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Abstract: In this study, new families of analytical exact solutions ofthe space fractional Korteweg-de Vries (KdV) equation are
presented. Here, the fractional derivative is considered in conformable sense. By utilizing the Jacobi elliptic function expansion method,
the solutions are obtained in general form containing the hyperbolic, trigonometric, and rational functions. Also, the complex valued
solutions are obtained and some solutions of this equation are demonstrated.
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1 Introduction

It is well known that the Korteweg-de Vries (KdV) equation arises as a model for one-dimensional long wavelength surface

waves propagating in weakly nonlinear dispersive media, aswell as the evolution of weakly nonlinear ion acoustic waves

in plasmas. So far, various methods are used for solving different types of fractional KdV equations. These methods can

be listed as Adomian decomposition method [1,2], variational iteration method [2], homotopy perturbation method [3-7],

differential transform method [8], modified direct algebraic method [9], (G
′
/G) - expansion method [10], improved (G

′
/G)

- expansion method [10], homotopy perturbation transform method [11], function expansion method [12].

In this study, we consider the space fractional Korteweg-deVries equation

ut +uDα
x u+βDα

x Dα
x Dα

x u= 0, 0< α ≤ 1. (1)

Here,Dα
x means conformable fractional derivative of functionu(x, t) with respect tox, andβ is a constant. Whenα = 1

the equation (1) becomes the known KdV equation of integer order.

For finding the analytical solutions of equation (1), we present an expansion method using the Jacobi elliptic functions.

The main idea in this method is to find the solutionsu(ξ ) in the form

u(ξ ) =
N

∑
j=0

a jF
j(ξ ) (2)

whereN, a j ( j = 0,1,2, ...,N) are constants to be determined later andF(ξ ) is the solution of the Jacobi elliptic equation

(F
′
)2(ξ ) = P+QF2(ξ )+RF4(ξ ). (3)

Here,F
′
= dF

dξ , ξ = ξ (t,x) andP, Q, R are constants. Eq.(3) has Jacobi elliptic function solutions for the different values

of P, Q andR. The Jacobi elliptic functions corresponding to some values ofP, Q andRcan be found in [13].
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2 Preliminaries

The basic Jacobian elliptic functions are

snξ = sn(ξ ;m), cnξ = cn(ξ ;m), dnξ = dn(ξ ;m)

wherem(0< m< 1) is the modulus of the elliptic function. Whenm→ 0 andm→ 1 Jacobi elliptic functions turn into

trigonometric and hyperbolic functions [14]. There are different definitions of the fractional derivative such as

Grunwald-Letnikov, Riemann-Liouville and Caputo [15-17]. However, there are some setbacks of these definitions [18].

To overcome these difficulties, Khalil et al. had given a new definition of fractional derivative named as conformable

fractional derivative. This is the simplest definition to recognize the fractional derivative since it is the most familiar one

to the definition of the usual derivative. Therefore, the KdVequation is considered in conformable sense. The definition

and the properties of the conformable derivative are as follows:

Definition 1. (Conformable Fractional Derivative) [ 18 ] Let f : [0,∞]→ R be a function. Theα-th order conformable

fractional derivative of f is defined by

Tα( f )(t) = lim
ε→0

f (t + εt1−α)− f (t)
ε

, t > 0, α ∈ (0,1).

If f is α-differentiable in some(0,α), α > 0 andlimt→0+ f (α)(t) exists, then we define f(α)(0) = limt→0+ f (α)(t).

Theorem 1.[18] Letα ∈ (0,1] and suppose f , g areα-differentiable at point t> 0. Then, the following are satisfied:

(i) Tα(c f +dg) = cTα( f )+dTα(g) ∀c,d ∈ R.

(ii) Tα(t p) = ptp−α ∀p∈ R.

(iii) Tα(λ ) = 0 for all constant functions f(t) = λ .

(iv) Tα( f g) = f Tα (g)+gTα( f ).

(v) Tα(
f
g ) =

gTα ( f )− f Tα (g)
g2 .

(vi) If, in addition, f is differentiable, then Tα( f )(t) = t1−α d f
dt .

Theorem 2. (Chain Rule) [18] Assume f,g : (0,∞)→ R beα-differentiable and for all t with t6= 0 and g(t) 6= 0 we

have

Tα(h)(t) = Tα( f )(g(t)).Tα (g)(t).g(t)
α−1.

If t = 0 we have

Tα(h)(0) = limt→0Tα( f )(g(t)).Tα (g)(t).g(t)
α−1.

