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Abstract. For a non-empty ground set X, finite or infinite, the set-valuation

or set-labeling of a given graph G is an injective function f : V (G) → P(X),
where P(X) is the power set of the set X. In this paper, we introduce a new

type of set-labeling, called set-cordial labeling and study the characteristics of

graphs which admit the set-cordial labeling.

1. Introduction

For all terms and definitions, not defined specifically in this paper, we refer to [11]
and for further terminology on graph classes, we refer to [3]. Unless mentioned
otherwise, all graphs considered here are undirected, simple, finite and connected.

After the introduction of the notion of β-valuations of graphs in [8], studies on
graph labeling problems have emerged as a major research area. It is estimated that
more than two thousand research articles have been published since then. Interested
readers may refer to [6] for a detailed literature and for further investigation on
graph labeling problems.

As an extension of the number valuation of graphs, the notion of set-indexers of
graphs has been introduced in [1] as an injective set-valued function f : V (G) →
P (X) such that the induced function f∗ : E(G) → P (X)−{∅}, defined by f∗(uv) =
f(u)∗f(v) is also injective, where X is a non-empty set, P (X) is the power set of
X and ∗ is a binary operation between the elements of P (X). Note that in the
literature, ∗ is the symmetric difference of two sets. In [1], it is proved that every
graph admits a set-indexer.

In this paper, a set-labeling of a graph G is an injective function f : V (G) →
P (X). Motivated by the studies on the number valuations and set-valuations of
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graphs, mentioned above, in this paper, we introduce a particular type of set-
labeling called set-cordial labeling and study the characteristics of graphs which
admit this type of labeling.

2. Set-Cordial Graphs

We define the notion of the set-cordial labeling of a graph as follows:

Definition 1. Let X be a non-empty set and f : V (G) → P (X) be a set-labeling
defined on a graph G. Then, f is said to be a strict set-cordial labeling or simply,
a set-cordial labeling of G if |f(vi)| − |f(vj)| = ±1 for all vivj ∈ E(G). A graph
which admits a set-cordial labeling is called a set-cordial graph.

Definition 2. The minimum cardinality of a ground set X with respect to which
a given graph G admits a set-cordial labeling is called the set-cordiality index of G,
denoted by ς(G).

An illustration of set-cordial graphs is provided in Figure 1.

∅

{1}

{1, 2}

{2}

{2, 3}

{3}

{1, 3}

{4}

{3, 4}

Figure 1. An illustration to a set-cordial graph.

In Figure 1, it can be noticed that the set-cordial index of the graph G is 4 as
the minimal ground set is X = {1, 2, 3, 4}.

Next, we discuss the admissibility of set-cordial labeling by certain fundamental
graph classes. In order to consider set-cordial labelings on paths on n vertices, we
first show that the hypercube graph Qn contains a Hamiltonian path.

Lemma 1. Every hypercube graph Qn contains a Hamiltonian path. Furthermore,
if n ≥ 2, then Qn has a Hamiltonian cycle.

Proof. We first observe that Q1 = K2 and hence Q2 itself is a Hamiltonian path.
For any positive integer n ≥ 2, let v1 − v2 − . . .− v2n−1 be the list of vertices in a
Hamiltonian path in Qn−1. Then, the list of vertices

(v1, 0), (v2, 0), . . . , (v2n−1 , 0), (v2n−1 , 1), (v2n−1−1, 1), . . . , (v2, 1), (v1, 1)
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is a Hamiltonian path in Qn, and the list of vertices

(v1, 0), (v2, 0), . . . , (v2n−1 , 0), (v2n−1 , 1), (v2n−1−1, 1), . . . , (v2, 1), (v1, 1), (v1, 0)

is a Hamiltonian cycle in Qn as required. □

Recall that a connected bipartite graph G with bipartition (X,Y ), is called
Hamilton-laceable (see [9]), if it has a u−v Hamiltonian path for all pairs of vertices
u ∈ X and v ∈ Y . The hypercube Qn is a bipartite Cayley graph on the Abelian
group Zn

2 =
∏
n
Z2 with the natural generating set S = {(1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0),

. . . , (0, 0, 0, . . . , 0, 1)}. It is proved in [4] that a connected bipartite Cayley graph
on an Abelian group is Hamiltonian laceable.

