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Abstract: In this work, a new practical method, which is named by thefwaal Natural Decomposition Method (FNDM), is proposed
to obtain the approximate analytical solutions of fractibgas dynamics equations. The FNDM is a mixture of the Nafnansform
Method and the Adomian Decomposition Method. In this metibd fractional derivatives are considered as Caputo seam$ehe
nonlinear terms are determined by virtue of Adomian polyiadsn Some test examples are given to demonstrate the efficend
accuracy of the FNDM.
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1 Introduction

The concept of fractional calculus has been put forwarderstiidy of derivatives and integrals of non-integer (aglnjty
order. Fractional calculus can be consider as the extertdidine classical calculus theory and its attractiveness has
increased considerably in the last four decades. Becawsérahtional calculus provides an adequate approach on
modeling of the problems arise in science and engineerihg. ffactional differential equations (FDEs) have been
widely used to model problems in electromagnetics, electetwork, viscoelasticity, fluid mechanics, control theor
electrochemistry, biological population models, optisignals processing, dynamical systems, thermodynamics,
chemical physics and many other physical proces$gsd, 4,5]. Most FDEs do not have exact analytic solutions.
Therefore there have been many research works in the liter&dcus on finding the analytic, approximately analytical
or numerical solutions of FDEs.

Gas dynamics equations are the equations which base oncphigmiis such as conservation of mass conservation of
energy , conservation of momentum, et [The fractional gas dynamics equations have been the fafceseme research
works in the literature. Recently, various analytical andnerical methods have been developed to obtain solutions of
fractional gas dynamics equations$,9,10,11,12,13,14,15,16,17].

The aim of this paper is to determine the approximate arcallytiolution of the time-fractional gas dynamics equations
of the form:

{Dt"v+vvx—v(1—v):f(x,t),0<a§1,t>0, "

v(x,0) = h(x),x € R.

wheret is the timex is the spatial coordinate amwdx,t) is the probability density function.
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2 Preliminaries

Here, some basic concepts and properties with regard ttiidinat calculus are given.

Definition 1. The Riemann-Liouville (R-L) fractional integral oft§ € Cy, 4 > —1is defined by:

1

o t a—-1
3 f(t)zm/oa—a F(£)dE, (a > 0), @)

0F(t) = f(t). (3)

For f(t) e Cy,u > —1,y > —1,B,a > 0, some useful properties of the R-L fractional integralraper J* are given by
the following expressions:

JOIBE(t) = J9HB (1), (4)
JOIBE(t) =JPI9f(t), (5)
riy+1
J9tY — ta+y. 6
ry+a+1) ©)
Definition 2. The Caputo derivative of fractional order oft] is given by
t
DIf(t) =JI"9D"f(t) = #/ (t—&)Na W (&)dE,n—1<a<nneN,t>0. (7)
rin—a)Jo
For f € Cjj,u > —1, the Caputo derivative operatof satisfies the following properties:
DY(Af(t)+g(t)) =ADf(t) +D(t). (8)
and,
Kl -
pak _ | Focarmt T k= a )
0, k<a
Definition 3. The Mittag-Leffler function is identified by
0 k
Lemma 1.If f eCﬂ, p>-landneNn—-1<a <n,then
DYJ%f(x) = f(x) (11)
apa -1 c(k)/n+ XK
J°D f(x):f(x)fzkzof (0 )H,X>O. (12)
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3 The natural transform

The Natural transform (N-transform),which is an integrahsform, is defined and studied its properties and apjaitat
[18]. Later, Belgacem and Silambarasan defined inverse of alanansform and studied some additional fundamental
properties of its 19]. Recently, N- transform is used to find the solution of diffietial and integral equation21,22,23,
24,25,26,27,28).

Definition 4. The N-transform of (t) for all t > 0,is defined as:

00 1 00 s
N[F(t)] = R(s,U) = / e S (ut)dt = = / e f(t)dt
1 /* ’ ut "o (13)
_ = —t - .
= S/o e'f (S)dt, Re(s) > O,u e (11, 12)
wheres is the frequency variable angl are time variablesf (t) is defined in the seA = {f(t)|3M, 11,12 > 0,|f(t)| <
Mell /1j,if t € (—1)] x [0,0)}(M is constant;; andt, may be finite or infinite).