3 Solutions to the conformable space-fractional KdV equation

Let us consider the conformable space-fractional KdV equation (1). Changing of the variables in the equation as

u= u(ξ ), ξ = k
xα

α
+ lt (4)

yields an ordinary differential equation (ODE) foru(ξ )

l
du
dξ

+ ku
du
dξ

+βk3 d3u
dξ 3 = 0 (5)
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wherek andl are the arbitrary constants. Solving this nonlinear ordinary differential equation, the integerN in expression

(2) can be determined by balancing the highest order linear term

O(u
d3u
dξ 3 ) = N+3 (6)

and the highest order nonlinear term

O(u
du
dξ

) = 2N+1 (7)

in (5). As the result of this balancing, we obtainN = 2, thus the solution of Eq. (1)can be expressed as

u(ξ ) =
2

∑
j=0

a jF
j(ξ ) = a0+a1F +a2F

2. (8)

By differentiating Eq. (8) three times, we get

u
′
(ξ ) = a1F

′
+2a2FF

′
, (9)

u
′′′
(ξ ) = a1F

′′′
+6a2F

′
F

′′′
+2a2FF

′′
(10)

and using Eq. (3), we have

F
′′
= 2RF3+QF, (11)

F
′′′
= 6RF2F

′
+QF

′
. (12)

Substituting the equations (11) and (12) into Eq. (10) yields

u
′′′
= a1QF

′
+6a1RF2F

′
+8a2QFF

′
+24a2RF3F

′
. (13)

Finally, substituting equations (9) and (13) into Eq. (5) and setting each coefficient of F to be zero, the following equations

system arises

la1+ ka0a1+βk3a1Q= 0

2la2+2ka0a2+ ka2
1+8βk3a2Q= 0

3ka1a2+ ka2
1+6βk3a1R= 0

2ka2
2+24βk3a2R= 0.

Solving this system, we get

a0 = B+4AQ, a1 = 0, a3 = 12AR (14)

such thatA=−βk2, B=−(l/k). Hence, the solution of the Eq. (5) is

u= B+4AQ+12ARF2. (15)

For the different values of the constantsQ andR, we get the solutions of eq. (5) as in the following Table 1. Bysubstituting

ξ defined in (4), we obtain the exact solutions of the KdV equation (1).
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Table 1: Solutions of Eq. (5) for the special values ofP, Q andR.

Considering the solutions in Table 1 and the behavior of the Jacobi elliptic functions form→ 0 andm→ 1, the elementary

function solutions can be given at Table 2.
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Table 2: The behavior of the solutions in the Table 1 whenm→ 0 andm→ 1.

4 Demonstrations of some solutions

In this section, we give 8 figures demonstrating two solutions from Table 1 and two solutions from Table 2 in both 2D

and 3D plots. In all figures, the solutions are considered fork= l = β = 1. All graphics in figures are drawn by the aid of
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Mathematica. Firstly, let us reconsider solutionu2 in Table 1,

u2 = 3−8m2+12m2cn2ξ

We demonstrate the above solution for 0≤ ξ ≤ 5 when 0≤ m≤ 1 andm= 0.5 in Figure 1 and in Figure 2, respectively.

Fig. 1: 3D plot of the obtained solutionu2(ξ ) when 0≤ m≤ 1

Fig. 2: 2D plot of the solutionu2(ξ ) whenm= 0.5

Whenm→ 0, u2 = 3 and whenm→ 1, u2 = −5+12sech2(2
√

x+ t) for α = 0.5. We demonstrate the second case for

0≤ x≤ 4 when 0≤ t ≤ 1 and att = 1 in Figure 3 and in Figure 4, respectively.
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Fig. 3: 3D plot of the obtained solutionu2(x, t) whenm→ 1.

Fig. 4: 2D plot of the solutionu2(x,1) whenm→ 1.

Secondly, we analyze the solutionu4,2 in Table 1

u4,2 = 3+4m2−12dc2ξ .

We demonstrate the considered solution for 1≤ ξ ≤ 4 when 0≤ m≤ 1 andm= 0.5 in Figure 5 and in Figure 6,

respectively.
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Fig. 5: 3D plot of the obtained solutionu4,2(ξ ) when 0≤ m≤ 1.

Fig. 6: 2D plot of the obtained solutionu4,2(ξ ) whenm= 0.5.

Whenm→ 1, u4,2 = −5 and whenm→ 0, u4,2 = 3−12sec2(2
√

x+ t) for α = 0.5. We demonstrate the second case for

1≤ x≤ 4 when 0≤ t ≤ 1 and att = 0.5 in Figure 7 and in Figure 8, respectively.
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Fig. 7: 3D plot of the obtained solutionu4,2(x, t) whenm→ 0.

Fig. 8: 2D plot of the obtained solutionu4,2(x,0.5) whenm→ 0.

5 Conclusion

In this study, the Jacobi elliptic function expansion method is used to obtain the exact solutions of the conformable space-

fractional KdV equation. This method obtains the results directly, quickly and needs simple algorithms in programming.

By this powerful method, the solutions are found in hyperbolic, trigonometric, and rational function form involving some

parameters; thus, by this single method we cover the solutions of several different methods at the same time. Additionally,

by using conformable fractional derivative definition, fractional wave equations can be solved easily rather than the other

definitions.
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