In view of the above-mentioned concepts, the following theorem discusses the
admissibility of set-cordial labeling by a path and the corresponding set-cordiality
index.

Theorem 1. Every path Pn is set-cordial. Furthermore, ς(Pn) = ⌈log2 n⌉.

Proof. Let Pn denotes a path of order n, whose vertices are consecutively named
by v1, v2, . . . , vn. Let X = {x1, x2, . . . , xn−1} be the ground set for labeling. Start
labeling the vertex v1 by the empty set ∅. For 2 ≤ i ≤ n, label vertices vi by the set
{x1, x2, . . . , xi−1}. Clearly, f(vi+1)− f(vi) = {xi−1} for 0 ≤ i ≤ n− 1. Therefore,
f is a set-cordial labeling of Pn.

Let k = ⌈log2 n⌉. Then n ≤ 2k < 2n. By Lemma 1, let v1, v2, . . . , v2k be the list
of vertices in a Hamiltonian path in the hypercube Qk. Let X = {1, 2, 3, . . . , k}.
We can identify each vertex of Qk with a unique element in P (X) and hence we
identify the path Pn with the subpath v1−v2−. . .−vn in Qk. Thus, the set-labeling
on Pn given by f(vi) = vi is a set-cordial labeling on Pn. Since n > 2k−1, there is
no set-labeling on Pn that uses a ground set with fewer than k elements. Hence,
ς(Pn) = k = ⌈log2 n⌉. This completes the proof. □

Theorem 2. A graph G admits a set-cordial labeling if and only if G is bipartite.

Proof. Let G be a bipartite graph with bipartition (X,Y ). Choose the set N of
natural numbers as the ground set for labeling. For any positive integer k, assign
distinct k-element subsets of N to distinct vertices in X and distinct (k+1)-element
subsets of N to distinct vertices in X. Clearly, this labeling is a set-cordial labeling
of G.

Conversely, assume that G is a set-cordial graph and let f : V (G) → P (A) be a
set-cordial labeling on G. Let X and Y be the partite sets of G defined by

X = {v ∈ V (G) : |f(v)| is even; and}
Y = {v ∈ V (G) : |f(v)| is odd}.

Let u, v ∈ X. Since f(u) and f(v) have an even number of elements, |f(u)| −
|f(v)| is even. Thus, |f(u)| − |f(v)| ≠ ±1. Hence, X is an independent set. A
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similar argument shows that Y is also an independent set. Since V (G) = X ∪ Y ,
G is bipartite, completing the proof. □

The following theorem characterises the cycles which admit set-cordial labeling.

Theorem 3. A cycle Cn admits a set-cordial labeling if and only if n is even.
Furthermore, ς(Pn) = ⌈log2 n⌉.

Proof. First part of the theorem is an immediate consequence of Theorem 2. Hence,
we shall now determine the set-cordiality index of cycles. By Lemma 1, let v1, v2, . . . , v2k
be the list of vertices in a Hamiltonian path in the hypercube Qk. Let X =
{1, 2, 3, . . . , k}.

Let n = 2m,m ∈ N0 and k = ⌈log2 n⌉. Then, by Lemma 1, we have a list of
vertices

(v1, 0), (v2, 0), . . . , (v2k−1 , 0), (v2k−1 , 1), (v2k−1−1, 1), . . . , (v2, 1), (v1, 1), (v1, 0),

which are in a Hamiltonian path in Qk, where v1, v2, . . . , v2k−1 are the vertices in
the Hamiltonian path in the hypercube Qk−1. Also, we can identify a cycle of
length n = 2m in Qk, whose vertices are

(v1, 0), (v2, 0), . . . , (vm−1, 0), (vm, 0), (vm, 1), (vm−1, 1), . . . , (v2, 1), (v1, 1), (v1, 0).