Definition 5. The inverse N-transform is defined as:

1 otie g

NYR(s,u)] = f(t) euR(s,u)ds (14)

- ﬁ C—ioo
The N-transform and the inverse N-transform are linear apes. Also, the N-transform have the following some
properties 13,19,20,22,23].

Theorem 1.The N-transform of the n-th order derivative dft ¥ with respect to t is defined as:

k-1
N[ (t)] = %R(s, u) — ZL(}%H@ (0) (15)

Theorem 2. Let the N-transforms of (f) and gt) be F(s,u) and G(s,u) respectively, then the convolution oft f and
g(t) is given by

N[(f xg)(t)] = uF(s,u)G(s,u) (16)

Theorem 3.1f f (t) = d(t), then the N-transform of(f) is:
N[3(t)] = ~ 17)

Theorem 4.1 f (t) =t? (a > —1), then the N-transform of(f) is:

N[F©) =N = O 19)

Theorem 5.Let the N-transforms of(f) is R(s,u), then N-transform off (t) is:
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n n

Nt (t)] = UE;—wU”R(S, u) (19)

Theorem 6.The N-transform of the R-L fractional integral oftj is:

NI (1)] = SIE ) (20)

Theorem 7.The N-transform of the Caputo fractional derivative df)fis:

k-1
NID® ()] = SNIF )] - Sha S D () @)

4 Analysis of FNDM
In this section,the FNDM has been introduced widely. ThioWihg general class of the FDEs are considered:

{ DAV(X,t) + Lv(x,t) + Nv(x,t) = f(x1),t >0,0< a < 1, 22)

V(%,0) = h(x),x € R.

whereD{ is the Caputo derivativd\l is nonlinear operator andis linear operator. If we implement the N-transform to
both sides 0f22) and use the theorem 7, we get

N[DZV(x,t) + Lv(x,t) + Nv(x,t)] = N[f(x,1)] (23)
Niviot)] = S5 Y NLVOGE) + NVOG )] + SN (x ¢ 24
VO] = o 3 g~ |[DVORD)] = N ILVOct) + NV t)] + N[ (1) (24)
N[v(x,t)] = éh(x) — L;—?N[LV(X,'[) + Nv(x,t)] + l;—fN[f(X,t)] (25)
After that, let us take the inverse N-transform on both safd25). So,

v(x,t) = g(x,t) - N1 [:.—?N [Lvy(X,t) + Nv(x,t)]] (26)

where L " u
glxt) = N1 {gh(x) + NI (x,t)]] —h(x)+ N %N [f (x,t)]] 27)

Let us consider that(x,t) = S7_gVn(X,t) is the solution and the nonlinear term is dissociatetle,t) = 3_,An for
some Adomian polynomials, . So, we can rewrite26) as

ua

S Valxt) =glxt) ~ Nt La N [L (Z::()vn(x,t)) + z:OAnH (28)
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Matching both sides of28) we have the following relation,
VO(th) = g(X,t),
pu
vi(x,t) = —N [gN[Lvo(x,t) +Ao]] ; (29)
ua
Va(x,t) = —N71 [gN[Lvl(Xat) +A1]] )
Thus, the following recursive relation is obtained:
ua
Vni1(x,t) = —N71 {gN[Lvn(x,t) +An]} ,n>1 (30)
So that the aproximate solution is given by
vt =3 oVa(x,t). (31)

5 Applications of the FNDM

In this section, by using the present method, several fraatigas dynamics equations in form of (1) are solved totilaie

how the FNDM works and to show effectiveness and accuradyeoFNDM.

Example 1.Let us take the homogenous fractional gas dynamics equai®n7] as follows.

