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Abstract: In this article, an improved collocation method based onMleegan-Voyce polynomials for the approximates solution of
multi-pantograph equations is introduced. The methodsetapon the improvement of Morgan-Voyce polynomial sohgiwith the
aid of the residual error function. First, the Morgan-Voy#location method is applied to the multi-pantograph ¢igna and then
Morgan-Voyce polynomial solutions are obtained. Secondsraor problem is constructed by means of the residual &sration and
this error problem is solved by using the Morgan-Voyce aatton method. By summing the Morgan-Voyce polynomial sohs of
the original problem and the error problem, we have the imguidMiorgan-Voyce polynomial solutions. When the exact tiatuof
problem is not known, the absolute error can then be appiatein computed by the Morgan-Voyce polynomial solutiontedf error
problem. Numerical examples that the pertinent featuréseofnethod are presented. We have applied all of the nunhedisgutations
on computer using a program written in MATLAB.
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1 Introduction

Functional-differential equations with proportional ags are usually refered to as pantograph equations or deedra
equations. The name pantograph came from the work of Ockeadd Tayler [1] on the collection of current by the
pantograph head of an electric locomotive.

We see these equations in many applications such as nunmdmytimon-linear dynamical systems, electrodynamics,
probality theory on algebraic structures, astrophysiedl, growth and quantum mechanics, among others. Several
authors have studied proporties of the analytic solutiothete equations and numerical methods. For example, the
equations with variable coefficients are treated in [2-4].

In recent years, the numerical treatment of the pantogrgphtens of the retarded and advanced type has attracted
attention. The existence of compactly supported soluti®asspecific property for this type [5].

Pantograph equations are important for explanining maifgrdnt phenomena. Specially, they turn out to be the

fundamental equations when ODEs-based model fail. Thegatieqs are seen in studies based on biology, economy,
control and electrodynamics [6,7] and in industrial equagi[1,8]. This phenomena has been studied in [8-10], and has
direct applications to approximation theory and wavel2€.[

Since the beginning of 1994, to find the approximate solstioof differential, difference, integral and
integro-differential-difference equations, multi-pagtaph and generalized pantograph, Taylor, ChebyshegeBasd
Legendre matrix methods have been used by Sezer et al [11-18]
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The purpose of this work is to apply Morgan-Voyce polynomiab the nonhomogenous and the homogenous
multi-pantograph equations with variable coefficientsiclihis the extension of the pantograph equations given 6[5,

In this study, we want to solve the pantograph equation gyen
J
Y(t)=Ay(t)+ 5 pt)y(ai)+gt), 0<t<b (1)
=1

that is a multi-pantograph equations given in [5,19-21] é@m¢hitial condition is

y(0) =y. (2)

In here,y(t) is an unknown function, the known functiops(t) andg(t) are defined on interval <t < b andA andqj;
are real or complex constants.

In this paper, by improving the Morgan-Voyce collocationthas with the aid of residual error function used in [24-26],
we obtain an approximate solution of (1) expressed in theciited Morgan-Voyce series form

ynm(t) = yn(t) +enm(t) 3)
where \
yn(t) = Zoaan(t) (4)

is the Morgan-Voyce solution and
M
e (t) = 5 &bl
n=!

is the Morgan-Voyce polynomial solution of the error prahlebtained with the aid of the residual error function. Here
an,a5,n=0,1,2 ... N are the unknown Morgan-Voyce coefficientéandM are any chosen positive integers such that
M >N > 2; andB,(t),n=0,1,2,...,N are the Morgan-Voyce polynomials defined by

" gkl
Bu(t) = ZO<”$_I >tk,n€N.
k=

2 Fundamental matrix relations

Firstly, we can write the Morgan-Voyce polynomidg(t) in the matrix form as

BT(t)=RTT(t) = B(t) = T()R" (5)

where
B(t)Z{Bo(t) Bi(t) BN(I)}, T(t) = {1t1t2...tN},

and

G o oL O

() @ oL o

R= (2) (1) (o) L O
M M M L M
(3 @D L] ey
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We consider the desired solution of Eq. (1) defined by thecated Morgan-Voyce series (4). So we can write the finite
series (4) in matrix form

T
y(t) = B(t)A; A:[ao a ... aN}

or from Eq. (5)
y(t) =T(HRA. ()