Now, let X = {1, 2, 3, . . . , k}. As explained in the proof of Theorem 1, we can
identify each vertex of Qk with a unique element in P (X) and hence we identify
the cycle Cn with the sub-cycle in Qk. Thus, the set-labeling on Cn given by
f(vi, j) = (vi, j) is a set-cordial labeling on Cn. Since n > 2k−1, in this case also,
we have no set-labeling on Cn that uses a ground set with fewer than k elements.
Hence, ς(Cn) = k = ⌈log2 n⌉, completing the proof. □

In view of Theorem 2, we notice that graphs consisting of odd cycles will not
admit set-cordial labelings. Therefore, the fundamental graph classes like wheel
graphs, friendship graphs and helm graphs do not admit a set-cordial labeling.
Also, we note that a complete graph Kn admits a set-cordial labeling if and only if
n ≤ 2.

Suppose that a and b are positive integers such that a ≤ b. Let α = α(a, b) be
the smallest positive integer such that

a ≤
(
2α

α

)
and b ≤

(
2α

α− 1

)
+

(
2α

α+ 1

)
.

Similarly, define β = β(a, b) as the smallest positive integer such that

a ≤
(
2β + 1

β + 1

)
and b ≤

(
2β + 1

β

)
+

(
2β + 1

β + 2

)
.

Using the above notations,the set-cordiality index of a complete bipartite graph
is determined in the following theorem.
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Theorem 4. A complete bipartite graph Ka,b, where a ≤ b, admits a set-cordial
labeling. Furthermore, ς(Ka,b) = min{2α, 2β + 1}.

Proof. Let (A,B) be the bipartition of Ka,b such that |A| = a ≤ |B| = b. Assume
that f is a set-cordial labeling of Ka,b with respect to the minimal ground set X.
Then, f(vi) can be an empty set, a single set or a 2-element set. We try to label
the vertices of A by singleton subsets of the ground set X and label one vertex of
B with empty set and other vertices by 2-element subset of X. This labeling is
possible only when b − 1 is less than or equal to the number of 2-element subsets
of the set

⋃
v∈A

f(v). If this condition holds, then f is a set-cordial labeling which

yields the minimum ground set
⋃

v∈A

f(v). If this condition does not hold, we cannot

label the vertices in A by singleton subsets of X and as a result, the vertices of
B must be labeled by singleton subsets of X. In this case, a − 1 will be less than
the number 2-element combinations of the set

⋃
v∈B

f(v) and f will be a set-cordial

labeling of Ka,b.
Now, we shall determine the set-cordiality number of Ka,b. Here, the following

two cases are to be addressed.

Case-1: Let n be even, say n = 2m,m ∈ N0. Let X be a set containing n = 2m
elements, and let f : V (Ka,b) → P (X) be a set-cordial labeling on Ka,b. Suppose
that there exists a vertex u0 in one partite set of Ka,b such that |f(u0)| = k, and
there exist vertices v0 and w0 in the other partite set ofKa,b such that |f(v0)| = k−1
and |f(w0)| = k + 1. Since |f(u)| − |f(v0)| = ±1 and |f(u)| − |f(w0)| = ±1 for all
u in the first partite set, we have |f(u)| = k, for all u in the first partite set. Since
|f(v)|−|f(u0)| = ±1, for all v in the second partite set, we have either |f(v)| = k−1
or |f(v)| = k + 1. Since a ≤ b and(

2m

k

)
≤

(
2m

k − 1

)
+

(
2m

k + 1

)
,

we have

a ≤
(
2m

k

)
and b ≤

(
2m

k − 1

)
+

(
2m

k + 1

)
.

