f(U) ¢ f(.%), which contradict§4). Thus our supposition is wrong.

Hencef (Xp) is anly—cluster point ofy.

Conversely, supposk: X — Y is a surjection such that the given condition holds. We hawhbw thatf is continuous
atxo. Suppose not. This means that there is aVitad f(xo) in Y such thatf ~1(V) is not a nbd ofo.

Let.#Z = {U\ f~1(V) :U is anbd ofxg in X} ---(5). Then clearly,Z is a filter onX. We claim thatxg is anlx—cluster
point of %. For this, letT be a nbd ofkg. We shall show that ¢ Ix.

Suppose the contrary € Ix. ThenX\ T € .%. Also by (5), T\ f (V) € .Z. Since.Z is a filter onX, we have

=(X\T)N(T\ f{V)) € 7, ie. 0c .Z, whichis not possible. ThUE ¢ Ix. Thereforexg is anlx—cluster point of
2’. By the given conditionf(xp) is anly—cluster point off(#). SoV ¢ Iy i.e.,Y\V ¢ f(%). Now Y \V ¢ f(.%#)
implies f~1(Y \V) ¢ .#. This further implies thaX \ f~1(V) ¢ .#, which contradictg5). Thus our supposition is
wrong.

Hencef is continuous axg.

Remark.The above Theorer® holds even iff is not surjective. In that case, we shall assuff&) to be a filter onY
generated by the filter bagd (F) : F € .#}.

Theorem 6.A filter # on X = [gen Xa has x as and—cluster point if and only if p(.%) has p(x) as an k, —cluster
point,Va € A, where k = Ix(.%#) and Ix, = Ix, (pPa-%).

Proof. Suppose# hasx as anlx —cluster point inX = []4ea Xa- Since each projectiopy : X — Xq is continuous ak
in X, by above Theorerf, we find thatpg (x) is anlx, —cluster point ofpy (%) in Xq,V a.

Conversely, suppose, (X) is anlx, —cluster point ofpy (%) in X4,V a. We have to show thatis anlx—cluster point
of .Z in X. For this, letU = N, p,'U(a;) be a basic nbd ok. This means thatly, is a nbd ofxy, = pg;(x), for
i=12...,nin Xg. We claim thatU ¢ Ix. Since pa(x) is an |Xai —cluster point of pg (%) in Xy, we have
Ug & Ix,, ¥ i =12...,n This further implies thatpg'(Us) ¢ Pg'(lx,), V i = 1,2,...,n. Clearly,
N1 Pa (Ua) & MLy Pgt(Ixg, ) = Ix, by Lemma3. That is,U ¢ Ix.

This proves thax is anlx —cluster point of# in X.

Theorem 7.Let X be a Lindedf space such that every filter on X has arcluster point, where | is an admissible ideal
of X. Then X is compact.

Proof. Let X be aLindel6f space such that every filter otthas anl —cluster point, wheré¢ is an admissible ideal of
X. We have to show that is compact. For this, leff = {U, : a € A} be an open cover of, whereA is an index set.
SinceX is Lindel6 f, the above open covét of X has a countable subcover, sdy= {U;,U,,--- ,Up,--- }. Proceeding
inductively, letvV; = U; and for eachm > 1, letVy, be the first member df’ which is not covered by; UVL U -+ - UV _1.
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After some finite number of steps, the set of abu{®selected becomes a required finite subcover. Otherwiseawe ¢
choose a poini, € Vi, for each positive integar such thaw, ¢ Vi, forr < n---(x). Consider a ned = (Vp)nen. Let.Z

be the derived filter ofA. That is,.# = {F C X : A is eventually inF}. By A eventually inF, we mean that some tail
Am={A(n) =Vh:n>min N} of A is contained irF. Let xg be anl —cluster point of#. Thenx, € V,, for somep. By
definition ofl —cluster point of%, in particular foVy, {y € X :y € V} ¢ I. Sincel is an admissible idea{y € X :y € Vp}
must be infinite subset of. So, there exists some> p such thaw, € {y € X :y € Vp}. That s, there exists sonme> p
such thaw, € Vp, which contradictgx). Thus the above set &f s form the required finite subcover. Henkds compact.

Theorem 8.A topological space X is compact if and only if every filter ohaé an I-cluster point.

Proof. First suppos& is compact. Let# be a filter onX. Consider a family{F : F € .#} of closed subsets of. Since
X is compact, the family{F : F € .#} has finite intersection property. That i§){F : F € .Z} # 0. Let
Xo € N{F : F € .Z}. Then for each nbt) of xg, UNF # 0,V F € .%. We claim thatU ¢ |. Suppose thdt) € |. Then
UNF #£0,VF €.% and for each nbtd of xp would contradict the fact that= 1 (.%). This proves thaxg is anl —cluster
point of 7.

Conversely, suppose that every filter ¥rhas an —cluster point. We have to show th¥tis compact. Suppos¥ is not
compact and letl be an open cover of with no finite subcover. Le® = {X\ U ,U; :U; e U, fori=1,2,....n}. Then
clearly, % is a non-empty family of non-empty subsetsXofvhich is closed under finite intersection and so a filter base
for some filter, say# on X. By the given condition,#7 has an (.%)—cluster point, sayg. This means that for each nbd

U of xg, {V € Z(X):UNV £0} ZI1(F)--- (). LetU € U such thatg € U. Now, U € U implies thatX \U € £ and
soX\U € Z. Now, X\U € .7 impliesU € I(.%). Finally, xo € U andU € |(.%) implies that{xo} € | (.#), which
contradictg x) with V = {Xo}. Thus our supposition is wrong. Hen¥es compact.
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