On the other hand, the relation between the mattiy and its derivative i (1 (t) is

THH=T)C", TOM)=T(1) (7)

where
01 0LOOO]T

002L000O
000LOODO
MMM M M
00O0LOON
|00 0LOOO]

If we follow from (6) and (7), we derive
Yyt) =B tO)A=T' 1) RTA=T({t)C'RTA. (8)

Similarly, the matrix relations are as follows,
T(q;t) = T(t)B(q;)

y(gjt) = T(t)B(qj)RTA 9)
where
(@)° 0 K 0
1
)= | 0 @K 0
0 0 K(g)N

3 Method of solution
Now, we are ready to construct the fundamental matrix eqondtir Eq. (1). For this aim, by substituting the matrix
relation (6),(8) and (9) into Eq. (1), we obtain the matrixiation

THCTRTA=ATH)RTA+ iu,- (O)T(1)B(q))RTA +g(t) (10)
=

In Eq. (10) we substitute collocation points defined by

b. .
ti= NI’ i=0,1,..,N

and we obtain the system of the matrix equations as,

T(H)CTRTA=AT(4)RTA+ i Ui (6)T(6)B(q))RTA+9g(t), i=0,1,..,N
=1

(© 2017 BISKA Bilisim Technology
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or briefly the fundamental matrix equation

J
{TCTRT —ATRT - > M;TB(q)R"}IA=G (11)
=1
where

Uitt) O L O g(to) T(to) 1toLt)
M — 0 Mj (t))L O G_ g(tl) T_ T(tl) _ 1t L'[i\l
J M M 0 0 |’ M |’ M MMOM
0 0 Lupyjt) g(tn) T(tn) 1ty Lt

So, we can write the fundamental matrix equation (11) cpording to Eq.(1) in the form
J
WA =G or [W;G;W =TCTRT-ATR" — ZMJTB(qj)RT. (12)
=1
Here, Eq. (12) corresponds to a systeraf 1 linear algebraic equations wikh+ 1 unknown Morgan-Voyce coefficients
ap,as,...,aN. For the conditions (2), we can obtain the matrix form as,
y(0) =T(ORTA =[y].
On the other hand, the matrix form for the condition can bétemias
UA =[y] or [U;y] (13)

where
U=T(OR" = |ug ug U K uy |-

Under the condition (2), to obtain the solution of Eq. (1),neplace the row matrice (13) by the last one row of the matrix
(12), so have the new augmented matrix [15,16,17]

Woo Wor Wo2 K won ; 9O(to) ]|
wig Wit wip Ko owiny ;0 g(ty)
WG] = Woo Wi W K woy ;5 g(t2) (14)

M M M M M M M
WN-10 WN—11 Wn—12 K Wn_1n 5 O(tn-1)
U U U K uv ; g(n) |

If rank W = rank[W; G] =N+ 1, then we can writé = (fVV)*l G. Thus, we uniquely determine the matéixthereby the
coefficientsag, as, ...,an )- So Eg. (1) with condition (2) has a unique solution and skisition is given by Morgan-Voyce
series soluion (4). On the other hand, W#%’ =0, that is if rankw = rank[W; é] < N+1, then one can be found a

particular solution. Otherwise if rank/ =+ rank[W; é] < N+ 1, then there is no solution.

4 Residual correction and error estimation

In this section, we will give an error estimation for the Marg\Voyce polynomial solution (4) with the residual error
function [23-26] and will improve the Morgan-Voyce polyn@hsolution (4) with the help of the residual error function
For this purpose, we get the residual function of the Morgayee collocation method as

Rn(t) = Llyn(t)] —g(t). (15)

(© 2017 BISKA Bilisim Technology
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Hereyn (t) is the Morgan-Voyce polynomial solution given by (4) of ptern (1) and (2). Thusyn (t) satisfies the problem
J
= YN = AWn() Z tyn(ajt)

=g(t) + Rn(t)
yn(0) =Y.

Also, the error functiorey(t)
en(t) =y(t) —yn(t) (16)

such thaty(t) is the exact solution of problem (1) and (2). By using Egs, (2), (15) and (16) we can get the error
differential equation

Lien(®)] = LIy(t)] - Liyn(t)] = —Rn(t)

with the condition

or clearly, the error problem is

ev(t) —Aen(t) — S pj(t)en(gjt) = —Rn(t) 17)

en(0) =0. (18)

and

has been reduced to the homogeneous condition
en(0) =0.

