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Abstract: In this work, a new practical method, which is named by the Fractional Natural Decomposition Method (FNDM), is proposed
to obtain the approximate analytical solutions of fractional gas dynamics equations. The FNDM is a mixture of the Natural Transform
Method and the Adomian Decomposition Method. In this method, the fractional derivatives are considered as Caputo senseand the
nonlinear terms are determined by virtue of Adomian polynomials. Some test examples are given to demonstrate the efficiency and
accuracy of the FNDM.
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1 Introduction

The concept of fractional calculus has been put forward in the study of derivatives and integrals of non-integer (arbitrary)

order. Fractional calculus can be consider as the extensionof the classical calculus theory and its attractiveness has

increased considerably in the last four decades. Because the fractional calculus provides an adequate approach on

modeling of the problems arise in science and engineering. The fractional differential equations (FDEs) have been

widely used to model problems in electromagnetics, electric network, viscoelasticity, fluid mechanics, control theory,

electrochemistry, biological population models, optics,signals processing, dynamical systems, thermodynamics,

chemical physics and many other physical processes [1,2,3,4,5]. Most FDEs do not have exact analytic solutions.

Therefore there have been many research works in the literature focus on finding the analytic, approximately analytical

or numerical solutions of FDEs.

Gas dynamics equations are the equations which base on physical laws such as conservation of mass conservation of

energy , conservation of momentum, etc [6]. The fractional gas dynamics equations have been the focusof some research

works in the literature. Recently, various analytical and numerical methods have been developed to obtain solutions of

fractional gas dynamics equations [7,8,9,10,11,12,13,14,15,16,17].

The aim of this paper is to determine the approximate analytical solution of the time-fractional gas dynamics equations

of the form:
{

Dα
t v+ vvx− v(1− v) = f (x, t),0< α ≤ 1, t > 0,

v(x,0) = h(x),x∈ R.
(1)

wheret is the time,x is the spatial coordinate andv(x, t) is the probability density function.
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2 Preliminaries

Here, some basic concepts and properties with regard to fractional calculus are given.

Definition 1. The Riemann-Liouville (R-L) fractional integral of f(t) ∈Cµ ,µ ≥−1 is defined by:

Jα f (t) =
1

Γ (α)

∫ t

0
(t − ξ )α−1 f (ξ )dξ , (α > 0), (2)

J0 f (t) = f (t). (3)

For f (t) ∈Cµ ,µ ≥ −1,γ > −1,β ,α ≥ 0, some useful properties of the R-L fractional integral operatorJα are given by

the following expressions:

JαJβ f (t) = Jα+β f (t), (4)

JαJβ f (t) = Jβ Jα f (t), (5)

Jα tγ =
Γ (γ +1)

Γ (γ +α +1)
tα+γ . (6)

Definition 2. The Caputo derivative of fractional order of f(t) is given by

Dα f (t) = Jn−αDn f (t) =
1

Γ (n−α)

∫ t

0
(t − ξ )n−α−1 f (n)(ξ )dξ ,n−1< α ≤ n,n∈ N, t > 0. (7)

For f ∈Cn
µ ,µ ≥−1, the Caputo derivative operatorDα satisfies the following properties:

Dα(λ f (t)+g(t)) = λDα f (t)+Dαg(t). (8)

and,

Dα tk =

{

k!
Γ (k−α+1) t

k−α , k≥ α
0, k< α

(9)

Definition 3. The Mittag-Leffler function is identified by

Eα(t) =
∞

∑
k=0

tk

Γ (αk+1)
,(α ∈C,Re(α) > 0). (10)

Lemma 1. If f ∈Cn
µ , µ ≥−1 and n∈ N,n−1< α ≤ n , then

DαJα f (x) = f (x) (11)

JαDα f (x) = f (x)−∑n−1
k=0 f (k)(0+)

xk

k!
,x> 0. (12)
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3 The natural transform

The Natural transform (N-transform),which is an integral transform, is defined and studied its properties and applications

[18]. Later, Belgacem and Silambarasan defined inverse of natural transform and studied some additional fundamental

properties of its [19]. Recently, N- transform is used to find the solution of differential and integral equations [21,22,23,

24,25,26,27,28].

Definition 4. The N-transform of f(t) for all t ≥ 0,is defined as:

N[ f (t)] = R(s,u) =
∫ ∞

0
e−st f (ut)dt =

1
u

∫ ∞

0
e−

st
u f (t)dt

=
1
s

∫ ∞

0
e−t f

(ut
s

)

dt; Re(s)> 0,u∈ (τ1,τ2)

(13)

wheres is the frequency variable andt,u are time variables,f (t) is defined in the setA= { f (t)|∃M,τ1,τ2 > 0, | f (t)| <

Me|t|/τ j ,if t ∈ (−1) j × [0,∞)}(M is constant,τ1 andτ2 may be finite or infinite).

