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Abstract: The main purpose of this paper is to define the complete lift ofa projectable tensor field of type (1,2) to semi-cotangent
bundle t*M. Using projectable geometric objects on M, we examine lifting problem of projectable tensor field of type (1,2) to the
semi-cotangent bundle. We also present the good square in the semi-cotangent bundle t*M.
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1 Introduction

Let Mn be a differentiable manifold of classC∞ and finite dimensionn, and let(Mn,π1,Bm) be a differentiable bundle over
Bm. We use the notation(xi) = (xa

,xα ), where the indicesi, j, ... run from 1 ton, the indicesa,b, ... from 1 ton−m and
the indicesα,β , ... from n−m+1 to n, xα are coordinates inBm, xa are fibre coordinates of the bundle

π1 : Mn → Bm.

Let now (T∗(Bm), π̃ ,Bm) be a cotangent bundle [1] over base spaceBm, and letMn be differentiable bundle determined
by a natural projection (submersion)π1 : Mn → Bm. The semi-cotangent bundle (pull-back [2], [3], [4], [5], [6]) of the
cotangent bundle(T∗(Bm), π̃ ,Bm) is the bundle(t∗(Bm),π2,Mn) over differentiable bundleMn with a total space

t∗(Bm) =
{
((xa

,xα ) ,xα) ∈ Mn×T∗
x (Bm) : π1 (x

a
,xα ) = π̃

(
xα

,xα
)
= (xα)

}
⊂ Mn×T∗

x (Bm)

and with the projection map π2 : t∗(Bm) → Mn defined by π2(xa
,xα

,xα ) = (xa
,xα), where

T∗
x (Bm)(x= π1 (x̃) , x̃= (xa

,xα ) ∈ Mn) is the cotangent space at a pointx of Bm, where xα = pα(
α,β , ...,= n+1, ...,2n

)
are fibre coordinates of the cotangent bundleT∗(Bm).

Where the pull-back (Pontryagin [7]) bundlet∗(Bm) of the differentiable bundleMn also has the natural bundle structure
overBm, its bundle projectionπ : t∗(Bm) → Bm being defined byπ : (xa

,xα
,xα ) → (xα), and henceπ = π1 ◦ π2. Thus

(t∗(Bm),π1 ◦π2) is the composite bundle [[8], p.9] or step-like bundle [9]. Consequently, we notice the semi-cotangent
bundle (t∗(Bm),π2) is a pull-back bundle of the cotangent bundle overBm by π1 [6].

If (xi′) = (xa′
,xα ′

) is another local adapted coordinates in differentiable bundleMn, then we have

{
xa′ = xa′(xb

,xβ ),

xα ′
= xα ′ (

xβ )
.

(1)
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The Jacobian of (1) has components
(

Ai′
j

)
=

(
∂xi′

∂x j

)
=

(
Aa′

b Aa′
β

0 Aα ′

β

)
,

whereAa′
b = ∂xa′

∂xb , Aa′
β = ∂xa′

∂xβ , Aα ′

β = ∂xα′

∂xβ [6].

To a transformation (1) of local coordinates ofMn, there corresponds ont∗(Bm) the change of coordinate






xa′ = xa′(xb
,xβ ),

xα ′
= xα ′ (

xβ)
,

xα ′
= ∂xβ

∂xα′ xβ
.

(2)

The Jacobian of coordinate system transformation (2) is:

Ā=
(

AI ′
J

)
=




Aa′
b Aa′

β 0

0 Aα ′

β 0

0 pσ Aβ ′

β Aσ
β ′α ′ Aβ

α ′


 , (3)

whereI = (a,α,α), J = (b,β ,β ), I ,J, ....= 1, ...,2n; Aσ
β ′α ′ =

∂ 2xσ

∂xβ ′ ∂xα′ [6].

Now, consider a diagram as

A
γ
→ B

α ↓ ↓β

C →
π

D

A good square of vector bundles is a diagram as above verifying

(i) α andβ are fibre bundles, but not necessarily vector bundles;
(ii) γ andπ are vector bundles;

(iii) the square is commutative, i.e.,π ◦α = β ◦ γ;
(iv) the local expression

A
γ
→ B

α ↓ ↓β

C →
π

D

Un×Rr ×Gs×Rt → Un×Gs

↓ ↓

Un×Rr → Un

(xi
,aa

,gλ
,bσ ) →

(
xi
,gλ)

↓ ↓

(xi
,aa) →

(
xi
)

whereG is a manifold and superindices denote the dimension of the manifolds [11].