By solving problem (17)-(18) with the method introducedts®t(2) and (3), we get the approximation

<

evm(t) =3 aBn(t), M=N

toen(t).

Consequently, by means of the polynomiglgt) andeym(t), (M > N), we get the correct Morgan-Voyce polynomial
solutionynm (t) = yn(t)+ enm(t). Also, we construct the error functia (t) = y(t)— yn(t), the correct error function
Enm(t) =en(t)— enm(t) =y(t) —yn,m(t) and the estimated error functieq m (t).

If the exact solution of Eq. (1) is unknown, then the absoarters|en(ti)| = |y(ti) — yn(ti)], (0 <t < b) are not found.
However the absolute errors can be approximately compuidd the aid of the estimated absolute error function

enm(t)]-

(© 2017 BISKA Bilisim Technology
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5 Numerical examples

In this section, to show the accuracy and effeciency prasef the present method we give several numerical
examples. We have performed all the calculations with MABLAhe values of the exact solutigt), the polynomial
approximate solutioryn(t), the corrected Morgan-Voyce polynomial solutignm(t), the absolute error function
en(t) = |y(t) —yn(t)|, the corrected absolute error functififn m(t)| and the estimated absolute error functeanu (t)
have been illustrated in Tables and Figures at the selecietspf the given interval.

Example 1.With exact solutiory(t) = €, consider the pantograph equation of first order
Yt = y(t)+ cos(%)y(O.Zt) - sin(é)y(O.St) + sin(tg)eo'f’t - cos(:t—%)eo'z, yO0)=1, 0<t<l (19)

And approximate the solution by the truncated Morgan-Vaarées

whereN = 3, i1 (t) = cog§), Ha(t) = —sin(),g(t) = sin(£)e® — cog§)e**, gy = 0.2, = 0.5,A = 1. From Section
3, for N = 3, the set of collocation points is,

1 2
{XO = O)X]. = §7X2 = é,XS = 1}
and from Eq. (10), the fundamental matrix equation of thévfem is

{TCTRT—)\TRT—M 1TB(q1)RT—M2TB(q2)RT}A ~G

where
[10 0 0O 0 O 0 0 0100 1000 1000
967 920 111
My = 09—731?9 0 My— 0 — 1353 247 0 CT = OOZO,RT: 2100,T— 122%7
00@3(?73 0 0 —Gm (309 0003 3410 155>
10 0 0 55 0 O 0 —m 0000 41061 1111
[ -1 100 0 1000
1143 1 1
— e 00 O 0500
G= 1621 B =B(0.2) = = B =B(0.5) = 2
1006 1 1
— 1917 00 0 3 0003
For this fundamental matrix equation, the augmented mastrix
-2 -3 -2 2 ;-1
_ 609 _ 3778 24281 1477 . _ 1143
[W;G] = 316 ~ 1165 8726 731 ' 1162
’ _ 2117 1454 1756 603 . _ 615
1149 — 423 ~ 481 412 ' ~ 662

_ 1411 _ 1895 1339 623 . _ 1006

808 529 292 3013' 1217

From Eg. (13), the matrix forms for initial condition is

UA =1y or [U;y]

or briefly
Uy = [1000;1}.

(© 2017 BISKA Bilisim Technology
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From system (14), we can write the new augmented matrix basednditions as

-2 -3 -2 2 ; -1
S _ 609 3778 24281 1477 . _ 1143
WG| = 316 1165 8726 731 ' 1162
' _ 2117 1452 1756 603 . 615
1149 — 423 ~ 481 412 ' 662

1 0 0 0 ; 1
If we solve this system, we obtain Morgan-Voyce coefficiangdrix as follows

A— | _2321 3561 _ 2602 169}1—

1193 1472 2749 714

So, forN = 3, the approximate solution of the problem yields
ya(t) = 1+t +0.4736418256 + 0.236694641t°

Now, let us find the improved Morgan-Voyce polynomial satatifor M = 5. For this purpose, let us first consider the
error problem

& (t) — es(t) —cos(%)eg(O.Zt) +sin(%)e3(0.5t) —sin(%)e‘m cos(té) P2 Ry(t), 0<t<1  (20)
e3(0)=0 (21)

where the residual error function is
t ot
Rs(t) = ya(t) —ya(t) — cos(3)ys(0.2t) + sin(¢)ys(0.5t) — g(t).