Definition 5. The inverse N-transform is defined as:

N
−1[R(s,u)] = f (t) =

1
2π i

∫ c+i∞

c−i∞
e

st
u R(s,u)ds (14)

The N-transform and the inverse N-transform are linear operators. Also, the N-transform have the following some

properties [13,19,20,22,23].

Theorem 1.The N-transform of the n-th order derivative of f(t) with respect to t is defined as:

N[ f (n)(t)] =
sn

un R(s,u)−∑n
k=0

sn−k−1

un−k f (k)(0) (15)

Theorem 2.Let the N-transforms of f(t) and g(t) be F(s,u) and G(s,u) respectively, then the convolution of f(t) and

g(t) is given by

N[( f ∗g)(t)] = uF(s,u)G(s,u) (16)

Theorem 3.If f (t) = δ (t), then the N-transform of f(t) is:

N[δ (t)] =
1
u

(17)

Theorem 4.If f (t) = tα (α >−1), then the N-transform of f(t) is:

N[ f (t)] = N[tα ] =
Γ (α +1)uα

sα+1 (18)

Theorem 5.Let the N-transforms of f(t) is R(s,u), then N-transform of tn f (t) is:
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N[tn f (t)] =
un

sn

dn

dununR(s,u) (19)

Theorem 6.The N-transform of the R-L fractional integral of f(t) is:

N[Jα f (t)] =
uα

sα N[ f (t)] (20)

Theorem 7.The N-transform of the Caputo fractional derivative of f(t) is:

N[Dα f (t)] =
sα

uα N[ f (t)]−∑n−1
k=0

sα−k−1

uαk Dk f (0). (21)

4 Analysis of FNDM

In this section,the FNDM has been introduced widely. The following general class of the FDEs are considered:

{

Dα
t v(x, t)+Lv(x, t)+Nv(x, t) = f (x, t), t > 0,0< α ≤ 1,

v(x,0) = h(x),x∈R.
(22)

whereDα
t is the Caputo derivative,N is nonlinear operator andL is linear operator. If we implement the N-transform to

both sides of (22) and use the theorem 7, we get

N [Dα
t v(x, t)+Lv(x, t)+Nv(x, t)] = N [ f (x, t)] (23)

N[v(x, t)] =
uα

sα ∑n−1
k=0

sα−k−1

uα−k

[

Dk
t v(x, t)

]

t=0
−

uα

sα N [Lv(x, t)+Nv(x, t)]+
uα

sα N [ f (x, t)] (24)

N[v(x, t)] =
1
s

h(x)−
uα

sα N [Lv(x, t)+Nv(x, t)]+
uα

sα N [ f (x, t)] (25)

After that, let us take the inverse N-transform on both sidesof (25). So,

v(x, t) = g(x, t)−N
−1

[

uα

sα N [Lvx(x, t)+Nv(x, t)]

]

(26)

where

g(x, t) = N
−1

[

1
s
h(x)+

uα

sα N [ f (x, t)]

]

= h(x)+N
−1

[

uα

sα N [ f (x, t)]

]

(27)

Let us consider thatv(x, t) = ∑∞
n=0vn(x, t) is the solution and the nonlinear term is dissociated asNv(x, t) = ∑∞

n=0An for

some Adomian polynomialsAn . So, we can rewrite (26) as

∑∞
n=0vn(x, t) = g(x, t)−N

−1
[

uα

sα N

[

L
(

∑∞
n=0vn(x, t)

)

+∑∞
n=0An

]

]

(28)
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Matching both sides of (28) we have the following relation,

v0(x, t) = g(x, t),

v1(x, t) =−N
−1

[

uα

sα N [Lv0(x, t)+A0]

]

,

v2(x, t) =−N
−1

[

uα

sα N [Lv1(x, t)+A1]

]

,

(29)

Thus, the following recursive relation is obtained:

vn+1(x, t) =−N
−1

[

uα

sα N [Lvn(x, t)+An]

]

, n≥ 1. (30)

So that the aproximate solution is given by

v(x, t) = ∑∞
n=0vn(x, t). (31)

5 Applications of the FNDM

In this section, by using the present method, several fractional gas dynamics equations in form of (1) are solved to illustrate

how the FNDM works and to show effectiveness and accuracy of the FNDM.

Example 1.Let us take the homogenous fractional gas dynamics equation[13,17] as follows.

{

Dα
t v+ vvx− v(1− v) = 0, t > 0, 0< α ≤ 1,

v(x,0) = e−x, x∈ R
(32)

Taking N-transform of (32), then using theorem 7 and the initial condition in (29) , we have

N[Dα
t v] = N[−vvx+ v− v2] (33)

N[v] =
1
s

e−x−
uα

sα N[vvx− v+ v2] (34)

Taking the inverse N-transform of (34), we get:

v(x, t) = e−x−N
−1

[

uα

sα N[vvx− v+ v2]

]

(35)

Now, we definev(x, t) = ∑∞
n=0vn(x, t) as the solution and the nonlinear termsvvx andv2 are dissociated as

vvx = ∑∞
n=0An, v2 = ∑∞

n=0Bn (36)

whereAn andBn are Adomian polynomials, then (35) will become:

∑∞
n=0vn(x, t) = e−x−N

−1
[

uα

sα N

[

∑∞
n=0An−∑∞

n=0vn+∑∞
n=0Bn

]

]

, n≥ 0 (37)
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Then matching both sides of (37), we could be able to calculate some of the terms of the seriesas follows:

v0(x, t) = e−x,

v1(x, t) =−N
−1

[

uα

sα N [A0− v0+B0]

]

=−N
−1

[

uα

sα N
[

v0xv0− v0+ v2
0

]

]

= e−x tα

Γ (α +1)
,

v2(x, t) =−N
−1

[

uα

sα N [A1− v1+B1]

]

=−N
−1

[

uα

sα N [v0xv1+ v0v1x− v1+2v0v1]

]

= e−x t2α

Γ (2α +1)
,

v3(x, t) =−N
−1

[

uα

sα N [A2− v2+B2]

]

=−N
−1

[

uα

sα N
[

v0xv2+ v1xv1+ v2xv0− v2+2v0v1+ v2
1

]

]

= e−x t3α

Γ (3α +1)
,

(38)

If we continue in this way, the following approximate solution is obtained

v(x, t) = ∑∞
n=0vn(x, t)

= e−x
[

1+
tα

Γ (α +1)
+

t2α

Γ (2α +1)
+

t3α

Γ (3α +1)
+ . . .

]

= e−x∑∞
k=0

tkα

Γ (kα +1)

= e−xEα(t
α)

(39)

If we takeα = 1, thenv(x, t) = et−x which is an exact solution of (32).

Example 2.Let us assume the homogenous fractional gas dynamics equation [13,17] given as:

{

Dα
t v+ vvx− v(1− v) loga= 0,0< α ≤ 1,a, t > 0,

v(x,0) = a−x, x∈ R.
(40)

Taking the N-transform of (40), then using theorem 7 and the initial condition in (40) , we have

N[Dα
t v] =−N[vvx− (v− v2) loga] (41)

N[v] =
1
s
a−x−

uα

sα N[vvx]+
uα

sα · loga ·N[v− v2] (42)

Taking the inverse N-transform of (42), we get:

v(x, t) = a−x−N
−1

[

uα

sα N[vvx]

]

+ loga ·N−1
[

uα

sα N[v− v2]

]

(43)

Now, let definev(x, t) = ∑∞
n=0vn(x, t) as the solution and the nonlinear termsvvx andv2 are dissociated as

vvx = ∑∞
n=0An, v2 = ∑∞

n=0Bn (44)

HereAn andBn are Adomian polynomials. Then (43) will become:

∑∞
n=0vn(x, t) = a−x−N

−1
[

uα

sα N

[

∑∞
n=0An

]

]

+ loga ·N−1
[

uα

sα N

[

∑∞
n=0vn−∑∞

n=0Bn

]

]

, n≥ (45)
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Then matching both sides of (45), some of the terms of the series can be determined as follows:

v0(x, t) = a−x,

v1(x, t) =−N
−1

[

uα

sα N [A0]

]

+ loga ·N−1
[

uα

sα N [v0−B0]

]

=−N
−1

[

uα

sα N [v0xv0]

]

+ loga ·N−1
[

uα

sα N
[

v0− v2
0

]

]

= a−x tα loga
Γ (α +1)

,

v2(x, t) =−N
−1

[

uα

sα N [A1]

]

+ loga ·N−1
[

uα

sα N [v1−B1]

]

=−N
−1

[

uα

sα N [v0xv1+ v0v1x]

]

+ loga ·N−1
[

uα

sα N [v1−2v0v1]

]

= a−x t2α log2a
Γ (2α +1)

,

v3(x, t) =−N
−1

[

uα

sα N [A2]

]

+ loga ·N−1
[

uα

sα N [v2−B2]

]

=−N
−1

[

uα

sα N [v0xv2+ v1xv1+ v2xv0]

]

+ loga ·N−1
[

uα

sα N
[

v2−2v0v1+ v2
1

]

]

= a−x t3α log3a
Γ (3α +1)

.

(46)

We continue in this manner, we obtain the approximate solution given by

v(x, t) = ∑∞
n=0vn(x, t)

= a−x
[

1+
tα loga

Γ (α +1)
+

t2α log2a
Γ (2α +1)

+
t3α log3a

Γ (3α +1)
+ . . .

]

= a−x∑∞
k=0

tkα logka
Γ (kα +1)

= a−xEα(t
α loga).

(47)

If we takeα = 1, thenv(x, t) = a−x+t which is an exact solution of (40).

6 Conclusion

In this work, the FNDM is applied to determine the approximate solutions of some nonlinear fractional gas dynamics

equations. It provides a series solution which converges rapidly and fluently to an exact or approximate solution. Some

test examples are demonstrated to show the efficiently and high justice of the method. So, the FNDM can be further

implemented to solve fractional differential and integralequations.
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