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Abstract: This paper is an extension of our paperI−cluster points of filters [8]. In this paper, we have discussed the relationship
betweenI−cluster points of filters and cluster points of nets and estabilished their equivalence. We have also estabilished the equivalence
of I−cluster points of filters and nets.
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1 Introduction

The concept of convergence of a sequence of real numbers has been extended to statistical convergence independently by

H. Fast [4] and I. J. Schoenberg [23]. Kostyrko et. al. in [9],[10] generalized the notion of statistical convergence and

introduced the concept ofI−convergence of real sequences which is based on the structure of the idealI of subsets of the

set of natural numbers. Mursaleen et. al. [15] defined and studied the notion of ideal convergence in random 2−normed

spaces and construct some interesting examples. Several works onI−convergence and statistical convergence have been

done in [1], [3], [6], [7], [8], [9], [10], [11], [14], [15], [16], [17], [18], [22].

The idea ofI−convergence has been extended from real number space to metric space [9] and to a normed linear space

[21] in recent works. Later the idea ofI−convergence was extended to an arbitrary topological spaceby B. K. Lahiri and

P. Das [12]. It was observed that the basic properties remained preserved in a topological space. Lahiri and Das [13]

introduced the idea ofI−convergence of nets in a topological space and examined how far it affects the basic properties.

Taking the idea of [13], Jamwal et. al introduced the idea ofI−convergence of filters and studied its various properties in

[6]. Jamwal et. al reintroduced the idea ofI−convergence of nets in a topological space in [7] and estabilished the

equivalence ofI−convergences of nets and filters on a topological space. Jamwal et. al introduced the idea ofI−cluster

points of filters in a topological space and studied their properties in [8].

We start with the following definitions:

Definition 1. Let X be a non-empty set. Then a familyF ⊂ 2X is called afilter on X if

(i) /0 /∈ F ,

(ii) A,B∈ F implies A∩B∈ F and

(iii) A∈ F ,B⊃ A implies B∈ F .

Definition 2. Let X be a non-empty set. Then a family I⊂ 2X is called anideal of X if
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(i) /0 ∈ I ,

(ii) A,B∈ I implies A∪B∈ I and

(iii) A∈ I ,B⊂ A implies B∈ I .

Definition 3. Let X be a non-empty set. Then a filterF on X is said to benon-trivial if F 6= {X}.

Definition 4. Let X be a non-empty set. Then an ideal I of X is said to benon-trivial if I 6= { /0} and X /∈ I .

Note(i) F = F (I) = {A⊂ X : X \A∈ I} is a filter onX, called thefilter associated with the idealI .
(ii) I = I(F ) = {A⊂ X : X \A∈ F} is an ideal ofX, called theideal associated with the filterF .

(iii) A non-trivial ideal I of X is calledadmissible if I contains all the singleton subsets ofX. Several examples of

non-trivial admissible ideals have been considered in [9].

We give a brief discussion onI−convergence of filters and nets in a topological space as given by [6], [7]. Throughout

this paper,X = (X,τ) will stand for a topological space andI = I(F ) will be the ideal associated with the filterF onX.

Definition 5. A filter F on X is said to be I−convergentto x0 ∈ X if for each nbd U of x0, {y∈ X : y /∈U} ∈ I . In this

case, x0 is called an I−limit of F and is written as I− limF = x0.

Notation In case more than one filters is involved, we use the notationI(F ) to denote the ideal associated with the

corresponding filterF .

Lemma 1.LetF andG be two filters on X. ThenF ⊂ G if and only if I(F ) ⊂ I(G ).

Proposition 1.LetF be a filter on X such that I− lim F = x0. Then every filterF ′ on X finer thanF also I−converges

to x0, where I= I(F ).

Proposition 2. Let F be a filter on X such that I− lim F = x0. Then every filterF ′ on X coarser thanF also

I−converges to x0, where I= I(F ).

Proposition 3. Let F be a filter on X andG be any other filter on X finer thanF . Then I(F )− lim G = x0 implies

I(G )− lim G = x0.

Proposition 4. Let τ1 and τ2 be two topologies on X such thatτ1 is coarser thanτ2. Let F be a filter on X such that

I − lim F = x0 w.r.t τ2. Then I− lim F = x0 w.r.t τ1.

Lemma 2.LetM = {G : G is a f ilter on X}. ThenF = ∩G∈M G if and only if I(F ) = ∩G∈M I(G ).