Since for all 1 ≤ k ≤ 2m− 1, (
2m

k

)
≤

(
2m

m

)
,

we have k = m. Thus, ς(Ka,b) = 2m = 2α.
Case-2: Let n be odd, say n = 2m + 1,m ∈ N0. Let X be a set containing

n = 2m+1 elements and let f : V (Ka,b) → P (X) be a set-cordial labeling on Ka,b.
An argument similar to that in the above paragraph shows that we have |f(u)| = k,
for all u in one partite set, and either |f(v)| = k − 1 or |f(v)| = k + 1 for all v in
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the other partite set. Since a ≤ b and(
2m+ 1

k

)
≤

(
2m+ 1

k − 1

)
+

(
2m+ 1

k + 1

)
,

we have

a ≤
(
2m+ 1

k

)
and b ≤

(
2m+ 1

k − 1

)
+

(
2m+ 1

k + 1

)
.

Since for all 1 ≤ k ≤ 2m, (
2m+ 1

k

)
≤

(
2m+ 1

m+ 1

)
,

we have k = m+ 1. Thus, ς(Ka,b) = 2m+ 1 = 2β + 1. From, the above two cases,
we have ς(Ka,b) = min{2α, 2β + 1}, completing the proof. □

Figure 2 illustrates a set-cordial labeling of a complete bipartite graph K6,7, with
respect to the ground set X = {1, 2, 3, 4}.

{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}

{1} {1, 2, 3} {2} {1, 2, 4} {3} {1, 3, 4} {4}

Figure 2. An illustration to a set-cordial labeling of K6,7.

3. Glutting Number of a Graph

As a consequence of Theorem 2, non-bipartite graphs do not admit a set-cordial
labeling. But, by the removal of certain edges from the graph will make the graph
set-cordial. Hence, we have the following notion:

Definition 3. The glutting number of a graph G, denoted by ξ(G), is the minimum
number of edges of G to be removed so that the reduced graph admits a set-cordial
labeling.

In view of Theorem 2, we note that the glutting number of a bipartite graph is
0. Therefore, ξ(Pn) = 0.
The following discusses the glutting number of a cycle Cn.
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Proposition 1.

ξ(Cn) =

{
0; if n is even

1; if n is odd.

Proof. The proof is straight forward from Theorem 3. □

We shall now discuss the glutting number of certain fundamental graph classes.
Recall that a wheel graph is defined by W1,n = K1 + Cn. The following result
discusses the glutting number of a wheel graph.

Proposition 2. ξ(W1,n) =

{
n
2 ; if n is even;
n+1
2 if n is odd.

Proof. Note that every edge incident on the central vertex of W1,n is contained
in exactly two triangles of W1,n. So, removal of any such edge will result in the
removal of two triangles in Wn. Also, there are n triangles in W1,n. Here, we have
to address the following two cases:

Case-1: Let n be even. Then, we need to remove n
2 edges incident on the central

vertex to make the graph triangle free. Then, the reduced graph has girth 4 and
has no odd cycles. Hence, in this case, ξ(W1,n) =

n
2 .

Case-2: Let n be odd. Then, the outer cycle Cn is an odd cycle and hence one
edge, say e, must be removed from Cn. Now, there exist n − 1 triangles in the
graph Wn − e. Since, n− 1 is even, we need to remove n−1

2 edges from Wn − e to
make it triangle free. After the removal of this much edges, the reduced graph has
girth 4 and has no odd cycles (see Figure 3, for example). Therefore, in this case,
ξ(Wn) = 1 + n−1

2 = n+1
2 . □

A helm graph H1,n is the graph obtained from a wheel graph W1,n by attaching
one pendant edge to each vertex of the outer cycle Cn of Wn. Then, we have

Proposition 3. ξ(H1,n) =

{
n
2 ; if n is even;
n+1
2 if n is odd.