By solving the error problem (20)-(21) ftt = 5 with the method introduced in Section 2 and 3, the Morgaye¥cerror
function approximation

e35(t) = —1.7520707107é— 16— (7.086402501176031- 3)t + (4.468056167244545283- 2)t°
— (8.284377115551890685- 2)t>+ (3.5609080454069717 84- 2)t*
+(1.371093245056628282- 2)t°.

We have the improved Morgan-Voyce polynomial solution

ya5(t) = 0.9999999999999998 1.00000088347 8+ (4.99554494109247083- 1)t2
+(1.6938589008435248- 1)t>+ (3.5609080454069717 84- 2)t*
+(1.371093245056628282- 2)t°.

Table 1 shows some numerical values of the exact solutienMbrgan-Voyce polynomial solution and the improved
Morgan-Voyce polynomial solutions. In Table 2, the acturs@ute errors are compared with the absolute errors estima
by the presented method fbr= 3,6 andM = 5,8,10,12 and also the absolute error functions are compared irré-iju
and 2. We see from these comparisons that the estimateditbeaiors are quite close to the actual absolute errorge Tab
3 denotes the absolute errors of the improved Morgan-Vogbmpmial solutions foN = 3,6 andM = 5,8,10,12. The
improved absolute error functions are given in Figure 3 artli4 seen from Tables 2 and 3 and Figure 1 that the errors
decrease wheN andM are increased.

(© 2017 BISKA Bilisim Technology
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Table 1: Numerical results of the exact and the approximate solationN = 3,6 andM = 5,8,10,12 of Eq.(19).

Exact Solution Morgan-Voyce solution Present Method

t y(ti) =€ ya(t) Ya5(ti) ya8(ti)

0.0 1 1 0.999999999999999 0.999999999999999

0.2 1.22140275816 1.22140275816 1.221398805607721 402725849008

0.4 1.49182469764 1.49182469764 1.491821761821928 82489826052

0.6 1.82211880039 1.82211880039 1.822108599158451 1183P127839

0.8 2.22554092849 2.22554092849 2.225519436434760 24P22965348

1.0 2.71828182846 2.71828182846 2.718261280576066 28183008548
y(ti) =€ Ye(ti) Ye.10(ti) Ye.12(ti)

0 1 1 1.000000000000001  0.99999999999999
0.2 1.22140275816 1.22140246213 1.221402758160364 402725816017
0.4 1.49182469764 1.49182428065 1.491824697641544 82489764127
0.6 1.82211880039 1.82211824351 1.822211880039085 1183P039051
0.8 2.22554092849 2.22554021120 2.225540928492886 24P22849247
1.0 2.71828182846 2.71828001904 2.718281828459822 28182845905

Table 2: Comparison of the absolute error functions for N=3,6 and \:39,12 of Eq. (19).

Absolute errors for Morgan-Voyce solutions  Estimated &ldscerrors for Morgan-Voyce solutions

t les(t)| = [y(t) — ya(ti)] [e3s(ti)] es(ti)]
0. 0 1.7521e-016 1.57006-016
0.2 2.2749e-004 2.3145e-004 2.2749e-004
0.4 6.7256-005 6.4320e-005 6.7256€-005
0.6 3.6979e-004 3.7999e-004 3.6979e-004
0.8 3.8980e-004 4.1130e-004 3.8980e-004
1.0 4.0909e-003 4.0704e-003 4.0910e-003
les(t)| = [y(ti) — Ye(ti)] |€s,10(ti) | |€5.12(ti)|
0.0 0 4.77226-016 2.32616-016
0.2 2.9603e-007 2.9603e-007 2.9603e-007
0.4 4.1700e-007 4.1700e-007 4.1700e-007
0.6 5.5688e-007 5.5688e-007 5.5688e-007
0.8 7.1730e-007 7.1730e-007 7.1730e-007
1.0 1.8094e-006 1.8094e-006 1.8094e-006

Table 3: Numerical results of the corrected error functions for N=&)d M=5,8,10,12 Eq. of (19).