Proposition 5.LetM be a collection of all those filtersG on a space X which I(G )−converges to the same point x0 ∈ X.

Then the intersectionF of all the filters inM I(F )−converges to x0.

Theorem 1.A filter F on X I−converges to x0 ∈ X if and only if every derived netλ of F converges to x0.

Theorem 2.A filter F on X I−converges to x0 ∈ X if and only ifF converges to x0.

Definition 6. Let I be a non-trivial ideal of subsets of X. Let λ : D → X be a net in X, whereD is a directed set. Thenλ
is said to be I−convergentto x0 in X if for each nbd U of x0, {λ (c) ∈ X : λ (c) /∈U} ∈ I .

Theorem 3.A filter F on X I−converges to x0 ∈ X if and only if every derived netλ of F I−converges to x0, where

I = I(F ).

Lemma 3.A filterF on X converges to x0 in X if and only if every derived netλ ofF I−converges to x0, where I= I(F ).
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Theorem 4.Letλ : D → X be a net in X andF be a derived filter ofλ . Thenλ I−converges to x0 in X if and only if the

derived filterF I−converges to x0, where I= I(F ).

We now recall some of the results discussed in our paperI−cluster points of filters [8].

Definition 7. A point x0 ∈ X is called an I−cluster point of a filterF on X if for each nbd U of x0, {y∈ X : y∈U} /∈ I .

In other words, x0 ∈ X is called an I−cluster point ofF if U /∈ I , for each nbd U of x0.

Equivalently, x0 is an I−cluster point ofF if for each nbd U of x0, {V ∈ P(X) : U ⊂V}* I .

Notation Let I(CF ) andI(LF ) respectively denotes the set of allI−cluster points and the set of allI−limits of a filterF

onX.

Theorem 5.With usual notations, I(LF )⊂ I(CF ). But not conversely.

Theorem 6.Let F be a filter on X. If x0 is an I−cluster point ofF , then for each nbd U of x0, {V ∈ P(X) : U ∩V 6=

/0}* I .

Proposition 6.LetF be a filter on a non-discrete space X. ThenF has x0 as an I(F )−cluster point if and only if there

is a filterG on X finer thanF such that I(G )− lim G = x0.

Proposition 7.Let F be a filter on X andG be a filter on X finer thanF . ThenF has x0 as an I(G )−cluster point if

and only if I(G )− lim G = x0.

Proposition 8.Let F be a filter on X such thatF has x0 ∈ X as an I−cluster point. Then every filterF ′ finer thanF

also has x0 as an I−cluster point, where I= I(F ).

Proposition 9.LetF be a filter on X such thatF has x0 ∈ X as an I−cluster point. Then every filterF ′ coarser thanF

also has x0 as an I−cluster point, where I= I(F ).

Remark.Let F be a filter onX andF ′ be a filter onX finer thanF . ThenI(F )−cluster point ofF = x0 need not imply

thatI(F ′)−cluster point ofF ′ = x0.

Proposition 10.Let τ1 andτ2 be two topologies on X such thatτ1 is coarser thanτ2. LetF be a filter on X such that x0

is an I−cluster point ofF w.r.t τ2. Then x0 is also an I−cluster point ofF w.r.t τ1. But not conversely.

Proposition 11.Let M be a collection of all those filtersG on a space X which have x0 ∈ X as an I(G )−cluster point.

Then the intersectionF of all the filters inM also has x0 as an I(F )−cluster point.

Theorem 7.Let X be a Lindel̈o f space such that every filter on X has an I−cluster point, where I is an admissible ideal

of X. Then X is compact.

Theorem 8.A topological space X is compact if and only if every filter on Xhas an I−cluster point.

2 Equivalence ofI−cluster points of filters and cluster points of nets

We have the following definition of cluster point of a net in a spaceX as given by [24].

Definition 8. Let λ : D → X be a net in X. Then a point x0 ∈ X is called acluster point of λ if λ is frequently in each

nbd of x0. By λ frequently in each nbd of x0, we mean that for each nbd U of x0 and each d∈ D , there is c≥ d in D for

whichλ (c) ∈ U. Equivalently, x0 is a cluster point ofλ if each tail ofλ is contained in U, for each nbd U of x0, where

Λd = {λ (c) : c≥ d in D} is a tail of the netλ in X. In other words, we can say that x0 is a cluster point ofλ if Λd∩U 6= /0,

for each nbd U of x0 and each tailΛd of the netλ in X.
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Theorem 9.A netλ : D → X has x0 ∈ X as a cluster point if and only if x0 is an I−cluster point of the derived filter on

X, where I= I(F ).