DiV+vw—Vv(1-Vv)=0, t>0,0<a <1,
v(x,0) =%, xe R

Taking N-transform of32), then using theorem 7 and the initial condition in (29) , veed

N[DZV] = N[—VW+ v — V]

1, ul 2
N[v]:ge —gN[VVX—V—f— ]

Taking the inverse N-transform 084), we get:
ua
v(x,t)=e*-N1 < Nvs—v+ V2
Now, we definer(x,t) = S&_oVn(x,t) as the solution and the nonlinear teravg andv? are dissociated as

VW= Z::OA”’ V= z::o Bn

whereA,, andB, are Adomian polynomials, the3%) will become:

a
Y moVn(xt) =¥ N7t [u?N [z::oA” ~S oot S o BnH ,n>0

(32)

(33)

(34)

(35)

(36)

37)
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Then matching both sides d37), we could be able to calculate some of the terms of the sasiésllows:

VO(th) = eixa
vi(x,t)=-N1 _ﬁN[Aofv +B ]_ =-N1 _fN[v Vo — Vi +v2] fe”‘L
1AL = _SO’ 0 0_* _SO’ 0xVO0 0 0 - I_(a—f—l),
Va(xt) = —N1 _fN[A -v1+B ]_ =-N71 _ﬁN[v V1 + VoVix — V1 + 2VgV1| —e*XL
2(X,1) = 5z 1—V1 1_7 6z oxV1 + VoVix — V1 ovi|| = r2a+1)
1 [u@ 1 1 [u@ t3a
v3(xt) = —N"~ _§N[Az—vZ+ Bz]_ =-N~ _gN [VoxV2 -+ VixV1 - VoV — Vo + 2Vovy + V2| | = efxm,
(38)
If we continue in this way, the following approximate sodrtiis obtained
V(X t) = z:zovn(x,t)
ta t20 t3CI
=e*|1
M rary Teary r@ary " }
_a X%
=€ Yo Fka T 1)
— 7XEa (ta)

If we takea = 1, thenv(x,t) = &> which is an exact solution 08¢).

Example 2Let us assume the homogenous fractional gas dynamics equisj 17] given as:
Dfv+vw—Vv(1-Vv)loga=0,0<a <lat>0, (40)
v(x,0)=a* xeR.

Taking the N-transform of40), then using theorem 7 and the initial condition 49), we have

N[DZV] = —N[vw — (v—V?)loga] (41)
1 ., uw u?
NM = 2a —gN[vvx]Jr?-loga-N[v—vz] (42)

Taking the inverse N-transform oi), we get:

u? u?
v(x,t)=a X-N"1 [—N[vvx]} +loga-N~1 {—N[V vz]] (43)
s s
Now, let definev(x,t) = S&_oVn(X,t) as the solution and the nonlinear termg andv? are dissociated as
Vi = znzoArh V2 = Zn:O Bn (44)
HereA, andB, are Adomian polynomials. Thed ) will become:
o T neq U ® 1 [u? ® ®
YoV t) =aX=N"1| =N {ZHA@ +loga-N™| =N [anovn - anan} , N> (45)
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Then matching both sides 01%), some of the terms of the series can be determined as follows

VO(th) = aixa
a

vi(xt) = —N1 [gN[M]] +loga- N1 [u?N[vo Bo]}

=_N1 |:LSJ'_7N[V0XVO]:| +loga-N"* {I;_TN [VO_Va]

_ t%loga
r(a+1)’
va(x,t) = —N1 _ﬁN[A] +loga-N! fN[v — By
2(X1) = K 1 g oA ]
pfuf u” (46)
= —N7" | —=N|voxv1 + Vovix] | +loga- [\ —N{vi — 2vpvy]
| s* s
o t?log’a
r(2a+1)’
va3(x,t) = —N"1 _ﬁN[A] +loga-N~1 fN[v —By)
3(X1) = & 2 g o V2B
'ua G
—_N1 §N[von2+levl+v2xv0]] +loga-N~ [SQN[vz—Zvovl—yvﬂ
___y t%%og®a
rBa+1)
We continue in this manner, we obtain the approximate swiudiven by
V(xt) =3 oVa(xt)
_ a1y t%loga  t%*log’a  t*log’a
B Ma+1 20+1) Tr(Ba+1
(a+1) T(20+1) T(Ea+1) )

,XZ tklogka
k=0T (kar + 1)
=a *Eq4(t%loga).

If we takea = 1, thenv(x,t) = a~**! which is an exact solution o#().

6 Conclusion

In this work, the FNDM is applied to determine the approxiensplutions of some nonlinear fractional gas dynamics
equations. It provides a series solution which convergeisiiaand fluently to an exact or approximate solution. Some
test examples are demonstrated to show the efficiently agid jbstice of the method. So, the FNDM can be further
implemented to solve fractional differential and integrquiations.
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