By means of above definition, we have

Theorem 1.Let nowπ : t∗(Bm)→Bm be a semi-cotangent bundle andπ1 : Mn → Bm be a fibre bundle. Then, the following

is a good square:

t∗(Bm)
π2
→ Mn

id ↓ ↓π1

t∗(Bm) →π
Bm

Mn×T∗
x (Bm)

π2
→ Mn

id ↓ ↓π1

Mn×T∗
x (Bm) →π

Bm

(xa
,xα

,xα)
π2
→ (xa

,xα )
id ↓ ↓π1

(xa
,xα

,xα) →
π

(xα)

In this study, we continue to study the complete lifts of projectable tensor field of type (1,2) to semi-cotangent
(pull-back) bundle(t∗(Bm), π2) initiated by F. Yildirim and A. Salimov [6].

We denote byℑp
q(Mn) the set of all tensor fields of classC∞ and of type(p,q) on Mn, i.e., contravariant degreep and
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covariant degreeq. We now putℑ(Mn) = ∑∞
p,q=0ℑp

q(Mn), which is the set of all tensor fields onMn. Smilarly, we denote
by ℑp

q(Bm) andℑ(Bm) respectively the corresponding sets of tensor fields in the base spaceBm.

Let ω be a 1−form with local componentsωα on Bm, so thatω is a 1−form with local expressionω = ωαdxα . On
putting [6]

vvω =




0
0
ωα


 , (4)

we have a vector fieldvvω on t∗(Bm). In fact, from (3) we easily see that(vvω)′ = A(vvω). We call the vector fieldvvω
the vertical lift of the 1−form ω to t∗(Bm).

Let X̃ ∈ ℑ1
0(Mn) be a projectable vector field [10] with projectionX = Xα(xα )∂α i.e. X̃ = X̃a(xa

,xα )∂a +Xα(xα )∂α .
Now, consider̃X ∈ ℑ1

0(Mn), thenccX̃ (complete lift) has components on the semi-cotangent bundle t∗(Bm) [6]

ccX̃ =
(

ccX̃α
)
=




X̃a

Xα

−pε(∂αXε)


 (5)

with respect to the coordinates(xa
,xα

,xα).

2 γ−operators

For anyF ∈ ℑ1
1(Bm), if we take account of (3), we can prove that(γF)′ = Ā(γF), whereγF is a vector field defined by

[6]:

γF = (γF I ) =




0
0

pβ Fβ
α


 (6)

with respect to the coordinates(xa
,xα

,xα) on t∗(Bm).

For anyR∈ ℑ1
3(Bm), if we take account of (3), we can prove thatγRI ′

K′

J′ = AK′

K AI
I ′A

J
J′γRI

K
J , whereγRhas componentsRI

K
J

such that
Rα

γ
β = PεRα β

ε
γ , (7)

all the others being zero, with respect to the induced coordinates ont∗(Bm). WhereRα β
γ
σ are local components ofR on

Bm and alsoI = (a,α,α), J = (b,β ,β ), K = (c,γ,γ).

Theorem 2.If X̃ andỸ be a projectable vector fields on Mn with projection X∈ ℑ1
0(Bm) and Y∈ ℑ1

0(Bm). We have

(i) (γR)(ccX̃,

ccỸ) = γ(R(X,Y)),
(ii) (γR)(vvω ,

vvθ ) = 0,
(iii) (γR)(vvω ,

ccY) = 0,
(iv) (γR)(vvω ,γG) = 0,
(v) (γR)(ccX̃,γG) = 0,
(vi) (γR)(γF,γG) = 0

for anyω ,θ ∈ ℑ0
1(Bm), F,G∈ ℑ1

1(Bm) and R∈ ℑ1
3(Bm).
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Proof. (i) If R∈ ℑ1
3(Bm), X̃ andỸ be a projectable vector fields onMn with projectionX,Y ∈ ℑ1