Improved absolute errors
|Eas(ti)] [Es 10(t)]

|Es.12(ti)]

t |Ess(ti)]
0.0

0.2
0.4
0.6
0.8
1.0

2.2204e-016
3.9526e-006
2.9358e-006
1.0201e-005
2.1492e-005
0.0548e-005

1.1102e-016
3.2991e-010
6.1925e-010
8.8788e-010
1.1610e-009
1.6264e-009

4.4409e-016
1.9451e-013
2.7378e-013
3.4117e-013
4.1833e-013
7.7638e-013

2.2204e-016
2.2204e-016
6.6613e-016
8.8818e-016
1.1102e-015
4.4409e-016

(© 2017 BISKA Bilisim Technology
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Comparison of absolute error functions

10'2 T T T T T T
— & — e,
—¥—le, 0
— % — ey 400

error

107°
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

Fig. 1: Comparison of the absolute error functions and the estiret®r functions foN = 6 andM = 10,12 of Eq. (19).

Comparison of absolute error functions
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Fig. 2: Comparison of the absolute error functions and the estifrexter functions foN = 6 andM = 10,12 of Eq. (19).
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Comparison of improved absolute error functions

-4
10 T T T T T T
— & —IE, 0
—— [E (0] PN
5L -—— N 4
10 é ///O’ N E
- N
B — — — _ _ O// N
N
N
108 F N 3
3 \C_)
S
£ 107 E
()
108 ¢ E

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 3: Comparison of the improved absolute error functiondNet 3 andM = 5,8 of Eq. (19).

Comparison of improved absolute error functions
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Fig. 4: Comparison of the improved absolute error functiondNet 6 andM = 10,12 of Eq. (19).
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Fig. 5: Comparison of the absolute error functidag(t)| and|Enwm(t)| for N =7 andM = 10,12 of Eq. (22).

Example 2.With the exact solutiog(t) = et cogt), consider the pantograph equation with variable coefftsifi9]

Y(0) = ~Y(O) + m(Oy(5) + kty(), Y0 =1, 0<t<1 (22)

wherep; (t) = —e %%'sin(0.5t), pp(t) = —2e%7% cog0.5t) sin(0.25t). From Eg. (13), the fundamental matrix equation
of the problem is
{TCTRT = ATRT =M TB(q1)R" —M,TB(q)RT}JA =G

herepy(t) = —e%%sin(0.5t), g1 = 3, po(t) = —2e7 %" coq0.5t) sin(0.25), g = £, A = —1, g(t) = 0.

According to the procedure in Section 2,3 and 4, we find thexaprate solutions of the problem for different values\bf
andM. In Table 4, we compare the absolute errors obtained by #se=pt method, the Morgan-Voyce collocation method
and Taylor method. The absolute error functions are conajdargigure 5.

Table 4: Comparison of the solutions and the absolute errors of B). (2

Taylor method Morgan-Voyce Collocation Method Presenthoét

i N=7]er(t)] N=7.le(t)] [Eza0()]  [E72(t)]

0.0 0 0 4.3110e-14 1.2724e-14
0.2 9.9331e-010 1.4522e-008 6.0341e-13 1.7542e-14
0.4 2.4854e-007 1.1150e-008 4.7518e-13 1.7319%e-14
0.6 6.2234e-006 6.3543e-009 3.2929e-13 2.1927e-14
0.8 6.0719e-005 8.8224e-010 1.0442e-12 1.8097e-14
1.0 3.5341e-004 4.6167e-007 2.1931e-12 6.5781e-15
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6 Conclusion

In this article, we have improved the Morgan-Voyce collamatmethod, based on Morgan-Voyce polynomials, for
Multi-pantograph equations. This improvement is basechenrésidual error function. In addition, an error estinmai®
given with the residual error function. Morever, if the ekaclution of the problem is unknown, then the absolute srror
len(t)] = |y(ti) —yn(ti)| , (0<ti <b) can be estimated by the approximatiexqm(t)|. It is seen from Tables 1-3 that
the estimated absolute errdeg m(ti)| are quite close to the actual absolute erfeggti)| = |y(ti) — yn(ti)| . We see from
tables and figures that the errors decrease vihamdM are increased. The comparisons of the present method by the
other methods show that our method is very effective. A cabs advantage of the method is that the approximate
solutions are computed very easily by using a well-knownlsgiic software such as Matlab, Maple and Mathematica.
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