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Abstract: In this study, new families of analytical exact solutionsté space fractional Korteweg-de Vries (KdV) equation are
presented. Here, the fractional derivative is consideretnformable sense. By utilizing the Jacobi elliptic fuortexpansion method,
the solutions are obtained in general form containing thgehyolic, trigonometric, and rational functions. Alsoe ttomplex valued
solutions are obtained and some solutions of this equat®demonstrated.
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1 Introduction

Itis well known that the Korteweg-de Vries (KdV) equatioisas as a model for one-dimensional long wavelength surface
waves propagating in weakly nonlinear dispersive mediayedkas the evolution of weakly nonlinear ion acoustic waves
in plasmas. So far, various methods are used for solvingréifit types of fractional KdV equations. These methods can
be listed as Adomian decomposition method [1,2], variaideration method [2], homotopy perturbation method [3-7
differential transform method [8], modified direct algeionaethod [9], G//G) - expansion method [10], improveG/QG)

- expansion method [10], homotopy perturbation transforathod [11], function expansion method [12].

In this study, we consider the space fractional Kortewe§tes equation

U +ubD{u+BDIDYDIu=0, O0<a <1l (1)

Here,DZ means conformable fractional derivative of functigm,t) with respect tok, andf is a constant. Wheo = 1

the equation (1) becomes the known KdV equation of integieror

For finding the analytical solutions of equation (1), we présan expansion method using the Jacobi elliptic functions
The main idea in this method is to find the solutieii§) in the form

N

ué) ="y ajFi(e) (2)
2,
whereN, a; (j =0,1,2,...,N) are constants to be determined later &) is the solution of the Jacobi elliptic equation

(F')2(&) = P+ QF?(&) + RFY(€). 3)

Here,F = g—g, & =£&(t,x) andP, Q, Rare constants. Eq.(3) has Jacobi elliptic function sohstifr the different values
of P, Q andR. The Jacobi elliptic functions corresponding to some \ahfd®, Q andR can be found in [13].
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2 Preliminaries

The basic Jacobian elliptic functions are
sné =sn(&;m), cné =cn(&;m), dné = dn(&;m)

wherem(0 < m < 1) is the modulus of the elliptic function. When — 0 andm — 1 Jacobi elliptic functions turn into
trigonometric and hyperbolic functions [14]. There arefatignt definitions of the fractional derivative such as
Grunwald-Letnikov, Riemann-Liouville and Caputo [15-1FApwever, there are some setbacks of these definitions [18].
To overcome these difficulties, Khalil et al. had given a nefirdtion of fractional derivative named as conformable
fractional derivative. This is the simplest definition t@ognize the fractional derivative since it is the most famibne

to the definition of the usual derivative. Therefore, the Kefyuation is considered in conformable sense. The definition
and the properties of the conformable derivative are asviali

Definition 1. (Conformable Fractional Derivative) [ 18] Let f: [0,0] — R be a function. The-th order conformable
fractional derivative of f is defined by

Ta(1)(t) = lim f(t”tl:)’ W (o0  ae().

If f is a-differentiable in somé0, a), a > 0 andlim_,o:+ f(%)(t) exists, then we definé% (0) = lim,_,o+ f()(t).

Theorem 1.[18] Leta € (0,1 and suppose f, g are-differentiable at point t~ 0. Then, the following are satisfied:

(i) Ta(cf+dg) =cTy(f)+dTy(g) Vc,d € R.
(i) Ta(tP)=ptP%VpeR.
(iii) Ty(A)=0for all constant functions (t) = A.
(f

)
(V) Ta(fg) = fTO;(glz‘f'gTa(f)-
To (f)—fTg
(V) Ta(g) = Ttipre, .
(vi) If, in addition, fis differentiable, thengT f)(t) =t*~9 3.

Theorem 2. (Chain Rule) [18] Assume  fg: (0,0) — R bea-differentiable and for all t with £ 0 and ¢t) # Owe
have

Ta(M)(t) = Ta(f)(9(t)).Ta (@) (1)-9(1)* .

Ift =0we have
Ta (h)(0) = lime 0T (F)(g(t))-Ta (9)(1).g(t) .