0(Bm) and




[(γR)(ccX̃,

ccỸ)]c

[(γR)(ccX̃,

ccỸ)]γ

[(γR)(ccX̃,

ccỸ)]γ




are components of[(γR)(ccX̃,

ccỸ)]K with respect to the coordinates(xc
,xγ

,xγ ) on t∗(Bm), then forK = c, we have

[(γR)(ccX̃,

ccỸ)]c = (Rα
c
β )︸ ︷︷ ︸

0

ccX̃α ccỸβ = 0

because of (5) and (7). ForK = γ, we have

[(γR)(ccX̃,

ccỸ)]γ = (Rα
γ
β )︸ ︷︷ ︸

0

ccX̃α ccỸβ = 0

because of (5) and (7). ForK = γ, we have

[(γR)(ccX̃,

ccỸ)]γ = (Rα
γ
β )

ccX̃α
︸︷︷︸

Xα

ccỸβ
︸︷︷︸

Yβ

= PεRα β
ε
γ XαYβ = Pε(R(X,Y))ε

γ

because of (5) and (7). It is well known thatγ(R(X,Y)) have components

γ(R(X,Y)) =




0
0
Pε(R(X,Y))ε

γ




with respect to the coordinates(xc
,xγ

,xγ ) ont∗(Bm). Thus, we have(γR)(ccX̃,

ccỸ) = γ(R(X,Y)). Similarly, we can easily
compute another equations of Theorem2.

3 Complete lift of a tensor field of type (1,2) to semi-cotangent bundle

Let S̃∈ ℑ1
2(Mn) be a projectable tensor field of type(1,2) with projectionS= Sk

i j (x
a
,xα)∂k ⊗ dxi ⊗ dxj , i.e. S̃ has

componets such that
ccS̃c

αβ = Sc
αβ

with respect to the coordinates onMn. Wherei = (a,α), j = (b,β ), k= (c,γ).

If we take account of (3), we can prove thatccS̃I ′
K′

J′ = AK′

K AI
I ′A

J
J′

ccS̃I
K
J , whereccS̃has componentsccS̃I

K
J such that





ccS̃c
αβ = Sc

αβ
ccS̃α

γ
β = Sα

γ
β

ccS̃α
γ
β =−pε(∂αSε

β γ + ∂β Sε
γα + ∂γSε

αβ )
ccS̃α

γ
β
= Sα

β
γ

ccS̃α
γ
β = Sγ

α
β

, (8)

all the others being zero, with respect to the induced coordinates ont∗(Bm). WhereSI
K
J are local components ofSon Mn

and alsoI = (a,α,α), J = (b,β ,β ), K = (c,γ,γ).
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Proof.For convenience sake we only considerccS̃α
γ ′
′β ′ . In fact,

ccS̃α
γ ′
′β ′ = Aγ ′

γ Aα
α ′A

β
β ′

ccS̃α
γ
β = Aγ

γ ′A
α ′

α Aβ
β ′Sγ

α
β = Sγ

α ′

′β ′ .

Thus, we haveccS̃α
γ
β = Sγ

α
β . Similarly, from (3) and (8), we can easily find all other components ofccS̃I

K
J equal to zero,

whereI = (a,α,α), J = (b,β ,β ), K = (c,γ,γ).

Theorem 3.Let S̃∈ ℑ1
2(Mn) be a projectable tensor field of type(1,2). If X̃,Ỹ ∈ ℑ1

0(Mn), ω ,θ ∈ ℑ0
1(Bm), F,G∈ ℑ1

1(Bm)

then

(i) ccS̃(vvω ,

vvθ ) = 0,
(ii) ccS̃(vvω ,γG) = 0,
(iii) ccS̃(vvω ,

ccỸ) =−vv(ω ◦SY),

(iv) ccS̃(γF,γG) = 0,
(v) ccS̃(γF,ccỸ) =−γ(F ◦SY),

(vi) ccS̃(ccX̃,

ccỸ) =cc (S(X,Y))− γ((LXS)Y − (LYS)X +S[X,Y]),

where LXS denotes the Lie derivative of S with respect to X.

