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Abstract: In this paper, we discuss a scale of necessary and sufficient conditions for the local boundedness and boundedness of
superposition operatorPg : Cr0 (p)→ L (q), wherep= (pks) andq= (qks) are bounded double sequences of positive numbers.
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1 Introduction

Throughout this paper,N andR denote the set of positive integers and real numbers, respectively. A real double sequence

is a function acting fromN2 = N×N into R and briefly denoted by(xks) . Let Ω denotes the space of all real double

sequences with coordinatewise addition and scalar multiplication. Letx= (xks) ∈ Ω be any sequence. If, for everyε > 0,

there existsnε ∈ N such that|xks− l |< ε for all k,s≥ nε , then real double sequencex= (xks) is said to be converging to

l ∈ R in Pringsheim’s senseand denoted byp− lim xks= l . Let the double sequencex= (xks) converges in Pringsheim’s

sense and the iterated limits lim
k

xks and lim
s

xks exist. Then the double sequencex = (xks) is calledregularly convergent

and denoted byr − lim xks. By Cr , we denote the space of all regularly convergent double sequences. The Maddox space

Cr0 (p) is defined by

Cr0 (p) = {x= (xks) ∈ Ω : r − lim |xks|
pks = 0}

wherep= (pks) is a bounded sequence of positive numbers. Also,‖.‖Cr0(p)
: Cr0 (p)→R is defined as

‖x‖Cr0(p)
= sup

k,s∈N
|xks|

pks
M1 ,

whereM1 = max

{

1, sup
k,s∈N

pks

}

. The convergence of the partial sums sequence(snm) ,wheresnm=
n
∑

k=1

m
∑

s=1
xks (n, m∈N)

implies that the double series
∞
∑

k=1

∞
∑

s=1
xks is convergent. Byv, we denote convergence notions, i.e., in Pringsheim’s senseor

regularly convergent. If the partial sums sequence(snm) is convergent to a real numbers in v-sense, i.e.

v− lim
n,m

n

∑
k=1

m

∑
s=1

xks= s,
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then the series
∞
∑

k=1

∞
∑

s=1
xks is calledv−convergent and it’s denoted by

∞

∑
k,s=1

xks= s.

If the series
∞
∑

k=1

∞
∑

s=1
xks is v−convergent, then thev−limit of (xks) equals to zero. The remaining term of the series

∞
∑

k=1

∞
∑

s=1
xks

is defined by

Rnm=
n−1

∑
k=1

∞

∑
s=m

xks+
∞

∑
k=n

m−1

∑
s=1

xks+
∞

∑
k=n

∞

∑
s=m

xks. (1)

and briefly denoted by

∑
max{k,s}≥N

xks

for n = m = N. It is known that if the series
∞
∑

k=1

∞
∑

s=1
xks is v−convergent, then thev−limit of the remaining term

∑
max{k,s}≥N

xks is zero.

The double sequence spaceLp is defined as follows

Lp :=

{

x= (xks) ∈ Ω :
∞

∑
k,s=1

|xks|
p
< ∞

}

and this space is a Banach space with the norm

‖x‖p =

(

∞

∑
k,s=1

|xks|
p

)
1
p

,

for 1≤ p< ∞. The Maddox spaceL (q) of double sequences is defined as

L (q) =

{

x= (xks) ∈ Ω :
∞

∑
k,s=1

|xks|
qks < ∞

}

,

whereq= (qks) is a bounded sequence of positive numbers. Also,‖.‖
L (q) : L (q)→R is defined by

‖x‖
L (q) =

∞

∑
k,s=1

|xks|
qks
M2 ,

whereM2 = max

{

1, sup
k,s∈N

qks

}

. For more details see [1],[2],[3],[7],[9],[12],[18].

Let X, Y be two double sequence spaces. A superposition operatorPg on X is a mapping fromX into Ω defined by

Pg(x) = (g(k,s,xks))
∞
k,s=1 , whereg : N2×R→ R satisfies condition (1) in below.(1) g(k,s,0) = 0 for all k,s∈ N.

If Pg(x) ∈ Y for all x ∈ X, we say thatPg acts fromX into Y and writePg : X → Y [13]. Also, we shall use some of the

following conditions:

(2) g(k,s, .) is continuous for allk,s∈ N;

(2′) g(k,s, .) is bounded on every bounded subset ofR for all positive integersk,s.
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One can easily see that if the functiong(k,s, .) satisfies the propety(2), then g satisfies(2′). Also, if the function

g(k,s, .) is locally bounded onR, theng satisfies(2′).