Proof. Supposex0 is a cluster point of a netλ : D → X. Then for each nbdU of x0 and eachd ∈ D , there isc≥ d in D

such that λ (c) ∈ U. That is, each tail ofλ is contained inU. Let F be the derived filter ofλ . That is,

F = {F ⊂ X : some tail of λ is contained inF}. Since each tail ofλ is contained inU, we find thatU ∈ F , for each

nbdU of x0.

ThusUx0 ⊂ F , whereUx0 is the nbd filter atx0. This implies thatF is convergent tox0. Hence by Theorem2, F is

I−convergent tox0. Also, by Theorem5, I(LF ) ⊂ I(CF ), where the symbols have their ususal meanings. This proves

thatx0 is anI−cluster point ofF .

Conversely, supposeF is the derived filter of a netλ : D → X such thatx0 is an I−cluster point ofF . Then for each

nbdU of x0, U /∈ I .

We shall show thatx0 is a cluster point ofλ . For this, letU be a nbd ofx0. Then by the given conditionU /∈ I . Now

U /∈ I ⇒ X \U /∈ F . SinceF is a derived filter, for anyd ∈ D ,Λd * X \U. This means thatΛd ∩U 6= /0, for every tail

Λd and every nbdU of x0. This shows thatλ is frequently in each nbd ofx0. Hencex0 is a cluster point ofλ .

Theorem 10.A filter F on X has x0 as an I−cluster point if and only if every derived net ofF has x0 as a cluster point,

where I= I(F ).

Proof. SupposeF is a filter onX such thatx0 is anI−cluster point ofF . Let us indexF with an index setD so that

F = {Fs : s∈ D}. Let us give some direction toD so thatc≥ d in D if and only if Fc ⊂ Fd. Let λ be a derived net ofF

so obtained. We have to show thatx0 is a cluster point ofλ .

Sincex0 is anI−cluster point ofF , U /∈ I , for any nbdU of x0. This implies thatX \U /∈ F , for any nbdU of x0. Since

F = {Fs : s∈ D}, X \U 6= Fs, for any s∈ D . Let d ∈ D . ThenX \U 6= Fd. Also, λ (d) ∈ Fd. Now for c ≥ d in D ,

Fc ⊂ Fd and soλ (c),λ (d) ∈ Fd. Clearly,λ (c),λ (d) /∈ X \U. Thus we conclude thatΛd * X \U, for every tailΛd of λ
and every nbdU of x0. That is,Λd ∩U 6= /0, for every tailΛd of λ and every nbdU of x0. This shows thatλ is frequently

in each nbd ofx0. Hencex0 is a cluster point ofλ .

Conversely, suppose every derived netλ of F hasx0 as a cluster point. We have to show thatx0 is anI−cluster point of

F . For this, letU be a nbd ofx0. Sincex0 is a cluster point ofλ , for the nbdU of x0, Λd ⊂ U, ∀ d ∈ D . Sinceλ is a

derived net, there existsFd ∈ F , for eachd ∈ D such thatλ (d) ∈ Fd. Clearly,Λd ∈ F , for eachd ∈ D . SinceF is a

filter onX, we must haveU ∈ F (F is closed under superset).

Now, U ∈ F , for each nbdU of x0 impliesUx0 ⊂ F , whereUx0 is the nbd filter atx0. Therefore,F converges tox0.

From Theorem2, F I−converges tox0. Also, by Theorem5, I(LF ) ⊂ I(CF ). This proves thatx0 is anI−cluster point

of F .

We recall [24] that a filterF on a topological spaceX clustersat x0(or, hasx0 as acluster point) if eachF ∈ F meets

eachU ∈ Ux0. Equivalently,F hasx0 as a cluster point if and only ifx0 ∈ ∩{F : F ∈ F}.

Theorem 11.A filter F on X has x0 as an I−cluster point if and only if it has x0 as a cluster point.

Proof. It follows from Theorem10and the fact that a filterF onX hasx0 as a cluster point if and only if every derived

net inX hasx0 as a cluster point.
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3 Equivalence ofI−cluster points of filters and nets

We first define theI−cluster points of nets inX.