Proof. (i) If ω ,θ ∈ ℑ0
1(Bm) andS̃ is projectable tensor field of type(1,2) onMn with projectionS∈ ℑ1

2(Bm) and




(
ccS̃(vvω ,

vvθ )
)c

(
ccS̃(vvω ,

vvθ )
)γ

(
ccS̃(vvω ,

vvθ )
)γ




are components of
(

ccS̃(vvω ,

vvθ )
)K

with respect to the coordinates(xc
,xγ

,xγ ) on t∗(Bm), then we have

(
ccS̃(vvω ,

vvθ )
)K

=cc S̃I
K
J

vvω Ivvθ J =cc S̃α
K
β

vvωα vvθ β =cc S̃α
K
β ωα θβ .

Firstly, if K = c, we have

(
ccS̃(vvω ,

vvθ )
)c

= ccS̃α
c
β︸ ︷︷ ︸

0

ωα θβ = 0

by virtue of (4) and (8). Secondly, ifK = γ, we have

(
ccS̃(vvω ,

vvθ )
)γ

= ccS̃α
γ
β︸ ︷︷ ︸

0

ωα θβ = 0

by virtue of (4) and (8). Thirdly, if J = β , then we have

(
ccS̃(vvω ,

vvθ )
)γ

= ccS̃α
γ
β︸ ︷︷ ︸

0

ωα θβ = 0

by virtue of (4) and (8). Thus(i) of Theorem3 is proved.
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(ii) If G∈ ℑ1
1(Bm) andS̃ is projectable tensor field of type(1,2) onMn with projectionS∈ ℑ1

2(Bm) and




(
ccS̃(vvω ,γG)

)c

(
ccS̃(vvω ,γG)

)γ

(
ccS̃(vvω ,γG)

)γ




are components of
(

ccS̃(vvω ,γG)
)K

with respect to the coordinates(xc
,xγ

,xγ ) on t∗(Bm), then we have

(
ccS̃(vvω ,γG)

)K
=cc S̃I

K
J

vvω I γGJ =cc S̃α
K
β

vvωα γGβ =cc S̃α
K
β ωα pεGε

β .

Firstly, if K = c, we have

(
ccS̃(vvω ,γG)

)c
= ccS̃α

c
β︸ ︷︷ ︸

0

ωα pεGε
β = 0

by virtue of (4), (6) and (8). Secondly, ifK = γ, we have

(
ccS̃(vvω ,γG)

)γ
= ccS̃α

γ
β︸ ︷︷ ︸

0

ωα pεGε
β = 0

by virtue of (4), (6) and (8). Thirdly, if J = β , then we have

(
ccS̃(vvω ,γG)

)γ
= ccS̃α

γ
β︸ ︷︷ ︸

0

ωα pεGε
β = 0

by virtue of (4), (6) and (8). Thus(ii) of Theorem3 is proved.

(iii) If Ỹ ∈ ℑ1
0(Mn) andS̃ is projectable tensor field of type(1,2) onMn with projectionS∈ ℑ1

2(Bm) and




(
ccS̃(vvω ,

ccỸ)
)c

(
ccS̃(vvω ,

ccỸ)
)γ

(
ccS̃(vvω ,

ccỸ)
)γ




are components of
(

ccS̃(vvω ,

ccỸ)
)K

with respect to the coordinates(xc
,xγ

,xγ) on t∗(Bm), then we have

(
ccS̃(vvω ,

ccỸ)
)K

=cc S̃I
K
J (vvω)I

(
ccỸ
)J

=cc S̃α
K
b (vvω)α

(
ccỸ
)b

+cc S̃α
K
β (vvω)α

(
ccỸ
)β

+cc S̃α
K
β (vvω)α

(
ccỸ
)β

.