Boundedness of the superposition operators on some sequence spaces was studied by Samae [16], Sağır and Güngör [14]

and Chew [4], [5], [6], [8], [10], [11], [18]. Sağır and Güngör [15] characterized the superposition operatorsPg onCr0 (p)

as follows

Theorem 1. Let g: N2×R→R satisfies(2′). Then Pg : Cr0 (p)→ L1 if and only if there existα > 0 and(cks)
∞
k,s=1 ∈ L1

such that

|g(k,s, t)| ≤ cks whenever|t| ≤ α

for all k,s∈ N.

Theorem 2. Let g: N2×R→ R . Then Pg : Cr0 (p)→ L (q) if and only if there exist N∈ N andα > 0 such that

∑
max{k,s}≥N

sup

|t|≤α
1

pks

|g(k,s, t)|
qks
M2 < ∞.

2 Conclusion

2.1 Superposition Operators of Cr0(p) into L1

Theorem 3. Let Pg : Cr0 (p)→ L1. Then Pg is locally bounded on Cr0 (p) if and only if g satisfies(2′).

Proof.Suppose thatg satisfies(2′) and letz= (zks) ∈Cr0 (p). By Theorem 1, there exist(cks) ∈ L1 andα > 0 such that

|g(k,s, t)| ≤ cks (2)

whenever|t| ≤ α for all k,s∈N with max{k,s} ≥ N. Let x= (xks) ∈Cr0 (p) satisfies the following relation;

‖z− x‖Cr0(p)
≤

α
pks
M1

2
.

Thus, we have

sup
k,s∈N

|zks− xks|
pks
M1 ≤

α
pks
M1

2
. (3)

Sincer − lim zks= 0, there existsN ∈ N such that|zks|
pks ≤ α pks

2M1
for all k,s∈ N with max{k,s} ≥ N. Hence,

sup
max{k,s}≥N

|zks|
pks
M1 ≤

α
pks
M1

2
. (4)

Using the relations (3) and (4), we get

|xks|

pks
M1

≤ sup
max{k,s}≥N

|xks|

pks
M1

≤ sup
k,s∈N

|zks− xks|

pks
M1

+ sup
max{k,s}≥N

|zks|

pks
M1

< α
pks
M1

for all k,s∈ N with max{k,s} ≥ N. From (1), we have that

|g(k,s,xks)| ≤ cks
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for all k,s∈N with max{k,s} ≥ N. Therefore,

∑
max{k,s}≥N

|g(k,s,xks)| ≤ ∑
max{k,s}≥N

cks≤
∞

∑
k,s=1

cks= ‖cks‖1 . (5)

Let mks= sup
|t−zks|≤

α

2

M1
pks

|g(k,s, t)|. Sinceg satisfies(2′) , we have thatmks< ∞ for all k,s∈ N and so

|g(k,s,xks)| ≤ mks (6)

for eachk,s∈N. By (5) and (6), we obtain

∥

∥Pg (x)
∥

∥

1 =
∞

∑
k,s=1

|g(k,s,xks)|=
N−1

∑
k,s=1

|g(k,s,xks)|+ ∑
max{k,s}≥N

|g(k,s,xks)|

≤
N−1

∑
k,s=1

mks+
∞

∑
k,s=1

cks=
N−1

∑
k,s=1

mks+ ‖cks‖1 .

Therefore,

∥

∥Pg (x)−Pg(z)
∥

∥

1 ≤
∥

∥Pg (x)
∥

∥

1+
∥

∥Pg(z)
∥

∥

1

≤
∥

∥Pg (z)
∥

∥

1+
N−1

∑
k,s=1

mks+ ‖cks‖1 .

Let γ =
∥

∥Pg(z)
∥

∥

1+
N−1
∑

k,s=1
mks+ ‖cks‖1, then

∥

∥Pg(x)−Pg(z)
∥

∥

1 ≤ γ. It means thatPg is locally bounded onCr0 (p).