Definition 9. Let I be a non-trivial ideal of subsets of X. Let λ : D → X be a net in X, whereD is a directed set. Then a

point x0 ∈ X is said to be an I−cluster point of the netλ if for each nbd U of x0, {λ (c) ∈ X : λ (c) ∈U} /∈ I .

Theorem 12.A filter F on X has x0 as an I−cluster point if and only if every derived netλ of F has x0 as an I−cluster

point, where I= I(F ).

Proof. Suppose a filter F on X has x0 as an I−cluster point. Then for each nbdU of x0,

{V ∈ P(X) : U ∩V 6= /0}* I · · · (∗).

Let us indexF with an index setD so thatF = {Fs : s∈ D}. Let us give some direction toD such thatc≥ d in D if

and only ifFc ⊂ Fd. Let λ : D → X be the derived net ofF so obtained. This means thatλ (s) ∈ Fs, for s∈ D . We have

to show thatx0 is anI−cluster point ofλ .

For this, letU be a nbd ofx0. We claim that{λ (c) ∈ X : λ (c) ∈ U} /∈ I . So, letλ (c) ∈ X such thatλ (c) ∈ U. Now

λ (c) ∈U ⇒ {λ (c)} ⊂U and so{λ (c)}∩U 6= /0. By (∗), {λ (c)} /∈ I . Therefore,x0 is anI−cluster point ofλ .

Conversely, supposeF is a filter onX such that every derived netλ of F hasx0 as anI−cluster point. Then for each

nbdU of x0, {λ (c) ∈ X : λ (c) ∈U} /∈ I · · ·(∗∗).

We have to show thatx0 is an I−cluster point ofF . For this, letU be a nbd ofx0. We claim thatU /∈ I . Suppose the

contraryU ∈ I . From the given condition(∗∗), λ (c) ∈ U ⇒ {λ (c)} /∈ I . SinceF is a derived filter,λ (c) ∈ Fc, where

Fc ∈ F . Thusλ (c) ∈U ∩Fc ⇒{λ (c)} ⊂U ∩Fc. Now,U ∩Fc ⊂U,U ∈ I andI is an ideal implies thatU ∩Fc ∈ I and so

{λ (c)} ∈ I , a contradiction. Thus our supposition is wrong. HenceU /∈ I . This proves thatx0 is anI−cluster point ofF .

Theorem 13.Letλ : D → X be a net in X andF be the derived filter ofλ . Then x0 is an I−cluster point ofλ if and only

if the derived filterF of λ has x0 as an I−cluster point, where I= I(F ).

Proof. Suppose x0 is an I−cluster point of a net λ : D → X. Then for each nbdU of x0,

{λ (c) ∈ X : λ (c) ∈U} /∈ I · · ·(∗).

Let F be the derived filter ofλ . ThenF = {F ⊂ X : some tail of λ is contained inF}. We have to show thatx0 is

an I−cluster point ofF . For this, letU be a nbd ofx0. We claim thatU /∈ I . Suppose the contraryU ∈ I . Then

X \U ∈ F . SinceF is a derived filter, there existsd ∈ D such thatΛd ⊂ X \U, whereΛd = {λ (c) : c≥ d in D} is the

tail of λ . This means thatU ∩Λd = /0. SinceΛd = {λ (c) : c≥ d in D}, ther is somet < d in D such thatλ (t) ∈ U but

λ (t) /∈ Λd. Now λ (t) ∈ U ⇒ {λ (t)} ⊂ U. Also, U ∈ I andI is an ideal implies that{λ (t)} ∈ I , which contradicts(∗).

Therefore,x0 is anI−cluster point ofF .

Conversely, supposeλ : D → X is a net inX andF be the derived filter ofλ such thatF hasx0 as anI−cluster point.

Then for each nbdU of x0, {V ∈ P(X) : U ∩V 6= /0}* I · · · (∗∗).

We have to show thatx0 is an I−cluster point of λ . For this, let U be a nbd of x0. We claim that

{λ (c) ∈ X : λ (c) ∈ U} /∈ I . So let λ (c) ∈ X such thatλ (c) ∈ U. Now λ (c) ∈ U ⇒ {λ (c)} ⊂ U. Therefore,

{λ (c)}∩U 6= /0 and so by(∗∗), {λ (c)} /∈ I . Therefore,x0 is anI−cluster point ofλ .
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