Firstly, if K = c, we have

(
ccS̃(vvω ,

ccỸ)
)c

= ccS̃α
c
b︸ ︷︷ ︸

0

(vvω)α
(

ccỸ
)b

+ ccS̃α
c
β︸ ︷︷ ︸

0

(vvω)α
(

ccỸ
)β

+ ccS̃α
c
β︸ ︷︷ ︸

0

(vvω)α
(

ccỸ
)β

= 0
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by virtue of (4), (5) and (8). Secondly, ifK = γ, we have

(
ccS̃(vvω ,

ccỸ)
)γ

= ccS̃α
γ
b︸ ︷︷ ︸

0

(vvω)α
(

ccỸ
)b

+ ccS̃α
γ
β︸ ︷︷ ︸

0

(vvω)α
(

ccỸ
)β

+ ccS̃α
γ
β︸ ︷︷ ︸

0

(vvω)α
(

ccỸ
)β

= 0

by virtue of (4), (5) and (8). Thirdly, if K = γ, then we have

(
ccS̃(vvω ,

ccỸ)
)γ

= ccS̃α
γ
b︸ ︷︷ ︸

0

(vvω)α
(

ccỸ
)b

+ ccS̃α
γ
β︸ ︷︷ ︸

Sγ α
β =−Sβ

α
γ

(vvω)α
(

ccỸ
)β

+ ccS̃α
γ
β︸ ︷︷ ︸

0

(vvω)α
(

ccỸ
)β

=−Sβ
α
γ ωαYβ =−Sβ

α
γ ωαYβ =−(ω ◦SY)γ

by virtue of (4), (5) and (8). On the other hand, we know thatvv(ω ◦SY) have components

vv(ω ◦SY) =




0
0
(ω ◦SY)γ




with respect to the coordinates(xc
,xγ

,xγ ) on t∗(Bm). Thus, we haveccS̃(vvω ,

ccỸ) =−vv(ω ◦SY).

(iv) If F,G∈ ℑ1
1(Bm) andS̃ is projectable tensor field of type(1,2) onMn with projectionS∈ ℑ1

2(Bm) and




(
ccS̃(γF,γG)

)c

(
ccS̃(γF,γG)

)γ

(
ccS̃(γF,γG)

)γ




are components of
(

ccS̃(γF,γG)
)K

with respect to the coordinates(xc
,xγ

,xγ ) on t∗(Bm), then we have

(
ccS̃(γF,γG)

)K
= ccS̃I

K
J γF I γGJ =cc S̃α

K
β (γF)α (γG)β =cc S̃α

K
β (pεFε

α )
(

pεGε
β

)
.

Firstly, if K = c, we have

(
ccS̃(γF,γG)

)c
= ccS̃α

c
β︸ ︷︷ ︸

0

(pεFε
α )
(

pεGε
β

)
= 0

by virtue of (6) and (8). Secondly, ifK = γ, we have

(
ccS̃(γF,γG)

)γ
= ccS̃α

γ
β︸ ︷︷ ︸

0

(pεFε
α )
(

pεGε
β

)
= 0

by virtue of (6) and (8). Thirdly, if J = β , then we have

(
ccS̃(γF,γG)

)γ
= ccS̃α

γ
β︸ ︷︷ ︸

0

(pεFε
α )
(

pεGε
β

)
= 0
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by virtue of (6) and (8). Thus(iv) of Theorem3 is proved.

(v) If Ỹ ∈ ℑ1
0(Mn) andS̃ is projectable tensor field of type(1,2) onMn with projectionS∈ ℑ1

2(Bm) and




(
ccS̃(γF,ccỸ)

)c

(
ccS̃(γF,ccỸ)

)γ

(
ccS̃(γF,ccỸ)

)γ




are components of
(

ccS̃(γF,ccỸ)
)K

with respect to the coordinates(xc
,xγ

,xγ ) on t∗(Bm), then we have

(
ccS̃(γF,ccỸ)

)K
=cc S̃I

K
J (γF)I

(
ccỸ
)J

=cc S̃α
K
b (γF)α

(
ccỸ
)b

+cc S̃α
K
β (γF)α

(
ccỸ
)β

+ccS̃α
K
β (γF)α

(
ccỸ
)β

.