Conversely, letPg be locally bounded onCr0 (p). It is enough to show thatg is locally bounded onR. Let y= (yks) be as

yks=

{

a, k= n ands= m
1
k +

1
s, others

for all k,s∈N anda∈R. Thusy= (yks) ∈Cr0 (p). By the hypothesis, there existsα,β > 0 such that

∥

∥Pg(x)−Pg(y)
∥

∥

1 ≤ β (7)

whenever‖x− y‖Cr0(p)
≤ α. If we takex= (xks) such that

xks=

{

b, k= n ands= m
1
k +

1
s, others

for all k,s∈N andb∈R with |b−a| ≤ α
M1
pks , we havex= (xks) ∈Cr0 (p). Thus, we get

‖x− y‖Cr0(p)
= sup

k,s∈N
|xks− yks|

pks
M1 = |b−a|

pks
M1 ≤ α,
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which means that
∥

∥Pg(x)−Pg(y)
∥

∥≤ β by (7). Then, we obtain

|g(k,s,b)−g(k,s,a)| ≤
∞

∑
k,s=1

|g(k,s,xks)−g(k,s,yks)|=
∥

∥Pg(x)−Pg(y)
∥

∥≤ β .

Sinceb∈ R is arbitrary,g(k,s, .) is locally bounded onR.

Theorem 4. Let Pg : Cr0 (p)→ L1. Then Pg is bounded on Cr0 (p) if and only if for everyβ > 0 there exists a sequence

c(β ) = cks(β ) ∈ L1 such that

|g(k,s, t)| ≤ cks(β )

whenever|t|
pks
M1 ≤ β for all k,s∈N.

Proof.Suppose that the condition holds. Letβ > 0 andx= (xks) ∈Cr0 (p) such that‖x‖Cr0(p)
≤ β . Then,|xks|

pks
M1 ≤ β for

eachk,s∈N. By hypothesis, there exists a sequencec(β ) = cks(β ) ∈ L1 such that|g(k,s,xks)| ≤ cks(β ) for all k,s∈ N.

Therefore, we get

∥

∥Pg(x)
∥

∥

1 =
∞

∑
k,s=1

|g(k,s,xks)| ≤
∞

∑
k,s=1

cks(β ) = ‖c(β )‖1 .

Hence,Pg is bounded onCr0 (p).

Conversely, assume thatPg is bounded onCr0 (p). Let β > 0 and let defineA(β ) andcks(β ) as follows

A(β ) =
{

t ∈R : |t|
pks
M1 ≤ β

}

,

and

cks(β ) = sup{|g(k,s, t)| : t ∈ A(β )}

for all k,s∈N. Therefore, we have|g(k,s, t)| ≤ cks(β ) whenever|t|

pks
M1

≤ β . Sinceg satisfies(2′), we get 0≤ cks(β )< ∞
for all k,s∈ N. Hence, for eachε > 0, there exists a sequencex= (xks) ∈Cr0 (p) with |xks|

pks
M1 ≤ β such that

cks(β )< |g(k,s,xks)|+
ε

2k+s (8)

for all k,s∈ N. By assumption, there existsα (β )> 0 such that
∞
∑

k,s=1
|g(k,s,xks)| ≤ α (β ). Then, by (2.7) we find

∞

∑
k,s=1

cks(β )<
∞

∑
k,s=1

|g(k,s,xks)|+
∞

∑
k,s=1

ε
2k+s ≤ α (β )+ ε.

Hence, we obtain c(β ) = cks(β ) ∈ L1. The proof is completed.

Example 1. Let g : N2×R→ R satisfies

g(k,s, t) =
|t|

pks
M1

4k+s

for all k,s∈ N and for allt ∈ R. Sinceg satisfies(2′), Pg is locally bounded onCr0 (p) by Theorem 3. Let take|t|
pks
M1 ≤ β

andcks(β ) = β
4k+s for all k,s∈N. Then, the condition in Theorem 4 holds and so the superposition operatorPg is bounded

onCr0 (p).
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2.2 Superposition Operators of Cr0(p) into L (q)

Theorem 5. Let Pg : Cr0 (p)→ L (q). Then Pg is locally bounded on Cr0 (p) if and only if g satisfies(2′).