Proof. The proof is exactly as in the proof of Theorem 2. □

A closed helm CH1,n is the graph obtained from a helm graph Hn by joining the
pendant vertices of Hn so as to form an outer cycle of length n. Then, we have

Proposition 4. ξ(Hn) =

{
n
2 ; if n is even;
n+3
2 if n is odd.

Proof. In CHn, the central vertex is contained in all triangles. Hence, the only
thing to be noted here is that if n is odd, we need to remove one edge each from
inner and outer cycles. Then, the proof is exactly as in the proof of Theorem 2. □

The following theorem determines the glutting number of a complete graph Kn.
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Theorem 5. ξ(Kn) =

{
1
4n(n− 2); if n is even;
1
4 (n− 1)2; if n is odd.

Proof. Consider the complete graph Kn. Let G be a spanning subgraph of Kn such
that ξ(Km) = |E(Kn)| − |E(G)|. By Theorem 2, G is bipartite. Since |E(Kn)| −
|E(G)| is a minimum among all bipartite spanning subgraphs G of Kn, G is a
complete bipartite spanning subgraph of Kn. Let A and B be partite vertex sets
of G such that |A| = k and |B| = m − k. Since A and B are independent sets in
G, we have

ξ(Kn) =
1

2
k(k − 1) +

1

2
(n− k)(n− k − 1)

=
n2

4
− n

2
+

(
k − n

2

)2

Here, we have to address the following cases:
Case-1: Let n even. Thus, there exists a positive integer m such that n = 2m.

Then, ξ(Kn) = n2 − n + (k − n)2. This value is a minimum when k = m. Thus,

ξ(Kn) = m2 −m = n2−n
4 .

Case-2: Suppose n is odd. Let m be the positive integer such that n = 2m+ 1.
Then, ξ(Kn) = n2 − 1

4 +(k−n− 1
2 )

2. This value is a minimum when either k = m

or k = m+ 1. Thus ξ(Kn) = m2 = (n−1)2

4 . This completes the proof. □

4. Some Variations of Set-Cordial Labeling

Definition 4. Let X be a non-empty set and f : V (G) → X be a set-labeling
defined on a graph G. Then, f is said to be a weakly set-cordial labeling of G if
||f(vi)| − |f(vj)|| ≤ 1 for all vivj ∈ E(G). A graph which admits a set-cordial
labeling is called a weakly set-cordial graph.

Theorem 6. Every graph G admits a weakly set-cordial labeling.

Proof. If G is bipartite, the theorem follows by Theorem 2. So, let G be a non-
bipartite graph. Let I and be a maximal independent of G. Then, it is possible to
choose the ground set X, sufficiently large, in such a way that

(i) all vertices in G− I can be labeled by distinct singleton subsets of X,
(ii) one vertex of I is labeled by the empty set and other vertices can be labeled

by distinct 2-element subsets of X.

Clearly, this labeling will be a set-cordial labeling of G, completing the proof. □

Observation 7. It can be noted that the glutting number of G is equal to the
number of edges uv in G having | |f(u)| − |f(v)| | = 0, with respect to a weakly
set-cordial labeling f .

Figure 3 depicts a weakly set-cordial labeling of a wheel graph. The dashed lines
represent the edges uv with | |f(u)| − |f(v)| | = 0.
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∅

{x2}

{x1, x2}

{x3}

{x2, x3}

{x4}

{x1, x3} {x5}

{x6}

{x1}

Figure 3. A weakly set-cordial labeling of a wheel graph.

5. Conclusion

In this article, we have introduced a particular type of set-labeling, called set-
cordial labeling, of graphs and discussed certain properties of graphs which admits
this type type of labeling. A couple of new graph parameters, related to the set-
cordial labeling have also been introduced. These graph parameters seem to be
promising for further studies. The set-cordial labeling of the operations, products
and certain derived graphs of given set-cordial graphs can also be studied in detail.
The newly introduced parameters can also be studied. All these facts highlight the
wide scope for further research in this area.
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