Firstly, if K = c, we have

(
ccS̃(γF,ccỸ)

)c
= ccS̃α

c
b︸ ︷︷ ︸

0

(γF)α
(

ccỸ
)b

+ ccS̃α
c
β︸ ︷︷ ︸

0

(γF)α
(

ccỸ
)β

+ ccS̃α
c
β︸ ︷︷ ︸

0

(γF)α
(

ccỸ
)β

= 0

by virtue of (5), (6) and (8). Secondly, ifK = γ, we have

(
ccS̃(γF,ccỸ)

)γ
= ccS̃α

γ
b︸ ︷︷ ︸

0

(γF)α
(

ccỸ
)b

+ ccS̃α
γ
β︸ ︷︷ ︸

0

(γF)α
(

ccỸ
)β

+ ccS̃α
γ
β︸ ︷︷ ︸

0

(γF)α
(

ccỸ
)β

= 0

by virtue of (5), (6) and (8). Thirdly, if K = γ, then we have

(
ccS̃(γF,ccỸ)

)γ
= ccS̃α

γ
b︸ ︷︷ ︸

0

(γF)α
(

ccỸ
)b

+ ccS̃α
γ
β︸ ︷︷ ︸

Sγ α
β =−Sβ

α
γ

(γF)α
(

ccỸ
)β

+ ccS̃α
γ
β︸ ︷︷ ︸

0

(γF)α
(

ccỸ
)β

=−Sβ
α
γ pεFε

αYβ =−pε

(
Sβ

α
γ Fε

αYβ
)
=−pε(F ◦SY)

ε
γ

by virtue of (5), (6) and (8). On the other hand, we know thatγ(F ◦SY) have components

γ(F ◦SY) =




0
0
pε(F ◦SY)

ε
γ




with respect to the coordinates(xc
,xγ

,xγ ) on t∗(Bm). Thus, we haveccS̃(γF,ccỸ) =−γ(F ◦SY).

(vi) If X̃,Ỹ ∈ ℑ1
0(Mn) andS̃ is projectable tensor field of type(1,2) onMn with projectionS∈ ℑ1

2(Bm) and




(
ccS̃(ccX̃,

ccỸ)
)c

(
ccS̃(ccX̃,

ccỸ)
)γ

(
ccS̃(ccX̃,

ccỸ)
)γ



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are components of
(

ccS̃(ccX̃,

ccỸ)
)K

with respect to the coordinates(xc
,xγ

,xγ ) on t∗(Bm), then we have

(
ccS̃(ccX̃,

ccỸ)
)K

=cc S̃I
K
J

(
ccX̃
)I (

ccỸ
)J

=cc S̃α
K
β

(
ccX̃
)α (

ccỸ
)β

+cc S̃α
K
β

(
ccX̃
)α (

ccỸ
)β

+cc S̃α
K
β

(
ccX̃
)α (

ccỸ
)β

.