Proof.Let g satisfies(2′) and letz= (zks) ∈Cr0 (p). By Theorem 2, there existN ∈ N andα > 0 such that

∑
max{k,s}≥N

sup

|t|≤α
1

pks

|g(k,s, t)|
qks
M2 < ∞. (9)

Let x= (xks) ∈Cr0 (p) such that‖z− x‖Cr0(p)
≤ α

1
M1

2
pks
M1

. Then, we have

sup
k,s∈N

|zks− xks|
pks
M1 ≤

α
1

M1

2
pks
M1

. (10)

Sincer − lim zks= 0, there existsN ∈ N such that|zks|
pks ≤ α

2pks for all k,s∈ N with max{k,s} ≥ N. Hence,

sup
max{k,s}≥N

|zks| ≤
α

1
pks

2
. (11)

Using the relations (9) and (10), we get

|xks| ≤ sup
max{k,s}≥N

|xks| ≤ sup
k,s∈N

|zks− xks|+ sup
max{k,s}≥N

|zks|< α
1

pks

for all k,s∈N with max{k,s} ≥ N. By (8), we have

∑
max{k,s}≥N

|g(k,s,xks)|
qks
M2 ≤ ∑

max{k,s}≥N

sup

|t|≤α
1

pks

|g(k,s, t)|
qks
M2 < ∞ (12)

for all k,s∈ N with max{k,s} ≥ N. Let mks = sup

|t−zks|≤
α

1
pks
2

|g(k,s, t)|
qks
M2 . Sinceg satisfies(2′) , we can easily see that

mks< ∞ for all k,s∈ N. Hence, we have

|g(k,s,xks)|
qks
M2 ≤ mks (13)

for eachk,s∈N. By (12) and (13), we obtain

∥

∥Pg (x)
∥

∥

L (q) =
∞

∑
k,s=1

|g(k,s,xks)|
qks
M2 =

N−1

∑
k,s=1

|g(k,s,xks)|
qks
M2 + ∑

max{k,s}≥N

|g(k,s,xks)|
qks
M2

≤
N−1

∑
k,s=1

mks+ ∑
max{k,s}≥N

sup

|t|≤α
1

pks

|g(k,s, t)|
qks
M2 < ∞.
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Let A=
N−1
∑

k,s=1
mks+ ∑

max{k,s}≥N
sup

|t|≤α
1

pks

|g(k,s, t)|
qks
M2 < ∞. Then, we get

∥

∥Pg (x)−Pg(z)
∥

∥

L (q) ≤
∥

∥Pg (x)
∥

∥

L (q)+
∥

∥Pg(z)
∥

∥

L (q)

≤
∥

∥Pg (z)
∥

∥

L (q)+A.

Let γ =
∥

∥Pg(z)
∥

∥

L (q)+A, then we have
∥

∥Pg (x)−Pg(z)
∥

∥

L (q) ≤ γ. Hence,Pg is locally bounded onCr0 (p).

Conversely, assume thatPg is locally bounded onCr0 (p). To complete the proof, it is sufficient thatg is locally bounded

onR. Let y= (yks) be as follows

yks=

{

a, k= n ands= m
1
k +

1
s, others

for all k,s∈ N anda∈R. Then, it is clear thaty= (yks) ∈Cr0 (p). By the hypothesis, there existsα,β > 0 such that

∥

∥Pg(x)−Pg(y)
∥

∥

L (q) ≤ β , (14)

whenever‖x− y‖Cr0(p)
≤ α. Let x= (xks) be as follows

yks=

{

b, k= n ands= m
1
k +

1
s, others

for all k,s∈ N andb∈R with |b−a| ≤ α
M1
pks . Thusx= (xks) ∈Cr0 (p). Hence, we get

‖x− y‖Cr0(p)
= sup

k,s∈N
|xks− yks|

pks
M1 = |b−a|

pks
M1 ≤ α.

Therefore, by (3.6) we get
∥

∥Pg (x)−Pg(y)
∥

∥

L (q) ≤ β . Then, we obtain

|g(k,s,b)−g(k,s,a)|
qks
M2 ≤

∞

∑
k,s=1

|g(k,s,xks)−g(k,s,yks)|
qks
M2

=
∥

∥Pg (x)−Pg(y)
∥

∥

L (q) ≤ β .

Sinceb∈ R is arbitrary,g(k,s, .) is locally bounded onR.

Theorem 6. Let Pg : Cr0 (p)→ L (q). Then Pg is bounded on Cr0 (p) if and only if for everyβ > 0 there exists a sequence

c(β ) = cks(β ) ∈ L

|g(k,s, t)|
qks
M2 ≤ cks(β ) ,

whenever|t|
pks
M1 ≤ β for all k,s∈N.