3 Solutions to the conformable space-fractional KdV equatn

Let us consider the conformable space-fractional KdV éqodfl). Changing of the variables in the equation as

XC(
u=u(é), E:k?+lt 4
yields an ordinary differential equation (ODE) faf¢)

|@+k —+Bk3

> ©)

dE3
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wherek andl| are the arbitrary constants. Solving this nonlinear ondidéfferential equation, the integétin expression
(2) can be determined by balancing the highest order lirezar t

d3u
Oluggs) =N+3 (6)
and the highest order nonlinear term
du
O(u—7)=2N+1 7
(Ugg) =N+ (7)

in (5). As the result of this balancing, we obt&in= 2, thus the solution of Eq. (1)can be expressed as
2 .
u(é) = Z}ajFJ(E):ao—i-alF +apF2. (8)
j:

By differentiating Eq. (8) three times, we get

U (&) =aF +2aFF, 9)
u (&) =aF +6aF F" +2aFF" (10)
and using Eq. (3), we have
F' = 2RF3+ QF, (11)
F" = 6RF?F +QF . (12)

Substituting the equations (11) and (12) into Eq. (10) weld

u" = a;QF + 6a,RF?F + 82,QFF + 24a,RF3F . (13)

Finally, substituting equations (9) and (13) into Eq. (5) aptting each coefficient of F to be zero, the following epunest
system arises
la; + kagag + BksalQ =0

2la, + 2kagay + kai + 8Bk%a,Q =0
3kayap + ka2 + 68k%°a;R =0
2kas + 24Bk>a;R = 0.

Solving this system, we get
ap=B+4AQ, a;=0, az3=12AR (14)

such thatA = —k?, B= —(I /k). Hence, the solution of the Eq. (5) is
u=B+4AQ+ 12ARP. (15)

For the different values of the constafiandR, we get the solutions of eq. (5) as in the following Table 1 sBipstituting
¢ defined in (4), we obtain the exact solutions of the KdV equrafil).
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Table 1: Solutions of Eq. (5) for the special values®fQ andR.

P R
a Solutions
Uy, = B — 4A(1 +m?) + 12Am?sn?
1 1 —(1+m?) m?
Uy = B —4A(1 +m?) + 12Am*cd?E
2 1—m? 2m? -1 -m? Uy = B+ 44(2m?* — 1) — 12Am?cn?¢
3 m? —1 2 —m? -1 Uz = B +4A(2 — m?) — 124dn?¢
Uy; = B—4A(1+m?) + 124Ans?¢
4 m? —(1+m?) 1
Ugz = B —2A(1 + m?) + 12Adc?E
5 —-m? 2m?2 -1 1—m? ug = B+ 44A(2m? — 1) + 124(1 — m*)nc?¢
6 -1 2—m? m?—1 ug = B+ 44(2 —m?*) + 124(m* — 1)nd?¢
7 1 2—m? 1—m? Uu; = B + 4A(2 —m?) + 124(1 — m?)sc?¢
8 1 2m? -1 —m? +m* | ug =B+ 44(2m? — 1) + 124(—m? + m*)sd?¢
9 1—m? 2—m? 1 Ug = B + 4A(2 — m?) + 12Acs?¢
10 —m? +m* 2m? -1 1 Uyp = B+ 4A(2m? — 1) + 12Ads%¢
(1—m?3)? 1+ m? 1
11 - Z P 2 Uy, = B+ 24(1 + m?) — 3A(men F dng)?
1 —2m? +1 1
12 4 -2 7 U, = B —24(2m? — 1) + 3A(nsE F cst)?
1—m? 1+m? 1—m?
13 2 > - w3 = B+ 2A(m? + 1) + 34(1 — m®)(nck F scf)?
m* m?*—2 1 2 e s
14 e 3 I Uy = B + 24(m?* — 2) + 3A(nsE F ds¥)
Uy51 = B + 24(m® — 2) + 3Am?(snE F icnk)?
m? m?—2 m?
* * : ¢ = B +24(m2 — 2) + 34m2 dn*¢
o - m 1 —m?sn€ + cnk
Uyg1 = B+ 24(1 — 2m?) + 3A(menE F idng)?
1 1—2m? 1
16 4 2 4 s Sl’ltf 2
Uy, = B+ 2A(m* — 2) + 34 (1 - CIIE)
1 m? — 2 m? & \2
- _ _ 2 2
17 1 P 2 Uy; = B + 24(m? — 2) + 3Am (1 T dnE)
m?—1 1+m? m*—1 dné 2
18 =B + 24A(1 2 314'271(7)
1 3 7 Ug + 2A(1 +m?) 4+ 34(m ) 17 ment
1—m? 1+m? 1—m? né \2
19 4 2 4 Uyg = B+ 2A(1 + m?) + 3A(1 — m?) (lisnE)
1 1+4+m? (1 —m2)? smé
20 1 2 1 Uyg = B + 2A(1 +m?) + 34(1 —m?)? (m)
2 _
21 E i m _ 2 2 ¥
4 2 4 Uy, = B+ 24(m? — 2) + 34m m

Considering the solutions in Table 1 and the behavior oféiteli elliptic functions fom — 0 andm— 1, the elementary
function solutions can be given at Table 2.
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Table 2: The behavior of the solutions in the Table 1 whea+ 0 andm — 1.