Firstly, if K = c, we have

(
ccS̃(ccX̃,

ccỸ)
)c

= ccS̃α
c
β︸ ︷︷ ︸

Sα c
β

(
ccX̃
)α

︸ ︷︷ ︸
Xα

(
ccỸ
)β

︸ ︷︷ ︸
Yβ

+ ccS̃α
c
β︸ ︷︷ ︸

0

(
ccX̃
)α (

ccỸ
)β

+ ccS̃α
c
β︸ ︷︷ ︸

0

(
ccX̃
)α (

ccỸ
)β

= Sα
c
β XαYβ = (S(X,Y))c

by virtue of (5) and (8). Secondly, ifK = γ, we have

(
ccS̃(ccX̃,

ccỸ)
)γ

= ccS̃α
γ
β︸ ︷︷ ︸

Sα
γ
β

(
ccX̃
)α

︸ ︷︷ ︸
Xα

(
ccỸ
)β

︸ ︷︷ ︸
Yβ

+ ccS̃α
γ
β︸ ︷︷ ︸

0

(
ccX̃
)α (

ccỸ
)β

+ ccS̃α
γ
β︸ ︷︷ ︸

0

(
ccX̃
)α (

ccỸ
)β

= Sα
γ
β XαYβ = (S(X,Y))γ

by virtue of (5) and (8). Thirdly, if K = γ, then we have

(
ccS̃(ccX̃,

ccỸ)
)γ

=cc S̃α
γ
β

(
ccX̃
)α (

ccỸ
)β

+cc S̃α
γ
β

(
ccX̃
)α (

ccỸ
)β

+cc S̃α
γ
β

(
ccX̃
)α (

ccỸ
)β

=−pε(∂αSβ
ε
γ + ∂β Sγ

ε
α + ∂γSα

ε
β )X

αYβ − pεSα
β
γ Xα∂βYε − pεSγ

α
β ∂αXεYβ

=−pε ∂αSβ
ε
γ XαYβ − pε∂β Sγ

ε
αXαYβ − pε∂γSα

ε
β XαYβ − pεSα

β
γ Xα ∂βYε − pεSγ

α
β ∂αXεYβ

=− pα ∂β Sε
α
γ XβYε

︸ ︷︷ ︸
A1

− pα ∂εSγ
α
β XβYε

︸ ︷︷ ︸
A2

− pα∂γ Sβ
α
ε XβYε

︸ ︷︷ ︸
A3

− pεSα
β
γ Xα ∂βYε

︸ ︷︷ ︸
A4

+ pεSβ
α
γ ∂αXεYβ

︸ ︷︷ ︸
A5

by virtue of (5) and (8). We know thatcc(S(X,Y))γ , pα ((LXS)Y)
α
γ , −pα ((LYS)X)

α
γ and pα

(
S[X,Y]

)α
γ have respectively,

components ont∗(Bm)

cc(S(X,Y))γ =−pα∂γ (Sβ
α
ε XβYε ) =−pα

(
∂γSβ

α
ε
)

XβYε − pα

(
∂γ Xβ

)
Sβ

α
ε Yε − pα

(
∂γY

ε)Sβ
α
ε Xβ

cc(S(X,Y))γ =−pα
(
∂γ Sβ

α
ε
)

XβYε + pα

(
∂γ Xβ

)
Sε

α
β Yε − pα

(
∂γY

ε)Sβ
α
ε Xβ

cc(S(X,Y))γ =−pα
(
∂γ Sβ

α
ε
)

XβYε
︸ ︷︷ ︸

A3

+ pα

(
∂γ Xβ

)
Sε

α
β Yε

︸ ︷︷ ︸
A6

− pα
(
∂γY

ε)Sβ
α
ε Xβ

︸ ︷︷ ︸
A7

pα ((LXS)Y)
α
γ = pαXβ ∂β Sε

α
γ Yε

︸ ︷︷ ︸
A1

+ pα∂ε Xβ Sβ
α
γ Yε

︸ ︷︷ ︸
A8

+ pα ∂γXβ Sε
α
β Yε

︸ ︷︷ ︸
A6

− pα ∂β XαSε
β
γ Yε

︸ ︷︷ ︸
A5

,

−pα ((LYS)X)
α
γ =− pαYβ ∂β Sε

α
γ Xε

︸ ︷︷ ︸
A2

− pα∂εY
β Sβ

α
γ Xε

︸ ︷︷ ︸
A9

− pα ∂γY
β Sε

α
β Xε

︸ ︷︷ ︸
A7

+ pα∂βYαSε
β
γ Xε

︸ ︷︷ ︸
A4

,

pα
(
S[X,Y]

)α
γ = pαSβ

α
γ (X

ε ∂εY
β −Yε ∂εXβ ) = pαSβ

α
γ Xε∂εYβ

︸ ︷︷ ︸
A9

− pαSβ
α
γ Yε ∂εXβ

︸ ︷︷ ︸
A8
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with respect to the coordinates(xc
,xγ

,xγ ). Where the same equations are denoted byA1,A2, ...,A9. On the other hand, we
know thatcc(S(X,Y)) andγ((LXS)Y − (LYS)X +S[X,Y]) have respectively, components

cc(S(X,Y)) =




(S(X,Y))c

(S(X,Y))γ

−pε ∂γ (S(X,Y))ε


 ,

γ((LXS)Y − (LYS)X +S[X,Y]) =




0
0
pα((LXS)Y − (LYS)X +S[X,Y])

α
γ




with respect to the coordinates(xc
,xγ

,xγ ) on t∗(Bm). Thus, we have

ccS̃(ccX̃,

ccỸ) =cc (S(X,Y))− γ((LXS)Y − (LYS)X +S[X,Y])

by the necessary simplifications made in equalities.
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