Proof.Assume that the condition holds. Letβ > 0 and letx= (xks) ∈Cr0 (p) such that‖x‖Cr0(p)
≤ β . Then,|xks|

pks
M1 ≤ β

for eachk,s∈ N. By hypothesis, there exists a sequencec(β ) = cks(β ) ∈ L1 such that|g(k,s,xks)|
qks
M2 ≤ cks(β ) for all

k,s∈ N. Therefore, we have

∥

∥Pg (x)
∥

∥

L (q) =
∞

∑
k,s=1

|g(k,s,xks)|
qks
M2 ≤

∞

∑
k,s=1

cks(β ) = ‖c(β )‖1 ,

c© 2017 BISKA Bilisim Technology

www.ntmsci.com


87 O. Ogur: On characterization of boundedness of superposition operators ...

which implies thatPg is bounded onCr0 (p).

Conversely, assume thatPg is bounded onCr0 (p) . Let β > 0. Let defineA(β ) andcks(β ) as follows;

A(β ) =
{

t ∈ R : |t|
pks
M1 ≤ β

}

and

cks(β ) = sup

{

|g(k,s, t)|
qks
M2 : t ∈ A(β )

}

for all k,s∈ N. Therefore, we get|g(k,s, t)|
qks
M2 ≤ cks(β ) whenever|t|

pks
M1

≤ β . Sinceg satisfies(2′), it is easy seen that

0≤ cks(β )< ∞ for all k,s∈ N. Hence, for eachε > 0, there exists a sequencex= (xks) ∈Cr0 (p) with |xks|
pks
M1 ≤ β such

that

cks(β )< |g(k,s,xks)|
qks
M2 +

ε
2k+s (15)

for all k,s∈N. By assumption, there existsα (β )> 0 such that
∞
∑

k,s=1
|g(k,s,xks)|

qks
M2 ≤ α (β ). Then, we have

∞

∑
k,s=1

cks(β )<
∞

∑
k,s=1

|g(k,s,xks)|
qks
M2 +

∞

∑
k,s=1

ε
2k+s ≤ α (β )+ ε.

Hence, we obtain c(β ) = cks(β ) ∈ L1. This completes the proof.

Example 2. Let g : N2×R→ R be as follows

g(k,s, t) =

(

|t|pks

2k+s

)

M2
qks

for all k,s∈ N and for allt ∈ R. Sinceg satisfies(2′), Pg is locally bounded onCr0 (p) by Theorem 5. Let take|t|
pks
M1 ≤ β

andcks(β ) = β M1

4k+s for all k,s∈N. Then, the condition in Theorem 6 holds. Hence, the superposition operatorPg is bounded

onCr0 (p).
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[4] Chew T. S., Lee P., Y.,Orthoganally Additive Functionals on Sequence Spaces,SEA Bull. Math., 9 (1985), 81-85.

c© 2017 BISKA Bilisim Technology



NTMSCI 5, No. 4, 80-88 (2017) /www.ntmsci.com 88

[5] Dedagich F., Zabreiko P. P.,Operator Superpositions in the Spaceℓp, Sibirskii Matematicheskii Zhurnal, 28 (1987), 86-98.

[6] Herawaty E.,The Locally Boundedness Criteria for Superposition Operators onℓΦ (L), Applied Mathematical Science, 7 (2013),

727-733.

[7] Moricz, F.,Extension Of The Spaces c and c0 From Single To Double Sequences,Acta Math. Hung.,57 (1–2) (1991), 129–136.

[8] Kolk,E., Raidjoe, A.,The Continuity Of Superposition Operators On Some SequenceSpaces Defined By Moduli, Czechoslovak

Mathematical Journal,57 (2007), 777-792.

[9] Limaye B.V., Zelstser M.,On The Pringsheim Convergence Of Double Series,Proc. Eston. Aca. Sci.,58,2 (2009), 108-121.

[10] Petranuarat S., Kemprasit Y.,Superposition Operators On lp And c0 Into lq (1 ≤ p,q < ∞), Southeast Asian Bulletion of

Mathematics,21 (1997), 139-147.

[11] Pluciennik, R. ,Continuity Of Superposition Operators On w0 And W0, Comment. Math. Univ. Carolinae31(1990), 529-542.

[12] Pringsheim A.,Zur Theorie de Zweifach Unendlichen Zahlenfolgen,Math. Ann.,53 (1900), 289-321.
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