Solutions m—=0 m—=1

sy B—44 B — 84 + 124tanh2¢
. Uiz B—44 B+44
2 Uy B—44 B +44 — 124sech®¢
3 Uy B—44 B+ 44 — 124sech®¥
s Uy, B—44+ 124csc®¢E B — 84 + 124coth®*¢

Yaz B — 44 + 124sec?¢ B+44
5 Us B —44 + 124sec¥ B+44
6 U, B —44 B+44
7 Uy B+ 84 + 124tan®¢ B+44
8 Ug B—44 B+44
9 g B + 84 + 12Acot®¢ B +44 + 12Acsch*¢
10 Usg B — 44+ 12A4cscE B+ 44 + 12Acsch®¢
14l iy, B—-4 B+44
12 Uya B+ 24 + 3A(cscE F coté)? B — 24 + 34(cschi F cothé)?

B B+44,
13 Usz B + 24 + 3A(sect + tané)*® B+ 44 — 124sech?;
B —44,

14 Uy B — 44 + 124csc?¢ B — 24 + 34A(cotht F csché)?

Uys,y B—44 B — 24 + 3A(tanhE F isech)®
s uss | B—44 B-24+ 3‘4%

TP B—4 B — 24 4+ 3A((1 ¥ i)sechg)?
16 - B 44+ 34 (1 fF“::isEJ B—24+34 (%)
17 Uy B—44 L (%E—H)
18 Usg B—-4 B+44

cosé °
10 s B +24 + 34 (m) -
sinf *

20 1ag B+24+ 34 ('l?cos B+44
71 Uay BE—44 B —2A F 34secht

4 Demonstrations of some solutions

In this section, we give 8 figures demonstrating two solgtirom Table 1 and two solutions from Table 2 in both 2D
and 3D plots. In all figures, the solutions are considere#t fol = 8 = 1. All graphics in figures are drawn by the aid of
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Mathematica. Firstly, let us reconsider solutignin Table 1,
Up = 3— 8P + 12mPer?é

We demonstrate the above solution fox@& <5 when 0< m< 1 andm= 0.5in Figure 1 and in Figure 2, respectively.

L0 0.5 0.0

Fig. 1: 3D plot of the obtained solutiomy(§) when 0< m< 1

[¥5]

Fig. 2: 2D plot of the solutionu, (&) whenm= 0.5

Whenm — 0, U, = 3 and wherm — 1, u = —5+ 12secR(2,/x +1) for a = 0.5. We demonstrate the second case for
0<x<4when0O<t<1andat =1inFigure 3 and in Figure 4, respectively.

(© 2017 BISKA Bilisim Technology
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Fig. 4: 2D plot of the solutionuy(x,1) whenm — 1.

Secondly, we analyze the solutiag, in Table 1
Ug2 = 3+4n? — 12dE¢E.

We demonstrate the considered solution fok £ < 4 when 0O< m< 1 andm= 0.5 in Figure 5 and in Figure 6,
respectively.
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Fig. 5: 3D plot of the obtained solutiomy, 2(£) when 0< m< 1.

I|:4._]

A

~150F I|
3 |

250k

Fig. 6: 2D plot of the obtained solutiomy, 2(§ ) whenm = 0.5.

Whenm— 1,us2 = —5 and wherm — 0, us > = 3— 125e8(2\/>_<+t) for a = 0.5. We demonstrate the second case for
1<x<4when0<t<1andat=0.5inFigure 7 and in Figure 8, respectively.

(© 2017 BISKA Bilisim Technology
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Fig. 8: 2D plot of the obtained solutiom »(x,0.5) whenm — 0.

5 Conclusion

In this study, the Jacobi elliptic function expansion metigused to obtain the exact solutions of the conformableespa
fractional KdV equation. This method obtains the resulteaily, quickly and needs simple algorithms in programming
By this powerful method, the solutions are found in hypeidyatigonometric, and rational function form involvingree
parameters; thus, by this single method we cover the solitibseveral different methods at the same time. Additlgnal
by using conformable fractional derivative definition dtianal wave equations can be solved easily rather thantties o
definitions.
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